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Designing unimodular sequence with good

auto-correlation properties via Block

Majorization-Minimization method

Surya Prakash Sankuru, Prabhu Babu

Abstract

Constant modulus sequence having lower side-lobe levels in its auto-correlation function plays an important

role in the applications like SONAR, RADAR and digital communication systems. In this paper, we consider the

problem of minimizing the Integrated Sidelobe Level (ISL) metric, to design a complex unimodular sequence of any

length. The underlying optimization problem is solved iteratively using the Block Majorization-Minimization (MM)

technique, which ensures that the resultant algorithm to be monotonic. We also show a computationally efficient way

to implement the algorithm using Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) operations.

Numerical experiments were conducted to compare the proposed algorithm with the state-of-the art algorithms and was

found that the proposed algorithm performs better in terms of computational complexity and speed of convergence.

Index Terms–Block Majorization-Minimization, Integrated Sidelobe Level, unimodular sequence, aperiodic auto-

correlation function, SONAR, RADAR.

I.INTRODUCTION AND PROBLEM FORMULATION

Transmit sequence with an impulse like aperiodic auto-correlation function have many applications, e.g. high

resolution SONAR imaging [1], [2], [3], RADAR imaging [4], [5], [6], [7], [2] and CDMA communication systems

(to name a few) [6], [8], [2], [9]. Hence, a sequence with lower side-lobe levels in its auto-correlation function is

usually desired. In addition to minimizing side-lobe levels, we concentrate on the design of a unimodular sequence

due to the practical constraints such as usage of full transmission power available in the system, avoidance of the

non-linear side effects and the limitations posed by sequence generation hardware [2], [9], [10].

Let {yi}Ni=1 be a complex unimodular sequence of length ‘N ’ to be designed. The aperiodic auto-correlation of

a sequence {yi}Ni=1 at any lag ‘k’ is defined as:

r(k) =

N−k
∑

i=1

yi+ky
∗
i = r∗(−k), k = 0, ...., N − 1. (1)
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There are two metrics, namely Integrated Side-lobe Level (ISL) and Peak Side-lobe Level (PSL), which are

commonly used to measure the degree of correlation of a sequence. The ISL and PSL metrics of a sequence are

defined as:

ISL =

N−1
∑

k=1

|r(k)|2 (2)

PSL = max {|r(k)|}N−1
k=1 (3)

However, the ISL metric is usually peferred to design a sequence due to its direct applicability to various

applications. Hence, our problem of interest would also be

minimize
y

ISL =
N−1
∑

k=1

|r(k)|2

subject to |yi| = 1, i = 1, ..., N,

(4)

where y = [y1, y2, ...., yN ]T . The algorithms used to design unimodular sequences can be broadly classified into

two categories−analytical and computational. Some of the sequences derived using analytical approach are Binary

sequences [11], [12], [13], Frank sequence [14], Polyphase sequence [15], Golomb sequence [16]. But these

sequences exists only for limited length and has lesser degrees of freedom. On the other hand, computational

approaches are able to design a sequence of arbitrary length but at the cost of high computational complexity. Some

of the computational approaches available in the literature are CAN algorithm [10], MISL algorithm [17], ADMM

approach [18], ISL-NEW algorithm [19].

The following conventions for math symbols are adopted hereafter: boldface uppercase letters denote matrices,

boldface lowercase letters denote column vectors and italics denote scalars. Tr() denotes the trace of a matrix.

The superscripts ()T , ()∗, ()H denote transpose, complex conjugate and conjugate transpose, respectively. Re(.) and

Im(.) denote real and imaginary parts, respectively. arg(.) denotes the phase of a complex number and yi denote

the ith element of vector y. In denotes the n × n identity matrix and vec(G) is a column vector consists of all

the columns of a matrix-G stacked. Diag(y) is a diagonal matrix formed with y as its diagonal. |.|2denotes the

absolute squared value. R and C represent the real and complex fields. ⌊.⌋ represents the nearest integer value.

CAN algorithm [10] designs a sequence by minimizing an approximation of the ISL function. The authors in

[10] rewrote the objective function in (4) by expressing it in the frequency domain as:

N−1
∑

k=1

|r(k)|2 =
1

4N

2N
∑

f=1

[
∣

∣

∣

∣

∣

N
∑

i=1

yie
−jωf (i−1)

∣

∣

∣

∣

∣

2

−N

]2

(5)

where ωf = 2π
2N (f − 1), f = 1, ..., 2N are the Fourier grid frequencies.



3

Then the problem (4) can be rewritten as:

minimize
y

1

4N

2N
∑

f=1

[∣

∣

∣

∣

∣

N
∑

i=1

yie
−jωf (i−1)

∣

∣

∣

∣

∣

2

−N

]2

subject to |yi| = 1, i = 1, ..., N.

(6)

The cost function in (6) is a quartic function in the variables {yi} and it is hard to arrive at a minimizer for (6).

Thus, instead of solving (6) directly, the authors in [10] solved an almost equivalent problem, which has a quadratic

cost function in {yi} as shown below:

minimize
y,φf

2N
∑

f=1

[
∣

∣

∣

∣

∣

N
∑

i=1

yie
−jωf (i−1) −

√
Nejφf

∣

∣

∣

∣

∣

2]

subject to |yi| = 1, i = 1, ..., N,

(7)

where φf , f = 1, 2, ..., 2N are auxiliary variables.

The problem in (7) can be rewritten as

minimize
y,x

∥

∥

∥

∥

∥

P̂
H
y −
√
Nx

∥

∥

∥

∥

∥

2

2

subject to |yi| = 1, i = 1, ..., N,

(8)

where P̂ = [p1, ....,p2N ] be a N × 2N matrix with pf , [1, ejωf , ..., ejωf (N−1)]T and x , [ejφ1 , ..., ejφ2N ]T .

CAN algorithm solves the problem (8) by alternatively minimizing between y and x. For a fixed y, minimization

of (8) with respect to φf is given by:

φf = arg(uf), f = 1, .., 2N, (9)

where u , P̂
H
y and for a fixed x, minimizer over y would be:

yi = ejarg(gi), i = 1, .., N, (10)

where g , P̂ x. The pseudocode of the CAN algorithm is summarized in the table Algorithm 1.

Since, CAN algorithm solves an approximation of the problem in (6), the sequence obtained by solving the

problem in (7) will not be a minimizer of the original problem in (6). To fix this shortcoming, Song et.al. in [17]

proposed the MISL algorithm by solving directly the problem in (6). MISL solves the ISL minimization problem

by MM method. Without going into explanation of MISL algorithm, as it would require detailed explaination of

MM method, the pseudocode of the MISL algorithm summarized in the table Algorithm 2.
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Algorithm 1 :The CAN algorithm proposed in [10]

Require: sequence length ‘N ’

1: set t = 0, initialize y0

2: repeat

3: u = P̂
H
yt

4: xf = ejarg(uf ), f = 1, .., 2N
5: g = P̂ x

6: yt+1
i = ejarg(gi), i = 1, .., N

7: t←t+ 1
8: until convergence

Algorithm 2 :The MISL algorithm proposed in [17]

Require: sequence length ‘N ’

1: set t = 0, initialize y0

2: repeat

3: u = P̂
H
yt

4: umax = maxf
{

|uf |2 : f = 1, .., 2N
}

5: z = −P̂
(

Diag
(

|u|2
)

− umaxI −N2I

)

u

6: yt+1
i = ejarg(zi), i = 1, .., N

7: t←t+ 1
8: until convergence

Even though MISL algorithm solves the original problem, it suffers from slower speed of convergence. On the

other hand, when compared to CAN algorithm, it converges to the stationary point of problem in (6). Both the

algorithms are implemented via FFT and IFFT operations and are computationally viable to be implemented in

standard pcs.

In [20], J. Song et.al solve the ISL metric problem to design a sequence set and proposed an algorithm named

as MM-Corr, using the MM method. By taking number of sequences as one instead of sequence set, observed

that its performance is almost equal to MISL algorithm. In [18], J.Liang et.al proposed a new approach to solve a

problem in (8) by using the ADMM method and concludes that, such a technique had a poor performance when

compared to MISL algorithm interms of the PSL of an aperiodic auto-correlation function. Y. Li et.al proposed

the ISL-NEW algorithm [19] by solving the problem in (6) by using MM method and presented simulation results

showing ISL-NEW algorithm as a faster algorithm compared to MISL. J.song et.al had proposed an algorithm based

on the MM method named as MM-PSL [21], by solving lp-norm of the auto-correlation function (2 < p <∞) as

an objective function, which is different from ISL metric.

The main motivation of this paper is to solve the original ISL minimization problem in (4) with a better speed

of convergence (with lesser computational complexity) than the existing methods. To achieve this, we have used

Block MM technique. We also show a computationally efficient way to implement our algorithm via FFT and IFFT

operations.
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The major contributions of the paper are as follows:

1) An algorithm based on the Block MM framework is proposed, to design a sequence of any length N by

minimizing the ISL metric.

2) We also propose a computationally efficient way to implement our algorithm, which we call as Fast Block

MM (FBMM). This is particularly useful for generating sequence of larger lengths.

3) We prove that the proposed algorithm converges to a stationary point of the problem in (4).

4) Numerical experiments were conducted to prove that, our proposed algorithm will perform better when

compared to existing methods in terms of speed of convergence.

The rest of the paper is organised as follows. We first give an overview of MM and Block-MM in section II. Next we

propose our algorithm and its faster version (FBMM) in section III and discuss its convergence and computational

complexity. Numerical experiments are discussed in section IV and finally section V concludes the paper.

II.MAJORIZATION-MINIMIZATION METHOD

A. MM Procedure:

MM is an iterative procedure, which is used to solve an optimization problem (non-convex or sometimes even a

convex) more efficiently. The MM procedure mainly consists of two steps with first step being forming a surroagte

function g(y|yt) which majorizes (upper bounds) the original objective function f(y) at any feasible point y = yt,

which is followed by minimizing the surrogate function to find the next iterative estimate yt+1. The surrogate

function g(y|yt) has to satisfy the following properties:

g(yt|yt) = f(yt), ∀y ∈ χ (11)

g(y|yt) ≥ f(y), ∀y ∈ χ (12)

where yt is the value taken by y at tth iteration and χ is a set which consists all possible values of y. Hence, the

MM procedure will generate the sequence of points {y} = y0,y1,y2, .....,ym according to the following update

rule:

yt+1 , argmin
y∈χ

g(y|yt). (13)

The objective value at every iteration will satisfy the following descent property, i.e.

f(yt+1) ≤ g(yt+1|yt) ≤ g(yt|yt) = f(yt). (14)
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Computational complexity and the convergence rate of MM based algorithms mainly depends on the choice of the

surrogate function g(y|yt). There are some guideline techniques to construct the surrogate functions as discussed

in [22], [23].

B. Block MM:

If one can split an optimization variable into M blocks, then a combination of Block Coordinate Descent [24]

and the MM procedure can be applied i.e., the optimization variable is split into blocks and then each block is

treated as an independent variable and updated using MM by keeping the other blocks fixed. Hence, the ith block

variable is updated by minimizing the surrogate function gi(yi|yt) which majorizes f(yi) at a feasible point yt on

the ith block. Such surrogate function has to satisfy the following properties:

gi(y
t
i |yt) = f(yt), (15)

gi(yi|yt) ≥ f(yt1, y
t
2, .., yi, .., y

t
N), (16)

where yt is the value taken by y at the tth iteration.

The ith block at (t+ 1)th iteration is updated by solving the following problem:

yt+1
i ∈ argmin

yi

gi(yi|yt). (17)

In Block MM method, every block is updated in a sequential manner and the surrogate function is choosen in a

way, such that it is easy to minimize and follow the shape of a objective function.

III.ISL MINIMIZATION USING BLOCK MM TECHNIQUE

In this section, we present our algorithm and discuss its convergence and computational complexity.

A. FBMM algorithm:

Let us revisit the problem in (4)

minimize
y

N−1
∑

k=1

|r(k)|2

subject to |yi| = 1, i = 1, ..., N.

After substituting for r(k), the above problem can be rewritten as
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minimize
y

∣

∣

∣

∣

∣

N−1
∑

i=1

yi+1y
∗
i

∣

∣

∣

∣

∣

2

+ ......+

∣

∣

∣

∣

∣

2
∑

i=1

yi+N−2y
∗
i

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

yNy∗1

∣

∣

∣

∣

∣

2

subject to |yi| = 1, i = 1, ..., N.

(18)

Now, to solve the problem in (18), we use the Block MM technique by considering y1, y2, .., yN as an independent

block variables. For the sake of clarity, in the following we consider a generic optimization problem in variable yi,

and optimization over any variable of “y”. would be very similar to the generic problem. Let the generic problem

be:

minimize
yi

fi(yi)

subject to |yi| = 1.

(19)

where yi indicates the ith block variable and its corresponding objective function fi(yi) is defined as

fi(yi) , ai

[

l1
∑

k=1

| yim∗
ki + nkiy

∗
i + cki |2

]

+ bi

[

l3
∑

k=l2

| nkiy
∗
i + cki |2

]

(20)

where ai, bi are some fixed multiplicative constants, l1, l2, l3 are the summation limits and mki, nki, cki are

the constants associated with kth auto-correlation lag, which are given by

mki , yi−k

nki , yi+k

cki ,

N
∑

q=k+1

(yqy
∗
q−k), q 6= i, q 6= k + i.

(21)

The values that the variables ai, bi, l1, l2, l3 take will depend on the variable index (yi). They can be given as

follows:

ai ,















0 i = 1, N

1 else

, ∀N.

bi ,

{

1 ∀i , ∀N ∈ even.

bi ,















0 i = ⌊N/2⌋+ 1

1 else

, ∀N ∈ odd.

(22)
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l1 ,















































i− 1 i = 2, .., ⌊N/2⌋ , ai 6= 0 , ∀N.

i− 1 bi = 0, ai 6= 0

N − i i = ⌊N/2⌋+ 1, ai 6= 0 , ∀N ∈ even.

N − i i = ⌊N/2⌋+ 2, .., N − 1, ai 6= 0 , ∀N.

l2 ,















i ai = 0

l1 + 1 bi 6= 0 , ∀N.

l3 ,































N − 1 ai = 0

N − i i = 2, .., ⌊N/2⌋ , ∀N.

i− 1 bi 6= 0

(23)

So, from (20), we have

fi(yi) = ai

[

l1
∑

k=1

| yim∗
ki + nkiy

∗
i + cki |2

]

+ bi

[

l3
∑

k=l2

| nkiy
∗
i + cki |2

]

.

which can be rewritten as

fi(yi) = ai

[

l1
∑

k=1

∣

∣

∣

∣

yim
∗
ki + nkiy

∗
i + cki

∣

∣

∣

∣

2
]

+ bi

[

l3
∑

k=l2

∣

∣

∣

∣

nki + ckiyi

∣

∣

∣

∣

2
]

(24)

Further simplification yields:

fi(yi) = ai

[

l1
∑

k=1

∣

∣

∣

∣

yim
∗
ki + nkiy

∗
i + cki

∣

∣

∣

∣

2
]

+ bi

[

l3
∑

k=l2

wki

∣

∣

∣

∣

yi + dki

∣

∣

∣

∣

2
]

(25)

where

dki ,
nki

cki
, wki , |cki|2.

Expanding the square term in (25) and by ignoring the constant terms, (25) can be rewritten as

fi(yi) =
l1
∑

k=1

ai

[

(n∗
kim

∗
ki)(y

2
i ) + (c∗kim

∗
ki + n∗

kicki)(yi) + (nkimki)(y
2
i )

∗ + (mkicki + c∗kinki)(yi)
∗

]

+
l3
∑

k=l2

biwki

[

yid
∗
ki + dkiy

∗
i

]

(26)

fi(yi) =

l1
∑

k=1

ai

[

2Re
(

(n∗
kim

∗
ki)(y

2
i )
)

+ 2Re
(

(c∗kim
∗
ki + n∗

kicki)(yi)
)

]

+

l3
∑

k=l2

[

biwki ∗ 2Re
(

yid
∗
ki

)

]

(27)
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Now if we define:

n∗
kim

∗
ki , â1ki + jâ2ki

(c∗kim
∗
ki + n∗

kicki) , b̂1ki + jb̂2ki

d∗ki , ĉ1ki + jĉ2ki

yi , u1 + ju2

(28)

where â1ki, â2ki, b̂1ki, b̂2ki, ĉ1ki, ĉ2ki, u1, u2 are real valued quantities.

Then fi(yi) in (27) can be further simplified as:

fi(u1, u2) =

[

2ai
l1
∑

k=1

â1ki

]

(u1)
2 −

[

4ai
l1
∑

k=1

â2ki

]

u1u2 +

[

2ai
l1
∑

k=1

b̂1ki + 2bi
l3
∑

k=l2

wkiĉ1ki

]

u1

−
[

l1
∑

k=1

2aib̂2ki+
l3
∑

k=l2

2biwki ĉ2ki

]

u2 −
[

2ai
l1
∑

k=1

â1ki

]

(u2)
2

(29)

Again introducing,

a , 2ai

l1
∑

k=1

â1ki

b , 4ai

l1
∑

k=1

(â2ki)

c , 2ai

l1
∑

k=1

b̂1ki + 2bi

l3
∑

k=l2

wki ĉ1ki

d , 2ai

l1
∑

k=1

b̂2ki + 2bi

l3
∑

k=l2

wki ĉ2ki

(30)

Then fi(u1, u2) in (29) is simplified as:

fi(u1, u2) = au2
1 − bu1u2 + cu1 − du2 − au2

2 (31)

Thus the problem in (19) has become the following problem with real valued variables.

minimize
u1,u2

fi(u1, u2)

subject to u2
1 + u2

2 = 1.

(32)

Now, the problem in (32) can be written in (matrix-vector) form as:
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minimize
v

vTAv + eTv

subject to vTv = 1,

(33)

with

A ,







a −b
2

−b
2 −a







e ,







c

−d







v ,







u1

u2







(34)

The problem in (33) has an objective function which is a non-convex quadratic function in the variable v because

of (−a) in the diagonal of A and also the constraint is a quadratic equality constraint, so the problem in (33) is

a non convex problem and hard to solve. So, we decided to employ MM technique to solve the problem in (33).

Let us introduce the following lemma, which would be useful to develop our algorithm.

Lemma-1: Let Q be an n × n Hermitian matrix and R be another n× n Hermitian matrix such that R ≥ Q.

Then for any point y0 ∈ Cn, the quadratic function yHQy is majorized by yHRy + 2Re(yH(Q − R)y0) +

(y0)H(R − Q)y0 at y0.

Proof: Although the proof can be find in [17], we replicate it here for the sake of clarity.

As R ≥ Q, we have

yHQy = (y0)HQy0 + 2Re((y − y0)HQy0) + (y − y0)HQ(y − y0)

≤ (y0)HQy0 + 2Re((y − y0)HQy0) + (y − y0)HR(y − y0)

= yHRy + 2Re(yH(Q − R)y0) + (y0)H(R − Q)y0

for any y ∈ Cn. �

Now, by using Lemma-1, we will majorize only the quadratic term in the objective function of problem in (33)

at any feasible point v = vt and get

gi(v|vt) = vTA1v + 2Re[vT (A−A1)v
t] + (vt)T (A1 −A)vt, (35)

where A1 = λmax(A).In . Since λmax(A) is a constant value and vTv = 1, so the first and the last terms in the

above surrogate function are constants. Hence, after ignoring the constant terms from (35) we get,

gi(v|vt) = 2Re[vT (A−A1)v
t] (36)
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Now, the problem (33) is equal to

minimize
v

2Re[vT (A−A1)v
t] + eTv

subject to vTv = 1

(37)

which can be further rewritten as

minimize
v

gi(v|vt) =‖ v − z ‖22

subject to vTv = 1

(38)

where z = −[(A−A1)v
t + (e/2)].

Now, the problem in (38) has a closed form solution of:

v =
z

||z||2
. (39)

Then the update yt+1
i can be calculated by:

yt+1
i = v1 + jv2 (40)

The constants (c1i, c2i, ..., c(N−1)i) in (21) which are calculated at every iteration, which form the bulk of the

computations, can be computed via FFT and IFFT operations as follows: For example, the constant (c1i) can be

intreperated as the auto-correlation of a sequence (with yi = 0) which inturn can be calculated by an FFT and

IFFT operation. So, to calculate all the constants of N variables, we would require N number of FFT and N

number of IFFT operations. To avoid implementing FFT and IFFT operations N number of times, we propose an

computationally efficient way to calculate the constants. To achieve this, we would exploit the cyclic pattern in the

expression of the constants. First we define s which includes original variable y along with some pre-defined zero

padding structure as shown below:

s = [01×N−2,y
T ,01×N ]T (41)

Let us define the variables bi and Di as:

bi = [−y∗i , y∗i−1,−yi, yi−1]
T (42)
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Di =



















s(N+i−1) . . s(2N+i−4) 0

0 s(N+i−1) . . s(2N+i−4)

0 s∗(N+i−4) . . s∗(i−1)

s∗(N+i−4) . . s∗(i−1) 0



















(43)

So, to calculate the ith variable constants (c1i, c2i, .., c(N−1)i), we will use the constants associated with the

(i− 1)th variable (c1(i−1), c2(i−1), .., c(N−1)(i−1)) as follows:

[

c1i, . . , c(N−1)i

]

=

[

c1(i−1), . . . , c(N−1)(i−1)

]

+ bTi Di ∀ i = 2, .., N (44)

Therefore, all the (N − 1) number of constants associated with each of the N variables are implemented using

only one FFT and IFFT operation. The steps of our algorithm which is named as FBMM is shown in the table

Algorithm 3.

Algorithm 3 :FBMM algorithm

Require: sequence length ‘N ’

1: set t = 0, initialize y0

2: repeat

3: set i = 1
4: repeat

5: calculate {cki}N−1
k=1 using (44)

6: calculate dki =
nki

cki
, wki = |cki|2 , k = 1, ..., N − 1.

7: A1=λmax(A).I2

8: z = −[(A−A1)v
t + (e/2)]

9: v = z

||z||2

10: yt+1
i = v1 + jv2

11: i←− i+ 1
12: until length of a sequence

13: t←− t+ 1
14: until convergence

B. Proof of convergence:

The proposed algorithm is based on a Block MM technique. As Block MM is a combination of coordinate descent

and the MM procedure, it is ensured that the cost function evaluated at every limit point is monotonic. Also, since

the cost function in (4) is bounded below by zero, the sequence of objective values is guaranteed to converge to a

finite value. In [25], Theorem 2.a Razaviyayn et.al stated that a limit point generated at each iteration by a Block

MM algorithm is a coordinate wise minimum point with respect to original cost function, iff the upper bound gi(.)

is a quasi-convex function. We now have to prove that gi(v|vt) in (35) is indeed a quasi convex function.

So, from (35), we have,
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gi(v|vt) = vTA1v + 2Re[vT (A−A1)v
t] + (vt)T (A1 −A)vt

which is a quadratic function in v. The Hessian of gi(v|vt) is 2A1, where A1 = λmax(A).In. Since λmax(A)

is a positive value, A1 is a diagonal matrix with positive entries. Hence gi(v|vt) is a convex function. Since every

convex function is also a quasi-convex function, gi(v|vt) is also a quasi-convex function. Therefore, according to

Theorem 2.a of [25] the sequence of points generated by FBMM will converge to the stationary point of problem

in (4).

C. Computational complexity:

The per iteration computational complexity of the proposed algorithm is dominated in the calculation of constants

cki , k = 1, .., N − 1 ,i = 1, .., N . These constants can be calculated using one FFT and IFFT operation and the

approach as mentioned in the end of subsection (A), where we exploit some cyclic pattern and calculate the

constants, then the computational complexity per iteration would be O(N2) +O(N logN).

IV.NUMERICAL EXPERIMENTS

In this section, we present the numerical results of our proposed algorithm and compare its performance with

the state-of-the art algorithms. As CAN algorithm and ADMM method developed in [18] solves an approximate

problem, we will not include them for numerical comparision. So, we compared our results with MISL and ISL-

NEW algorithm. All the simulations were performed in MATLAB on a PC with two core 2.40GHz processor.

Experiments has been conducted to design a sequence of lengths N = 50, 100, 200, 300, 400, 500 using different

initialization sequences like Random, Golomb [16] and Frank [14] sequences. In case of random initialization, 30

monte carlo runs has been conducted for every length and for every run, initialization sequence
{

y0i
}N

i=1
is choosen

as
{

ej2πθi
}N

i=1
, where

{

θi
}

are drawn randomly from the uniform distribution [0, 1]. The convergence criterion

which we used to stop all the algorithms in the comparision is

∣

∣

∣

∣

∣

(ISL(t+ 1)− ISL(t))

max(1, ISL(t))

∣

∣

∣

∣

∣

≤ 10−5, (45)

where ISL(t) is the ISL metric value at tth iteration.

In each experiment, execution time of the proposed algorithm and property of a designed sequence such as

auto-correlation side-lobe levels, cost function value were observed and compared with the MISL and ISL-NEW

algorithms. Since the algorithms under comparision, MISL and ISL-NEW and also our algorithm are based on MM,

all of them can be accelerated using standard acceleration schemes [26], [27], [28], but for the sake of comparison,

we didn’t implement acceleration scheme for any of the methods.
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Figure 1: ISL vs Iteration for a sequence length N = 100, 289, 484, 500. (a) and (b) are for initialization via

Random sequence. (c) and (d) are for initialization via Golomb sequence. (e) and (f) are for initialization via Frank

sequence.
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Figure. 1 consists the plots of ISL value vs iteration number for different lengths using three different initialization

sequences. Here FBMM(R), FBMM(G), FBMM(F) indicates FBMM algorithm initialized with Random, Golomb

and Frank sequences, respectively. We initialize all the algorithms at the same initial point and observed that, almost

they also ended up at the same minimum but with different speed of convergence. From the plots, it can be observed

that for the different lengths N , MISL and ISL-NEW are taking much larger number of iterations and FBMM is

taking lesser number of iterations to converge to the same objective minimum value.

Figure. 2 shows the ISL value at every iteration vs time for different lengths using different initialization sequences.

Each plot also has zoomed version to show the subtle difference in the speed of convergence of FBMM and ISL-

NEW. From the plots, it can be observed that, irrespective to the initialization sequence and length N , FBMM is

always taking less time to converge to the same objective minimum value when compared to MISL and ISL-NEW

algorithms.

Figure. 3 shows the auto-correlation plots of the generated sequence via FBMM, ISL-NEW and MISL algorithms

using different initialization sequences. From plots, we observed that in the case of Frank and Golomb sequence

initializations, most of the side-lobe levels in the initial sequence itself are too low but PSL is high. It can be seen

that all the three algorithms improves performance from the initialized sequence interms of PSL.

Figure. 4 has a comparision of three algorithms interms of average running time for different lengths using

random initialization sequence. For better comparision, all the three algorithms are initialized with a same sequence

and stopped using the same convergence criterion. From the figure, it can be observed that, irrespective of length

N , FBMM is taking lesser time to converge when compared to rest of the two algorithms: MISL and ISL-NEW.

VI.CONCLUSION

To design a sequence of any length (N), we have proposed an algorithm by minimizing the ISL metric.

We also shown a computationally efficient way of implementing our proposed algorithm and named as FBMM.

Proposed algorithm is derived based on a Block MM technique and implemented using FFT, IFFT operations, hence

computationally efficient for large lengths. Numerical experiments shows that, proposed algorithm is performing

well when compared to state-of-the art algorithms in terms of convergence rate, computational complexity and

average running time.
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