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Abstract

Phase retrieval (PR) is an inverse problem about recovering a signal from phaseless linear
measurements. This problem can be effectively solved by minimizing a nonconvex amplitude-
based loss function. However, this loss function is non-smooth. To address the non-smoothness,
a series of methods have been proposed by adding truncating, reweighting and smoothing op-
erations to adjust the gradient or the loss function and achieved better performance. But these
operations bring about extra rules and parameters that need to be carefully designed. Unlike
previous works, we present a smooth amplitude flow method (SAF) which minimizes a novel
loss function, without additionally modifying the gradient or the loss function during gradient
descending. Such a new heuristic can be regarded as a smooth version of the original non-
smooth amplitude-based loss function. We prove that SAF can converge geometrically to a
global optimal point via the gradient algorithm with an elaborate initialization stage with a
high probability. Substantial numerical tests empirically illustrate that the proposed heuristic
is significantly superior to the original amplitude-based loss function and SAF also outperforms
other state-of-the-art methods in terms of the recovery rate and the converging speed. Spe-
cially, it is numerically shown that SAF can stably recover the original signal when number of
measurements is smaller than the information-theoretic limit for both the real and the complex
Gaussian models.

1 Introduction

In various science and engineering fields, one often encounters the problem of reconstructing a signal
from phaseless measurements, known as the phase retrieval (PR) problem. Specific applications of
PR include X-ray crystallography [1], molecular imaging [2], biological imaging [3] and astronomy
[4].

Mathematically, PR is to solve a system of quadratic equations of the form:

bi = |〈ai,x〉| , i = 1, · · · ,m, (1)

where x ∈ Rn/Cn is the unknown signal to be found, the measurements b := [bi]1≤i≤m ∈ Rm, and
ai ∈ Rn/Cn denotes the measuring vector, forming the m × n measuring matrix A := [ai]1≤i≤m.
Because ejθx with j :=

√
−1 also satisfies (1) for all θ ∈ R, the uniqueness of the phase retrieval

problem is defined up to a global phase.
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A usually corresponds to the discrete Fourier transform in optics. To consider more general
cases, recent works focus more on the generic measurements. The most widely studied generic
measuring model is the Gaussian model, i.e. ai sampled from independently and identically dis-
tributed (i.i.d.) N (0, In) for the real Gaussian model, or CN (0, In) = N (0, In/2) + jN (0, In/2)
for the complex Gaussian model. Under this setting, it has been proved that m should be at least
4n − 4 in complex case or 2n − 1 in real case to ensure uniqueness of solution x. In this sense,
m = 2n− 1 and m = 4n− 4 can be regarded as the information-theoretical limits in the real case
and the complex case respectively for a PR problem to be uniquely solvable.

Although PR has a simple form and wide applications across many fields, solving it meets
tremendous difficulties both theoretically and numerically since it has been proved to be NP-hard
in general situations [5].

1.1 Prior art

The mainstream classical methods to solve PR are error-reduction algorithms including the Gerchberg-
Saxton, hybrid input and output methods, based on constantly alternated projections. However,
fundamental mathematical questions about the convergence of these methods still remained un-
solved. Recently, a convex formulation of PR was found in [6] relying on the so-called matrix-lifting
technique, and several methods abbreviated as PhaseLift [6, 7], PhaseCut [8] and CoRK [9] were
proposed based on this. Many solid guarantees about perfect recovery and convergence have been
established for this convex approach, but its large computational complexity makes it unpractical
when the signal dimension is large. Another convex formulation was proposed in [10] via PhaseMax,
which solved a linear program in the natural parameter space. However, PhaseMax is markedly
uncompetitive with other state-of-the-art methods in terms of the empirical recovery rate.

More attention was paid to non-convex formulations directly instead of convex relaxation in
recent years. Relevant works include Alternating Minimization (AltMin) [11], Wirtinger Flow
(WF) [12], Amplitude Flow method (AF) [13] and their variants [14, 15, 16]. Specifically, WF is a
gradient descent method based on minimizing the following intensity-based loss function:

`WF(z) :=
1

2m

m∑
i=1

(| 〈ai, z〉 |2 − b2i )2 (2)

WF with spectral initialization method can recover the original perfectly from O(n log n) measure-
ments. Its two variants truncated WF (TWF) and reweighted WF reduce this number to O(n).
Zhang found that better performance can be obtained by minimizing the following amplitude-based
loss function:

`AF(z) :=
1

2m

m∑
i=1

(| 〈ai, z〉 | − bi)2, (3)

and this method is known as reshaped WF (RWF). RWF is shown to achieve perfect recovery
from O(n) measurements, which is better than the original WF. RWF is also known as AF since
it minimizes the amplitude-based loss function. To further improve the performance of AF, Wang
proposed two variants, truncated AF (TAF) and reweighted AF (RAF) which respectively adopt
truncating and reweighting operation during gradient researching. In terms of convergence speed
and rate of recovery, TAF and RAF exhibit a superior performance over the state-of-the-art meth-
ods. However, TAF requires a carefully selected parameter for truncation procedure up the gradient
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function. The reweighting procedure in RAF also requires designing several parameters to obtain
a desired performance.

The non-smooth absolute value term in (3) can deteriorate the numerical performance of AF. To
tackle this, Pinilla proposed a smoothing conjugate gradient method (PR-SCG) [17] that adjusts
the loss function slightly to make the loss function smooth. PR-SCG is a direct application of
smoothing projected gradient method [18] in the PR problem. The critical technique of PR-SCG

is replacing |x| with a smooth function
√
|x|2 + ε. Then the loss function of PR-SCG becomes:

`PR-SCG(z) :=
1

2m

m∑
i=1

(
(|〈ai, z〉|2 + ε)

1
2 − bi

)2
. (4)

Obviously, the optimization problem in PR-SCG is not equivalent to the original problem. A
well-selected ε and a diminishing rule for ε is needed to ensure that the adjusted loss function (4)
converge to the original AF loss function (3).

With enough measurements, the state-of-the-art methods empirically achieve perfect recovery
using O(n) measurements under random Gaussian settings. However, all these methods require at
least the information-limit number of measurements to ensure this. How to further improve the
rate of recovery under the information limit remains to be exploited.

1.2 This work

We construct a novel loss function, which is a natural smooth version of the original amplitude-
base loss function. And SAF is proposed based on minimizing such novel heuristic by the gradient
descent method with a delicate initialization. This method is simple to implement as it does not
need extra operations upon the gradient or loss function as many other state-of-the-art methods
do. Theoretical analysis shows that SAF will converge to the global optimum geometrically given
m = O(n) measurements. Numerical simulations show that our SAF approach performs better
than the original AF and other state-of-the-art methods in respect with the sampling complexity
and time cost.

The remainder of ths paper is organized as follows. In Section 2, we propose the SAF algorithm.
Section 3 gives the theoretical analysis of the proposed method. In section 4, various experiments
are implemented to compare SAF with other gradient descent solvers.

As regards notation used in this paper, the bold capital lowercase letters, e.g. x, z denote
represent vectors. The bold capital uppercase letters such as A represent matrices. x′ denotes the
conjugate transpose of x. 〈x,y〉 denotes the inner product of vector x,y calculated by 〈x,y〉 = x′y.
‖x‖ is the Euclidean norm. The cardinality of the set I is denoted by |I|. The distance between
two vectors up to a global phase is defined as dist (x1,x2) := minθ∈R

∥∥ejθx1 − x2

∥∥ .
2 Smooth amplitude flow method

The intuition and the principles of SAF will be presented in detail in thsi section. For concreteness,
only the real Gaussian model is analyzed. However, with the aid of Wirtinger derivative SAF can
be easily applied to the complex model directly.
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2.1 The smooth amplitude-based loss function

Similar to PR-SCG, we bring in the smooth function

gk,ε(x) =
k

√
|x|k + εk, (5)

where k ≥ 2, ε > 0. Since only replacing |a′iz| with gk,ε(a
′
iz) in the original loss function (3)

will lead to a loss function with different global optimum, we consider replacing the bi in (3) with
gk,ε(bi) symmetrically. In addition, we set ε to be the proportional to bi. As a result, we obtain the
following globally smooth loss function:

`SAF(z) :=
1

2m

m∑
i=1

`i(z), `i(z) =
(
gk,γbi(a

′
iz)− gk,γbi(bi)

)2
, (6)

where k ≥ 2, γ > 0 are preselected parameters. The utilization of the smooth function (5) makes
the original amplitude-based loss function (3) smooth. Therefore, our method is called the smooth
amplitude flow method, abbreviated as SAF. When γ = 0, `SAF(z) degenerates to the original
non-smooth loss function (3). Obviously, the original AF loss function and the SAF loss function
(6) have the same global minimizers that satisfy |〈ai, z〉| = bi, for i = 1, · · · ,m. The gradient of
the loss function (6) is

∇`SAF(z) =
1

m

m∑
i=1

(
gk,γbi(a

′
iz)− gk,γbi(bi)

)
(|a′iz|k + γkbki )

1
k
−1 ∣∣a′iz∣∣k−2 aia′iz. (7)

It is hard to analytically determine the best setting of parameters k and γ. Therefore we simply
take k = 4 and γ = 1 based on extensive numerical experiments.

An earlier work proposed a similar loss function method in view of adding perturbation [19].
However, our method is proposed from the view of utilizing a smooth alternative of |x| and is more
generalized. Besides (5), SAF can also adopt other smooth alternative of |x| such as the well-known
log-cosh function [20].

SAF can be seen as a natural improved version of the original AF method. According to [13],
amplitude-based loss function (3) can be regarded as a direct application of traditional least squares
method to phase retrieval, and shows to be better than WF (2). However, jumps of gradient ∇`i(z)
exist in the vicinity of the line {z : a′iz = 0}, which may unstabilize the gradient descent algorithm,
especially when the measurement number is around the information-theoretical limit. To tackle
this, AF’s variants TAF and RAF modifies the gradient function, and have achieved better empirical
performance. The idea of this paper is similar, but we demonstrate that directly adjusting the loss
function with a smooth function (5) can also be feasible.

Fig. 1 presents a two-dimensional real-valued PR example to demonstrate the difference between

the loss functions of AF and SAF. The original solution is x = (
√
2
2 ,
√
2
2 )′, and the measuring vectors

are ai = (sin θi, cos θi)
′, where θi = iπ

5 , i = 0, · · · , 4. It can be seen that two global minima marked
with circles are surrounded by dense contours for AF and SAF as shown in Fig. 1a and Fig.
1c. However, there are two extra local minima marked with crosses for AF as shown in Fig.
1a. Furthermore, the contours of AF are not smooth or regular which can cause difficulties for
some gradient-descending solvers, while SAF is infinitely differentiable which makes high order
optimization methods applicable.
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Figure 1: Contour plot of loss functions. SAF has no local minimum while AF has another 2
spurious minima marked with crosses.

Fig. 1b presents the contours of PR-SCG loss function with ε = 0.3 in (4). The global op-
timal points is marked with ‘∗’ and obviously deviate from the true solution of PR. Therefore,
an iteratively shrinking rule for ε is necessary for PR-SCG to ensure the convergency to the orig-
inal solution. In contrast, the loss function of SAF has same global minima with (3). Besides,
current results only demonstrate that PR-SCG converges to some Clark stationary point, but the
convergency to the global minima has not been established yet.

2.2 Algorithm

Since the loss function (6) is non-convex, an elaborate initialization is needed to obtain a good
initial estimate for global convergence. Because the initialization method is not the focus of this
paper, we simply choose the weighted maximal correlation initialization method proposed by Wang

[15]. This method first calculates η =
√∑m

i=1 b
2
i /m as the estimate of ‖x‖. Then the direction of

x is estimate by the leading eigenvector z̃ of the matrix M :=
∑

i∈I
√
biaia

′
i/ ‖ai‖

2, where I is
the set of indices corresponding to the largest values of bi/ ‖ai‖. Proposition 1 in [15] tells that the
estimate z0 = ηz̃/ ‖z̃‖ satisfying

dist (z0,x) ≤ 1

20
‖x‖ , (8)

with probability at least 1 − C exp(−c1m), if m ≥ c |I| ≥ c2n for some constants c0, c1, c2, C and
sufficiently large n.

We use the gradient descent method to search for the global minimizer from the above initializer;
that is

zt+1 = zt − µt∇`(zt), (9)

where µt is the learning rate. In the next section we show that a proper fixed µt suffices to ensure
the global convergence under a good initialization. To obtain a faster convergence rate, we use the
backtracking strategy to determine µt in numerical experiments. The details of SAF is presented
in Algorithm 1.
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Algorithm 1 SAF: Smooth Amplitude Flow Method

Input: {ai}mi=1 , {bi}
m
i=1; maximum number of iterations T ; step length µ; backtracking parameters

α, β and smax; truncation parameter I.
1: Construct I which includes indices corresponding to the I largest entries among {bi}mi=1.

2: Initialize z0 :=
√

1
m

∑m
i=1 b

2
i z̃, where z̃ is the normalized leading eigenvector of

M :=
∑
i∈I

√
bi

aia
′
i

‖ai‖2

3: for t = 0 : T − 1 do
4: Compute gradient gt = ∇SAF`(zt) according to (7)
5: s = 0
6: while `SAF (zt − βsµgt) > `SAF(zt)− αβsµ ‖gt‖2 and s < smax do
7: s = s+ 1 . backtracking
8: end while
9: µt = µβs

10: zt+1 = zt − µtgt
11: end for
Output: zT

3 Theoretical guarantees for global convergence

This section establishes the global convergence of Algorithm 1 for the real Gaussian model. This
proof can also be extended to the complex Gaussian naturally using the Wirtinger gradient. For
simplicity, we write `SAF(z) simply as `(z) in the following text.

The geometric convergence of SAF is characterized by the following theorem.

Theorem 1. Consider the problem of finding arbitrary x ∈ Rn from the phaseless measurements
(1) with real Gaussian measurement vectors. If m ≥ c0n and we adopt a fixed learning rate µ ≤ µ̃,
then with probability at least 1 − C exp(−c1m), the SAF estimates zt in Algorithm 1 obey the
geometric convergence:

dist (zt,x) ≤ 1

20
(1− ν)t ‖x‖ , t = 0, 1, · · · (10)

where c0, c1, C > 0, 0 < ν < 1 and µ̃ are some certain constants.

Combining Theorem 1 and the error of initialization (8), SAF can recover the original signal
given O(n) measurements. Moreover, starting from an elaborate initial estimate, O(log 1/ε) it-
erations suffice to give a solution with RMSE error less than ε. Combined with the per-iteration
complexity O(mn) we conclude that SAF solves PR in time O(mn log 1

ε ), which is proportional to
the time required by the processor to read the entire data {A; b}.

The proof of Theorem 1 hinges on proving the local regularity condition RC(µ, λ, c), i.e.

〈∇`(z),h〉 ≥ µ

2
‖∇`(z)‖2 +

λ

2
‖h‖2 (11)
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for all z such that ‖h‖ = ‖z − x‖ ≤ ε ‖x‖ for some constant 0 < ε < 1. As shown in [21], the ball
{z : ‖z − x‖ ≤ ε ‖x‖} can be seen as a basin of attraction towards the global optimum; once the
initialization lands into this neighborhood, geometric convergence can be guaranteed, i.e.,

dist (z + µ∇`(z),x)2 ≤ (1− µλ) dist (z,x)2 . (12)

Evidently, Theorem 1 holds asthmatically once the RC(µ, λ, ε) is proved.
Lemma 1 and Lemma 2 in A respectively demonstrate that

‖∇`(z)‖ ≤ (1 + δ) ‖h‖ , (13)

and
〈∇`(z),h〉 ≥ (0.07− ε) ‖h‖2 , (14)

hold with probability at least 1 − C exp(−c1m) given m ≥ c0n. Using the above two bounds we
can reach the regularity condition if µ and λ satisfy

0.07− ε ≥ µ

2
(1 + δ)2 +

λ

2
, (15)

which indicates an upper bound µ ≤ 2× 0.07 = 0.14, which suggests the range of the step size. In
practice, the step size µ can be significantly larger while still ensuring the global convergence, since
several bound results in our proof can be further tighten with more delicate techniques.

4 Numerical results

This section presents several numerical experiments to verify our theoretical analysis. We also
compare SAF with other state-of-the-art gradient descent methods including WF, RWF, TAF and
RAF in terms of the empirical rate of recovery and the convergence rate. All the experiments
were conducted with Matlab 2016a on a personal laptop with Intel Core i7 6820HQ. Not only the
real-valued Gaussian model, but also the complex-valued Gaussian model and the CDP model are
tested. In following experiments, the learning rate µ = 4 and 7 for the real model and the complex
model respectively, α = 0.4, β = 0.2, truncation parameter I = b3m13 c in the initialization stage
and smax = 2 for the backtracking parameters. The maximum iteration number T is set as 5000.
We define the normalized mean-square error NMSE := dist2(z,x)/ ‖x‖2 for numerical comparison.
To avoid the influence of initialization methods, all tested algorithms are seeded with the same
maximal correlation methods.

For readers to reproduce the numerical tests conveniently, the Matlab codes are available at
https://github.com/qiluo10/smooth-amplitude-flow.

4.1 Comparison of empirical success rate

We compare SAF with other state-of-the-art gradient methods for the noiseless Gaussian model
under varying m/n in terms of empirical success rate. Each success rate are calculated over 100
independent trials and a trial is declared successful if NMSE of the returned result is smaller than
10−5. The results are depicted in Fig. 2. It is shown that less number of measurements suffice
for SAF to recover the true signal x in comparison with AF method and its variants in real case.
In the complex case, SAF is second only to PC-SCG by a narrow gap. It should be pointed out
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that the convergence to global optimum has not been established for PR-SCG. Particularly, Fig.
2 illustrates that SAF achieves a high success rate of over 95% when m/n ≥ 1.8 and a perfect
recovery when m/n ≥ 1.9 in the real case. In the complex case, both SAF and PR-SCG achieve a
recovery rate larger than 95% when m/n ≥ 2.8 and a 100% recovery when m/n ≥ 3.

It is noteworthy that SAF is the only method that achieves a 100% with a sampling complexity
lower than the information-theoretical limit in both the real and complex cases. Moreover, it
is enlightening that SAF simply minimizing a novel loss function can outperform other existing
algorithms with complicated operations upon the gradient or loss function.
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(a) Noiseless real-valued model with x and ai indepen-
dently sampled from N (0, In)

2 2.5 3 3.5 4 4.5 5

m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 r
at

e

RWF
TWF
TAF
RAF
PR-SCG
SAF
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Figure 2: Empirical rate of success versus m
n with n = 1000.

4.2 Computational cost

We compare the convergence rate and the time cost of SAF with other gradient descent methods,
under information-theoretic limits m = 2n and m = 4n for the real and complex cases respectively.
To accelerate convergence for SAF, a larger step µ = 6 and 10 separately for the real and complex
case, while stilling achieving a 100% success rate in this experiment. Table 1 presents the number
of iterations and time cost before achieving a NMSE of 10−14 for each algorithm, averaged over
100 successful trials. The optimal value is shown in bold and the second-best result is underlined
in each column. It can be observed that SAF is the second best algorithm in terms of convergence,
next only to the conjugate gradient method PR-SCG. SAF ranks first and second in terms of the
time cost in complex and real cases separately.

4.3 Robustness to noise

To show the robustness of SAF against additive noise, Fig.. 3 illustrates the NMSE as a function
of the signal-to-noise ratio (SNR) under different m/n. The data under the Gaussian model was
generated as bi = (|〈ai,x〉|2 + ηi)

1/2, with ηi independently sampled from N (0, σ2), where σ2 is set
to achieved certain SNR = 10 log10(‖Ax‖2 /mσ2). For all choices of m, the NMSE scale decrease
proportionally to the SNR, which demonstrates the stability of SAF. It is noteworthy that SAF
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Table 1: Comparison of computational costs.

Algorithms Real Case (m/n = 2) Complex Case (m/n = 4)

Iterations Time (s) Iterations Time (s)
TWF - - 1273.68 14.20
RWF - - 859.72 9.86
TAF 745.51 0.97 752.74 9.01
RAF 1865.22 2.39 1206.10 13.64

PR-SCG 138.28 1.29 132.90 9.44
SAF 294.25 1.08 306.39 7.43

performs robustly even under information-theoretic limit for both the real and complex Gaussian
models, which has not been observed for other algorithms to the best of our knowledge.
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Figure 3: NMSE vs SNR for SAF under the noise Gaussian model with n = 1000.

4.4 Image reconstructions

To demonstrate the feasibility and scalability of SAF in phase retreival of real images, we compare
SAF with other state-of-the-arts on recovering the Lena image from masked Fourier intensity mea-
surements. This image is gray-scale that can be represented by a matrix X ∈ R256×256. Denoting
x ∈ Rn be a vectorization of X, the CDP model with K masks is

b(k) = |FD(k)x|, k = 1, · · · ,K, (16)

where F represents the discrete Fourier transform matrix, and the diagonal matrix D(k) is the
mask, with diagonal entries sampled uniformly at random from {1,−1, j,−j}. When using more
than 4 masks, SAF and other exiting methods like RAF, PR-SCG with the maximum correlation
initializer can recover the original image successfully. Is it possible to adopt an ever smaller K?
Fig. 4 gives a recovered result of SAF after 200 gradient iterations in CDP model with 3 masks.
Then we compare SAF with other algorithms in terms of the recovery rate. All algorithms are
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Table 2: Comparisons of the success rate among algorithms on Lena image (K=3)

Algorithms SAF RAF PR-SCG TAF RWF TWF

Success Rate 0.95 0.84 0.70 0.51 0.52 0

seeded with the reweighted maximal correlation initialization and output results. The comparison
of success rate is shown in Table 2. It is noteworthy that all presented algorithm SAF enjoys the
highest success rate and can recover the image nearly perfectly.

(a) Ground truth (b) Initialization (c) Recovered result

Figure 4: Recovered result by SAF after 200 gradient iterations from the initialization. The RMSE
of initialization is 1.04 and the final RMSE is 1.04× 10−3.

5 Conclusion

This paper put forward SAF to solve the phase retrieval problem based on a novel smooth amplitude-
based loss function. This loss function utilizes a smooth function to get rid of the non-smoothness of
the original amplitude-based loss function. We prove the global geometric convergence of SAF with
an elaborate initialization. Our SAF approach is conceptually simple and can be easily implemented
since it does not need extra truncating or reweighing operations upon the gradient function as many
other state-of-the-art solvers do. Substantial numerical tests were conducted and illustrated that
our new loss function enjoys advantages in sampling complexity and computational efficiency. SAF
also has potential to be extended to other scenarios, e.g. recovering signals the sparsity or nonneg-
ativity constraint. We preliminarily analyze the reason behind the dramatic improvement brought
by such a new loss function. It will be of great interest to deeply investigate theoretical advantages
of our SAF approach when measuring times is lower than the information-theoretic limit.
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A Supporting Lemmas for Section 3

For clarity, we give a convergence analysis for SAF with γ = 1, k = 4, and we conjecture that SAF
adopting other reasonable setting of γ and k can also be proved with the similar routine.

For convenience, we rewrite the gradient function {∇`i(z)}mi=1 into a unified form by a bivariate
function f :

∇`i(z) = f(a′iz, bi)ai,

where
f(x, y) =

(
(x4 + y4)1/4 − 21/4y

)
(x4 + y4)−3/4x3. (17)

f(·, bi) has the following properties:

Property 1. f(x, bi) = f(−x, bi).

Property 2. For any x ∈ [−bi, bi], we have f(±bi + x, bi)x ≥ 0.

Property 3. f(±bi + x, bi)x ≥ 0.18x2 holds for any x ∈ [−bi/5, bi/5].

Property 4. |f(±bi + x, bi)/x| ≤ 1.

Property 1 is obvious. The details of proving other properties are put in the Appendix B. These
four properties are the key intergradients in the proof of global convergence. For SAF with other
setting of γ > 0 and k > 2, one can also establish these 4 properties.

The regularity condition can be proved by finding the upper bound on ‖∇`(z)‖ using the
property 3 in Lemma 1, and finding the lower bound on 〈∇`(z),h〉 based on Property 2 in Lemma
2.

12



Lemma 1. Fix δ > 0, given m > c0n,

‖∇`(z)‖ ≤ (1 + δ) ‖h‖ (18)

holds with probability at least 1−C exp(−c1m), where c0, c1 and C > 0 are some universal constants.

Proof. Since
∇`i(z) = f(a′ix + a′ih, bi)ai

=
(
f(a′ix + a′ih, bi)/(a

′
ih)
)
aia

′
ih

(19)

and |f(a′ix + a′ih, bi)/(a
′
ih)| ≤ 1 , then we have

‖∇`(z)‖ =

∥∥∥∥∥
m∑
i=1

1

m

(
f(a′ix + a′ih, bi)/(a

′
ih)
)
aia

′
ih

∥∥∥∥∥
≤

∥∥∥∥∥
m∑
i=1

1

m

(
f(a′ix + a′ih, bi)/(a

′
ih)
)
aia

′
i

∥∥∥∥∥ ‖h‖
≤

∥∥∥∥∥
m∑
i=1

1

m

∣∣f(a′ix + a′ih, bi)/(a
′
ih)
∣∣aia′i

∥∥∥∥∥ ‖h‖
≤

∥∥∥∥∥
m∑
i=1

1

m
aia

′
i

∥∥∥∥∥ ‖h‖

(20)

The last inequality is induced by Property 3.
By Lemma 3.1 in [22], as long as m > c0n for sufficiently large c0, we have∥∥∥∥∥

m∑
i=1

1

m
aia

′
i

∥∥∥∥∥ ‖h‖ ≤ √1 + δ ‖h‖ ≤ (1 + δ) ‖h‖ (21)

with probability at least 1− C exp(−c1m).

Lemma 2. For any sufficiently small constant ε > 0, there exist some universal constants c0, c1, C
such that, given m ≥ c0n,

〈∇`(z),h〉 ≥ τ ‖h‖2 (22)

holds with probability at least 1 − C exp(−c1m) for all h ∈ Rn obeying ‖h‖ ≤ ‖x‖ /20. Here
τ = 0.07− ε.

Proof. We introduce the following events for i = 1, · · · ,m:

A :=

{
i : |aih| <

1

5
|aix|

}
,

B :=

{
i :

1

5
|aix| ≤ |aih| < |aix|

}
,

and
C := {i : |aih| > |aix|} .

Using Lemma
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Then we have

〈∇`(z),h〉 =
1

m

m∑
i=1

f(a′iz, bi)a
′
ih =

1

m

∑
i∈A∪B∪C

f(a′iz, bi)a
′
ih (23)

According to Property 2, we have

1

m

∑
i∈B

f(a′iz, bi)a
′
ih ≥ 0. (24)

Therefore

〈∇`(z),h〉 ≥ 1

m

∑
i∈A

f(a′iz, bi)a
′
ih +

1

m

∑
i∈C

f(a′iz, bi)a
′
ih

≥ 1

m

∑
i∈A

s
∣∣a′ih∣∣2 − 1

m

∑
i∈C

∣∣f(a′iz, bi)a
′
ih
∣∣2

≥ 1

m

∑
i∈A

s
∣∣a′ih∣∣2 − 1

m

∑
i∈C

∣∣a′ih∣∣2
=

1

m

m∑
i=1

s
∣∣a′ih∣∣2 − 1

m

∑
i∈Ac

s
∣∣a′ih∣∣2 − 1

m

∑
i∈C

∣∣a′ih∣∣2 ,
(25)

and the last two terms has the same form and can be bounded by the Lemma 3. Then we have

〈∇`(z),h〉 ≥ 0.18(‖h‖2 − 0.25 ‖h‖2)− 0.065 ‖h‖2 − ε ‖h‖2

= (0.07− ε) ‖h‖2 .
(26)

Lemma 3. For any ε > 0, given m > c0nε
−2 log ε−1, then

1

m

m∑
i=1

(a′ih)2 · 1 1
5
|a′ix|≤|a′ih|

≤ (0.25 + ε) ‖h‖2 (27)

1

m

m∑
i=1

(a′ih)2 · 1|a′ix|≤|a′ih| ≤ (0.065 + ε) ‖h‖2 (28)

hold simultaneously with probability at least 1 − C exp(−c1ε2m) for all vectors h ∈ Rn obeying
‖h‖ ≤ 1

20 ‖x‖, where c0, c1, C are some universal constants.

Proof. We only give the detailed proof of (27) here since the proof of (28) is almost the same. We
first prove the bound for any fixed vector h obeying ‖h‖ ≤ 1

20 ‖x‖ and then establish a uniform
bound using an ε-net for all vectors.

To proceed, we introduce a Lipschitz function

χi(t) :=


t, if t > r2(a′ix)2;
1
δ (t− r2(a′ix)2) + r2(a′ix)2, if (1− δ)(a′ix)2 ≤ t ≤ r2(a′ix)2;
0, else,

(29)
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for i = 1 · · · ,m, where r > 0. The Lipschitz constant of χi(t) is 1
δ . We further have(

a′ih
)2

1r|a′ix|≤|a′ih| ≤ χi(|a
′
ih|2) ≤ |a′ih|21√1−δ r|a′ix|≤|a′ih| (30)

For convenience, we denote θ := ‖h‖ / ‖x‖ and construct random variables

γi :=
|aih|2

‖h‖2
1√1−δr|a′ix|≤|a′ih|

.

We next compute the expectation of γi, via the conditional expectation,

E[γi] =

∫∫ ∞
−∞

E
[
γi
∣∣a′ix = τ1 ‖x‖ ,a′ih = τ2 ‖h‖

]
q(τ1, τ2)dτ1dτ2, (31)

where q(τ1, τ2) is the probability density of two joint Gaussian random variables with correlation
ρ = h′x

‖h‖‖x‖ 6= ±1. Next, we calculate E[γi] as a function of ρ:

E[γi] =

∫∫ ∞
−∞

τ22 · 1√1−δr|τ1|<|τ2|θ · q(τ1, τ2)dτ1dτ2

=
1

2π
√

1− ρ2

∫ ∞
−∞

τ22 exp

(
−τ

2
2

2

)∫ − |τ2|θ
r
√
1−δ

−−|τ2|θ
r
√
1−δ

exp

(
−(τ1 − ρτ2)2

2(1− ρ2)

)
dτ1dτ2

=
1

2π

∫ ∞
−∞

τ22 exp

(
−τ

2
2

2

)∫ |τ2|θ
r
√
1−δ
−ρτ2√

1−ρ2

− |τ2|θ
r
√
1−δ
−ρτ2√

1−ρ2

exp

(
−τ

2

2

)
dτdτ2

=
1

2π

∫ ∞
−∞

τ22 exp

(
−τ

2
2

2

)
·
√
π

2

erf

 |τ2|θ
r
√
1−δ − ρτ2√
2(1− ρ2)

− erf

− |τ2|θ
r
√
1−δ − ρτ2√
2(1− ρ2)

 dτ2

=
1

2π

∫ ∞
0

τ22 exp

(
−τ

2
2

2

)erf


(

θ
r
√
1−δ − ρ

)
τ2√

2(1− ρ2)

+ erf


(

θ
r
√
1−δ + ρ

)
τ2√

2(1− ρ2)

 dτ2

(32)

To prove (27), we let r = 1
5 and take δ = 0.01 and θ = 1/20. Then for ρ = ±1, E[γi] = 0. As for

ρ ∈ (−1, 1), we calculate it numerically using Mathematica. The result is shown in Fig. 5 and we
can see that E[γi] ≤ 0.25 for ρ ∈ [−1, 1].

Moreover, the second term of (32) indicates that E[γi] is increasing with θ. Therefore we have
E[γi] ≤ 0.25 for θ ≤ 1

20 and δ = 0.01, which further indicates E[χi(|a′ih|2)] ≤ 0.25 for θ < 1/20 and

δ = 0.01. Furthermore, χi(|a′ih|
2) is sub-exponential. By the Bernstein-type sub-exponential tail

bound [23],

1

m

m∑
i=1

χi(|a′ih|
2)

‖h‖2
≤ 0.25 + ε (33)

holds with probability at least 1− exp(−c1mε2) for some universal constant c1 if ‖h‖ ≤ 1
20 ‖x‖.

Thus we have proved that (27) holds for a fixed h. Now we show that this claim about a fixed
h can be extended to all h. We prove this claim on the sphere S := {h : ‖h‖ = ‖x‖ /20} , and then
explain this remains true inside this sphere.
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Figure 5: The figure of E[γi] for θ = 1/20, with respect to ρ.

Let ε′ = 1
20ε‖x‖, and we construct a ε′-net Nε′ covering the sphere S. The cardinality |Nε′ | ≤(

1 + 2
ε

)n
. For any vector h ∈ S, there exists h0 ∈ Nε′ satisfying ‖h− h0‖ ≤ ε′ = ε ‖h‖. For all

points on the Nε′ , we have

1

m

m∑
i=1

(∣∣a′ih0

∣∣2) ≤ (0.31 + ε) ‖h0‖2 , ∀h0 ∈ Nε′ (34)

with probability at least 1−
(
1 + 2

ε

)2
exp(−c1mε2). By Lemma 1 and Lemma 2 in [21],

m∑
i=1

1

m

(∣∣a′ih∣∣2 − ∣∣a′ih0

∣∣2) ≤ c2 ∥∥h′h− h′0h
∥∥
F
≤ 3 ‖h− h0‖ (35)

holds with probability at least 1−C exp(−c1m) as long as m > c0n, with some universal constants
C, c0, c1, c2 > 0. Then we have∣∣∣∣∣ 1

m

m∑
i=1

χi

(∣∣a′ih∣∣2)− 1

m

m∑
i=1

χi

(∣∣a′ih0

∣∣2)∣∣∣∣∣
≤

m∑
i=1

1

m

∣∣∣χi (∣∣a′ih∣∣2)− χi (∣∣a′ih0

∣∣2)∣∣∣
≤1

δ

m∑
i=1

1

m

∥∥∥∣∣a′ih∣∣2 − ∣∣a′ih0

∣∣2∥∥∥ (χi(t) is
1

δ
-Lipschitz)

≤c2
1

δ

∥∥h′h− h0h
∥∥
F
≤ 3

δ
‖h− h0‖ · ‖h‖ ≤

3c2ε

δ
‖h‖2

(36)

On the event that both (34) and (36) hold, we have

1

m

m∑
i=1

χi(
∣∣a′ih∣∣2) ≤ (0.25 + ε+ 3c2ε/δ) ‖h‖2 , (37)

for all ‖h‖ with ‖h‖ = 1
20 ‖x‖.
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Figure 6: Plot of g(x)

As for the situation when ‖h‖ < 1
20 ‖x‖, find h = 1

wh
′ ∈ S and w ∈ (0, 1). One can easily verify

that
χi(
∣∣a′ih∣∣2) = χi(

∣∣a′iwh∣∣2) ≤ w2χi(
∣∣a′ih∣∣2)

≤ (0.25 + ε+ 3c2ε/δ)
∥∥h′∥∥2 , (38)

on the same event that (37) holds.
So far we have proved the (27). One can find that E[γi] ≤ 0.065 when r takes 1 and reproduce

the proof of (27) to prove (28).

B The proof of properties of SAF loss function

Property 1 holds because

f(−x, y) =
(

((−x)4 + y4)1/4 − 21/4y
)

((−x)4 + y4)−3/4(−x)3 = −f(x, y). (39)

As for Property 2, we have

f(bi + x, bi)x =
(

((bi + x)4 + b4i )
1/4 − 21/4bi

)
((bi + x)4 + b4i )

−3/4(bi + x)3x. (40)

((bi + x)4 + b4i )
−3/4 is always non-negative. (bi + x)3 ≥ 0 when x ≥ −bi. And it is easy to check

that (
((bi + x)4 + b4i )

1/4 − 21/4bi

)
x ≥ 0

for any x. Therefore the f(bi + x)x ≥ 0 holds for all x ≥ −bi. Because of Property 1, we have

f(−bi + x, bi)x = f(bi − x, bi)x ≥ 0

when x ≤ bi. Hence Property 2 is proved.
It can be difficult to prove the Property 3 analytically. Here we demonstrate this property by

directly plotting the graph of g(x) = f(1 + x, 1)x− 0.18x2 in Fig. 6.
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Now we focus on Property 4. Because of Property 1, we need only prove the case |f(bi +
δ, bi)/δ| ≤ 1. Then Property 4 holds since

|f(bi + δ, bi)| =
∣∣∣((bi + δ)4 + b4i )

1/4 − 21/4bi

∣∣∣ |bi + δ|3

((bi + δ)4 + b4i )
3/4

=
∣∣∣((bi + δ)4 + b4i )

1/4 − (b4i + b4i )
1/4
∣∣∣ |bi + δ|3

((bi + δ)4 + b4i )
3/4

≤ ||bi + δ| − bi|
|bi + δ|3

((bi + δ)4 + b4i )
3/4

≤ |δ| .

(41)
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