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Abstract

We present a procedure that adds a number of desirable features to standard
exponential analysis algorithms, among which output reliability, a divide-
and-conquer approach, the automatic detection of the exponential model
order, robustness against some outliers, and the possibility to parallelize the
analysis. The key enabler for these features is the introduction of uniform
sub-Nyquist sampling through decimation of the dense signal data. We actu-
ally make use of possible aliasing effects to recondition the problem statement
rather than that we avoid aliasing.

In Section 2 the standard exponential analysis is described, including a
sensitivity analysis. In Section 3 the ingredients for the new approach are
collected, of which good use is made in Section 4 where we essentially bring
everything together in what we call VEXPA.

Some numerical examples of the new procedure illustrate in Section 5 that
the additional features are indeed realized and that VEXPA is a valuable
add-on to any stand-alone exponential analysis. While returning a lot of
additional output, it maintains a favourable comparison to the CRLB of
the underlying method, for which we here choose a matrix pencil method.
Moreover, the output reliability of VEXPA is similar to that of atomic norm
minimization, whereas its computational complexity is far less.
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1. Introduction

Many real-time experiments involve the measurement of signals which
fall exponentially with time. The task is then to determine from these mea-
surements the number of terms n and the value of all the parameters in the
exponentially damped model

φ(t) =
n∑
i=1

αi exp(µit), αi, µi ∈ C. (1)

In general, parametric methods as well as nonparametric methods sample
at a rate dictated by the Shannon-Nyquist theorem [1, 2], which states that
the sampling rate needs to be at least twice the maximum bandwidth of
the signal. A coarser time grid than dictated by the theory of Nyquist and
Shannon causes aliasing, mapping higher frequencies to lower ones in the
analysis. We present a parametric method that samples at a rate below the
Shannon-Nyquist one, while maintaining a regular sampling scheme. The
new technique is actually exploiting aliasing, to influence the numerical con-
ditioning of the problem statement, rather than avoiding it. The latter is a
useful feature as parametric methods are inherently more sensitive to noise.
Methods that achieve much better reliability under noise, can on the other
hand be sensitive to the estimated model order or require lots of computation
time [3, 4]. Another feature of the newly proposed method is that it auto-
matically and concurrently provides a quite reliable estimate of the model
order n.

As a consequence of the lower sampling rate it is possible to perform
several independent analyses over the original set of samples, each analysis
starting from a decimated dataset. If desired, these analyses can be carried
out in parallel, thus improving the running time of the parametric method.
The independent solutions are then passed to a cluster detection algorithm
in order to add a validation step to the parametric method used, a feature
that is lacking in most existing implementations. Thanks to the possibility
to work with lower sampling rates, the validation is not at the expense of
additional samples.
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The decimation of the original data adds another advantage to the method,
namely the fact that the problem size of each analysis is much smaller since
it is in size reduced by the decimation factor. Performing the analysis on the
different decimated sets creates a divide-and-conquer flavour which greatly
improves the overall computational complexity, even when not executed in
parallel.

Making use of the link between Prony-based algorithms and Padé approx-
imation, we are able to separate the uncorrelated noise from the actual signal
and avoid the computation of bogus terms in case of a low signal-to-noise
ratio. In this way the proposed method detects the number of components
n automatically. The latter is a nice side result of working with independent
decimations of the given signal data. We emphasize that our aim is not to
merely obtain an estimate for the model order n, such as can be provided
by information theoretic criteria (AIC, MDL, etc.), but to actually extract
the correct sparsity n from the data samples. The goal is not to fit a least
complex exponential model to the data, but to solve the inverse problem of
deducing the correct model order n, which is known to be a difficult problem.

Each decimated set of samples is now subject to an independent realiza-
tion of the noise. While an unfiltered outlier may skew a single analysis,
independent decimations indicate the presence of an outlier. The cluster
analysis makes the underlying exponential analysis algorithm more robust
with respect to such persistent outliers, which is another desirable feature.

2. The multi-exponential model

Exponential analysis is an inverse problem and may therefore be more
sensitive to noise. Besides recalling the basic theory and its connections to
some other topics, we also discuss its susceptibility to noise.

2.1. Exponential analysis
Let φ(t) be a sum of complex exponentials with <(µi), =(µi), |αi| and

arg(αi) respectively denoting the damping, frequency, amplitude and phase
in each component of the signal

φ(t) =
n∑
i=1

αi exp(µit), (2)

where the µi are assumed to be mutually distinct. We sample the function
φ(t) at the points j∆ for j = 0, . . . , 2n− 1, . . . , N − 1 and we set Ω = 1/∆.
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Furthermore, we assume that the frequency content =(µi), i = 1, . . . , n in
φ(t) is limited by

|=(µi)/(2π)| < Ω/2, i = 1, . . . , n. (3)

The aim is to extract the model order n and the parameters µ1, . . . , µn and
α1, . . . , αn from a limited number of samples of φ(t). When the data are
noisefree, the 2n parameters αi and µi can be extracted from 2n consecutive
samples [5]. In order to confirm or reveal the value of n at least one more
sample is required [6]. In a noisy context preferably more than the minimal
number of samples is provided.

In the sequel we write

φj := φ(j∆), j = 0, . . . , N − 1, N ≥ 2n,

λi := exp(µi∆), i = 1, . . . , n,

and for integer values s and u, we denote by

s
uHn :=

 φs . . . φs+(n−1)u
... . . . ...

φs+(n−1)u . . . φs+(2n−2)u

 , s ≥ 0, u ≥ 1, (4)

the square Hankel matrix of size n constructed from the samples φj. The left
subscript u and left superscript s are respectively called the undersampling
and the shift parameters. Whenever attached to the left of a mathematical
notation in the sequel, they need to be interpreted as such.

In the standard case u = 1 and s = 0 or 1. Note that the Hankel matrices
0
1Hn and s

1Hn can be decomposed as

0
1Hn = VnAnV

T
n ,

s
1Hn = VnΛs

nAnV
T
n ,

Vn =


1 1 · · · 1
λ1 λ2 · · · λn
...

...
...

λn−11 λn−12 · · · λn−1n

 ,
An = diag(α1, . . . , αn),

Λn = diag(λ1, . . . , λn).

Then the model order n, the coefficients αi and the parameters µi are re-
trieved from the samples φj using a variant of Prony’s method [7, 8, 9].
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Prony’s method consists of two stages: first the parameters λi are retrieved
from which the µi can be extracted because of (3), and then the αi are com-
puted from a linear system of equations. Often the λi are obtained from the
generalized eigenvalue problem [8]

(11Hn)v = λ(01Hn)v. (5)

Subsequently the αi are computed from the interpolation conditions

n∑
i=1

αi exp(µij∆) = φj, j = 0, . . . , 2n− 1, . . . , N − 1 (6)

either by solving the system in the least squares sense, in the presence of noise,
or by solving a subset of n interpolation conditions in case of a noisefree φ(t).
Note that exp(µij∆) = λji and that the coefficient matrix of (6) is therefore a
Vandermonde matrix. In a noisy context the Hankel matrices in (5) can also
be extended to rectangular matrices and the generalized eigenvalue problem
can be considered in a least squares sense [10].

Condition (3) guarantees that the µi can be extracted from the λi without
ambiguity. However, when |=(µi)/(2π)| ≥ Ω/2, then each computed λi rep-
resents an entire set of possible µi and =(µi) may be identified with a smaller
frequency, an effect known as aliasing. How to solve the aliasing problem in
that case is addressed in [11] and recalled in Section 3.

What can be said about the number of terms n in (2), which is also called
the sparsity? From [12, p. 603] and [6] we know that

det s1Hν = 0 accidentally, ν < n,

det s1Hn 6= 0,

det s1Hν = 0, ν > n.

While the second and third statement are clear, we briefly explain the first
one. Because of the matrix factorisation of s1Hn we know that det s1Hn is a
polynomial expression in terms of the α1, . . . , αn, λ1, . . . , λn. For ν < n, this
expression is nonzero in general, unless the expression φ(t) and the sample
points j∆ are such that one accidentally hits a zero of this polynomial. A
simple example makes this crystal clear. Consider

φ(t) = 2 exp(iπ/4 t)− exp(ln(2)/2 t)− exp ((ln(2)/2 + iπ/2)t)
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with ∆ = 1. Then while n = 3, we find with ν = 1, 2 that det 0
1H1 = 0 and

det 0
1H2 = 0.
A standard approach to make use of these three statements is to compute

a singular value decomposition of the Hankel matrix 0
1Hν for increasing val-

ues of ν > n and apply some thresholding. In the presence of noise and/or
very similar eigenvalues, this technique is known to be unreliable [13]. The
method proposed in Section 4 allows to automatically detect n while pro-
cessing the samples φj without having to resort to a separate singular value
decomposition of 0

1Hν .

2.2. The Padé and Froissart connections
There is an interesting but somewhat unknown connection between Padé

approximation, Froissart doublets and the Prony problem, which we briefly
recall from [14, 15]. Consider the function f(z) defined by

f(z) =
∞∑
j=0

φjz
j.

For φj = φ(j∆) with φ(t) given by (2), we can write

f(z) =
n∑
i=1

αi
1− λiz

. (7)

The partial fraction decomposition (7) is related to both the Laplace trans-
form and the Z-transform of (2) as described in [14, 15]. It is a rational
function of degree n − 1 in the numerator and degree n in the denominator
with poles 1/λi. Now let us perturb f(z) with white circular Gaussian noise
to obtain

f(z) + ε(z) =
∞∑
j=0

(φj + εj)z
j.

The theorem of Nuttall-Pommerenke states that if f(z) + ε(z) is analytic
throughout the complex plane, except for a countable number of poles [16]
and essential singularities [17], then its sequence of paradiagonal Padé ap-
proximants {rν−1,ν(z)}ν∈N of degree ν − 1 over ν converges to f(z) + ε(z)
in measure on compact sets. This means that for sufficiently large ν the
measure of the set where the convergence is disrupted, so where |f(z) +
ε(z) − rν−1,ν(z)| ≥ τ for some given threshold τ , tends to zero as ν tends
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Figure 1: Typical analysis result (n = 10, ν = 30) of a test signal φ(t) after several
perturbations ε(z): the true λi are drawn as red circles.

to infinity. Pointwise convergence is disrupted by ν − n unwanted pole-zero
combinations of the Padé approximants that are added to the n true poles
and n − 1 true zeros of f(z) [18], with the pole and zero in the undesirable
pair almost cancelling each other locally. These pole-zero combinations are
also referred to as Froissart doublets. In practice, these Froissart doublets
offer a way to separate the noise ε(z) from the underlying f(z) [19]. Because
of the Padé convergence theorem, the true (physical) poles can be identified
as stable poles in successive rν−1,ν(z), while the spurious (noisy) poles are
distinguished by their instability. When increasing ν we compute a larger
set of poles, of which the noisy ones are moving around in the neighbour-
hood of the complex unit circle [20, 21] with every different realization of the
noise ε(z). The latter is illustrated in Figure 1 where we show the results
of the analysis of a test signal perturbed by a large number of independent
noise realizations: the true λi are forming clusters while the ones related to
noise are scattered around [22, 23]. In addition, around each λi-cluster one
empirically finds an almost Froissart doublet-free zone.

This characteristic of the true poles is a key point on which our method is
based: after the computation of ν > n generalized eigenvalues λi, we discard
the unstable ones and focus on the stable ones. We now describe in more
detail the precise influence of noise in the data φj on the λi.

2.3. Sensitivity to noise
The exponential analysis of φ(t), being an inverse problem, is known to

be sensitive to noise. Here we briefly recall what is known and in the next
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section we explain how the new method is able to deal with certain outliers
on the one hand and normally distributed noise on the other.

In [24] the authors explain that the roundoff errors in the computation of
the generalized eigenvalues are amplified by mainly three sources:

• the scaling of the problem (the λi should lie as closely as possible to
the complex unit circle),

• the size of the |αi| relative to the noise (λi with smaller amplitude are
more challenging to retrieve),

• the relative position of the λi with respect to each other (clustered λi
are hard to separate and retrieve individually).

The first problem is addressed in [24] by means of a diagonal preconditioning
matrix, and in [25] by using a suitably chosen invertible upper triangular
matrix. The second problem can be tackled with the use of linear time
invariant filters which preserve model (2). A solution for the third problem
is proposed in [11] and accomplishes a redistribution of the λi. Our new
method is based on this approach. We now briefly recall the basics of the
analysis in [25] to understand the effect of noise and how this is related to
the method presented in [11].

Let (ε0, . . . , ε2n−1, . . . , εN−1) again denote the noise vector added to the
samples (φ0, . . . , φ2n−1, . . . , φN−1). We rewrite the noise terms εj as εj = εej
where the square Hankel matrices 0

1En and 1
1En of size n, filled as in (4) but

now with the ej instead of the φj, satisfy

||01En||2 ≤ 1, ||11En||2 ≤ 1.

Let Li(λ) denote the Lagrange basis polynomial of degree n − 1 with roots
λ1, . . ., λi−1, λi+1,. . . , λn and Li(λi) = 1, so

Li(λ) =

∏n
k=1,k 6=i(λ− λk)∏n
k=1,k 6=i(λi − λk)

.

The coefficients of the polynomial Li(λ) make up the vector `i of size n.
Then the disposedness ρi of the generalized eigenvalue λi(φ0+εe0, . . . , φN−1+
εeN−1), as a function of the given φj and the noise terms εj = εej, is defined
by

ρi :=

∣∣∣∣dλidε (0)

∣∣∣∣
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Figure 2: Ill-disposed 1λi = exp(i2π(i − 1)/100) at the left and well-disposed 10λi =
exp(i2π(i− 1)/10) at the right, i = 1, . . . , 10.

and satisfies
ρi ≤

|λi|+ 1

|αi|
||`i||22 (||11Hn||2 + ||01Hn||2). (8)

A generalized eigenvalue λi is ill-disposed when ρi is large. Larger ρi imply
higher susceptibility to noise. Besides the Froissart phenomenon described
earlier, the disposedness ρi of the generalized eigenvalues, or rather its com-
putable upper bound given in (8), is another tool to use when inspecting the
λi. In Figure 2 we illustrate the relationship between the ρi and the relative
position of the λi with respect to each other: we plot the right hand side of (8)
for a toy problem where we choose Ω = 100, n = 10, αi = 1, µi = i2π(i−1). At
the left the upper bounds for the values ρi are plotted at the locations of the
generalized eigenvalues λi = exp(µi∆) = exp(µi/Ω), i = 1, . . . , 10. Now let
us change the undersampling parameter u in s

uHn in (4) and (8) from u = 1 to
u = 10, which is equivalent to replacing ∆ by u∆ or replacing Ω by Ω/u. We
recompute the generalized eigenvalues uλi = exp(µi(10∆)) = exp(10µi/Ω)
and the disposedness, which we now denote by uρi. The result, which is
shown at the right, changes dramatically, from O(1021) to almost O(101).

Another important tool for inspecting the λi is the Cramèr-Rao lower
bound (CRLB) [26, 27]. For any given unbiased estimator of the parameters
in (2) and a specific amount and type of noise, the CRLB returns the minimal
variance that the estimator suffers. In our case, the estimator is any imple-
mentation of Prony’s method and the type of noise is white circular Gaussian
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noise. The CRLB depends on the number of samples N , the variance and
type of noise and the set of parameters |αi|, arg(αi),<(µi) and =(µi). The
bound is often used to compare the variance of a specific estimator to this
theoretical lower bound. The closer an estimator is to the CRLB, the more
efficient it is said to be.

We consider the practical computation of the CRLB provided in [27]
and illustrate the relationship between the CRLB and the disposedness ρi of
λi, i = 1, . . . , n. Take the same toy example and add white circular Gaussian
noise of varying signal to noise ratio (SNR). In Figure 3 we graph the root
mean square of the vector of CRLB’s for the parameters =(µi), i = 1, . . . , 10,
and this for decreasing SNR in three different situations:

• ∆ = 1/Ω, N = 200 samples φj (blue triangles),

• ∆ = 10/Ω, N = 200 samples φj (green squares),

• ∆ = 10/Ω, N = 20 samples φj (red circles).

Note that multiplying ∆ by u = 10 while maintaining N = 200 implies that
the signal is sampled over a larger time interval, while multiplying ∆ by
u = 10 and dividing N by u = 10 does not enlarge the observation window.
So in the first and second case the number of samples is equal while in the
first and third case the observation window is equal. Our aim is to get the
best of both worlds: while decimation of the signal samples takes you from
the CRLB in blue (triangles) to the CRLB in red (circles), we want to recom-
bine separate decimations in order to return from the latter to the former
while profiting from some additional features on the way. Decimation signif-
icantly diminishes the size of the generalized eigenvalue problems, improves
the numerical conditioning, and will automatically return a reliable estimate
for the model order n. How this can be done is described in Section 4 and
illustrated in Figure 18.

3. Recovering from aliasing after decimation

So we know that choosing u > 1 may positively impact the disposedness
of the λi, without negatively impacting the CRLB if the total number of
samples can approximately be maintained. Since introducing u impacts ∆
or Ω, aliasing may occur when (3) is violated. We now explain how to deal
with this effect: the goal is to enjoy the positive influence of a larger u without
suffering the aliasing effect introduced by it.
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Figure 3: Root mean square of the CRLB vector of the =(µi), i = 1, . . . , 10, respectively
for Ω = 100, N = 200 (blue), Ω = 10, N = 200 (green), Ω = 10, N = 20 (red).

3.1. Decimation
Instead of using the consecutive set of samples φj, j = 0, . . . , 2n−1, . . . N−

1, we consider the decimated set φuj which is obtained by considering one
sample every u samples, thus sampling φ(t) at j(u∆). The generalized eigen-
value problem

(uuHn)v = λ(0uHn)v,

leads to a new set of generalized eigenvalues

uλi := exp(µiu∆) = λui , i = 1, . . . , n.

From uλi we cannot directly retrieve λi, due to the disruption of (3). We are
left with a set of possible values for λi given by

Ui :=

{
exp

(
µi∆ +

2πi

u
`

)
, ` = 0, . . . , u− 1

}
.

Despite this, we can already compute the coefficients αi by solving the linear
system

φuj =
n∑
i=1

αi(uλi)
j, j = 0, . . . , 2n− 1, . . . (9)

Now we consider a shifted set of samples φs+uj consisting of at least n samples,
for instance at j = k, . . . , k+n−1, 0 ≤ k ≤ n, and we choose s coprime with
u. Since

φs+uj =
n∑
i=1

(αiλ
s
i )(uλi)

j, j = k, . . . , k + n− 1, (10)
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we denote the coefficient of (uλi)
j in the shifted sample φs+uj by

sαi := αiλ
s
i , i = 1, . . . , n.

We can solve the interpolation conditions (10) for the second set of coefficients
sαi. Note that the linear systems (10) and (9) have the same Vandermonde
structured coefficient matrix, except for the size. This precisely connects the
two coefficients αi and sαi, and consequently sλi, to the uλi. From αi and
sαi we obtain

sαi/αi = λsi ,

which we can denote by sλi. Due to the same possible disruption of condition
(3), sλi also stands for a set of possible values for λi, namely

Si :=

{
exp

(
µi∆ +

2πi

s
`

)
, ` = 0, . . . , s− 1

}
.

Both sets Ui and Si contain the solution λi. Since u and s are coprime
they share one and only one element which is the non-aliased λi [11]. In
Figure 4 we graphically sketch what happens. There u = 9, the elements in
Ui are shown using blue circles, s = 4, the elements in Si are shown using
green squares and the arrow points to the unique non-aliased λi in their
intersection. The orange portion is the region where the aliased uλi lies (red
square), from which we have to recover the correct λi. The aliasing is the
consequence of the decimation of the collected samples by a factor u.

While in theory u and s may be chosen arbitrarily large, this is not the
case in practice, since noise can make it hard to point at the one correct value
when a large number of points lie closer together in Ui and Si. Usually the
chosen value of u is larger than that of s. Numerical experiments indicate
that a smaller s is more important than a smaller u: the uλi values are
usually less affected by noise than the sλi which are obtained as solution of
Vandermonde structured linear systems.

3.2. Recovery
While we know theoretically that Ui and Si have only one element in their

intersection, we still need to find a way to compute this element in practice.
In [11] the following two options are presented. Here we develop a more
robust third approach.

An obvious approach is to compute all distances between elements of Ui
and elements of Si and select the pair that lies closest. This simple approach
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Figure 4: Intersection of Ui (blue circles, u = 9) and Si (green squares, s = 4), relocating
the aliased uλi (red square).

does not deliver satisfactory results though, because of noise issues. For
increasing noise levels, the sets Si may be too perturbed, thus leading to a
wrong match of the candidate values for λi.

A less obvious approach is to use the Euclidean algorithm and compute
two integers w and r satisfying wu + rs = 1 for the coprime u and s. Then
λi can be retrieved as

(uλi)
w (sλi)

r = exp((wu+ rs)µi∆) = λi.

The downside of this method is that if w and r are not small, any noise
present in uλi and sλi is amplified.

We propose to solve a small number of additional systems of the form
(10), in order to stabilize the location of the elements in Si before building
the distance matrix. We continue the use of shifted samples:

φms+uj =
n∑
i=1

(msαi) (uλi)
j, m = 0, . . . ,M − 1. (11)

From each shift we compute the coefficients msαi and we set up the sequence
of values

αi,
sαi, . . . ,

msαi, . . . ,
(M−1)sαi,
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satisfying

msαi = αi(
sλi)

m = αi exp(µim(s∆)), m = 0, . . . ,M − 1, (12)

where 0αi = αi. So for fixed i the values msαi follow the exponential model
(12) consisting of only one term. We can therefore use a Prony-like method
to extract sλi in (12) from the values msαi, just as described in the previous
section on basic exponential analysis. This approach stabilizes the location
of sλi = λsi by the use of extra estimates.

At this point we want to point out and stress, that the whole procedure
of decimation and recovery can be used on top of any Prony-like method.
Retrieving uλi,

sλi or msαi for chosen u and s does not require a specific
parametric method. In fact, the current procedure offers a way to parallelize
existing Prony-like methods, as the decimated signals can be treated inde-
pendently of each other. In the next section we explain how the combination
of the decimated results adds, as one of the features, a validation step to the
method, which is mostly lacking in existing Prony-like algorithms.

3.3. Frequency collision
A problem that may occur when decimation causes aliasing, is the possible

collision of frequencies. For instance, two distinct eigenvalues λ1 and λ2 may
be aliased to the same eigenvalue uλ1 = uλ2. However unlikely, we want
to discuss how to deal with this situation. We explain the remedy on an
example. A fully detailed mathematical analysis of all the eventualities that
can occur as a consequence of the decimation, is presented in [11].

Let φ(t) be specified by n = 2, α1 = α2 = 1, µ1 = 2πi13, µ2 = 2πi33.
We set Ω = 100 and consider one sample φj = φ(j/Ω) every ten samples
(u = 10) thus changing Ω to be 10. Due to aliasing, λ1 and λ2 are mapped
to another location in the complex plane. In particular, we have

uλ1 = uλ2 = exp

(
2πi3

10

)
because

exp

(
2πi33

10

)
= exp

(
2πi13

10

)
= exp

(
2πi3

10

)
.

So in the decimation step (9) Prony’s method retrieves a single frequency
with associated coefficient α1 + α2.
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It is however still possible to retrieve the original values λ1 and λ2 in the
recovery step. As explained, the generalized eigenvalue uλ1 = uλ2 stands for
a set of values U1 = U2 that now contains both the correct λ1 and λ2. We
choose s coprime with u and compute the values msα1 (remember that the
computed 0α1 = 2 now equals the sum of the true coefficients). Since s is
coprime with u, no frequency collision occurs in msα1 which is following the
model

msα1 = α1 exp(µ1ms∆) + α2 exp(µ2ms∆), m = 0, . . . ,M − 1. (13)

So in the analysis of (13) Prony’s method reveals two contributions sλ1 and
sλ2 which bring forth the sets S1 and S2, respectively containing λ1 and λ2.
The intersections U1 ∩ S1 and U2 ∩ S2 = U1 ∩ S2 reveal the original λ1 and
λ2.

Of course the above can also be applied to the more general case of several
collisions in a signal φ(t) containing more terms. The key element is that the
value M in (13) is chosen large enough to allow the identification of all the
collided eigenvalues. In particular, M should be at least twice the number of
collided eigenvalues. Since this number is unknown, the standard procedure
is to take M even and fit the msαi with a model of size M/2. If less than
M/2 frequencies have collided, then some of the terms in the expression for
msαi model the noise and can easily be discarded, as explained in Section 2.
We show a typical situation in Figure 5, which applies to the n = 2 example
above: the set U1 = U2 is depicted using blue circles (u = 10) and the sets
S1 and S2 using green triangles and squares respectively (s = 3). We choose
M = 8. The intersections U1∩S1 and U2∩S2 are indicated using red squares.

4. Validated exponential analysis

A quite robust Prony-like implementation, which approaches the theoret-
ical CRLB (depicted using blue triangles in Figure 3), is for instance found in
[8, 28]. In the sequel we refer to this method as MP, from Matrix Pencil. Our
aim now is to maintain as good as the same accuracy, but add the following
features to the implementation by making a detour via decimation:

• validation of the output,

• automatic estimation of the model order n,
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Figure 5: The |α1| of sλ1 (green triangle) and |α2| of sλ2 (green square) at the right
(s = 3,M = 8), identifying U1 ∩ S1 = {λ1} and U2 ∩ S2 = U1 ∩ S2 = {λ2} from u = 10 at
the left (red squares).

• robustness against some outliers,

• parallelism in the algorithm.

In other words, while the sub-sampling of a signal usually leads to cruder
estimates of the already aliased frequencies (upper CRLB curve in Figure 3),
the method explained below still achieves the desired CRLB curve (middle
curve in Figure 3), while adding a number of desirable features that become
available through the technique described in Section 3.

Given a fixed undersampling parameter u, we can consider u decimated
sample sets Φk, k = 0, . . . , u− 1, starting respectively at 0,∆, . . . , (u− 1)∆.
The first set contains bN/uc samples and all subsequent sets contain either
the same number of samples or one less:

Φk := {φuj+k : j = 0, . . . ,min(bN/uc, b(N − k)/uc)− 1}, k = 0, . . . , u− 1.

From each decimated set Φk we extract uλi,
sλi, i = 1, . . . , n which should

carry a second index k now to indicate from which decimation Φk the values
were obtained. The same holds for the coefficients αi. For the sequel we
therefore introduce the notations (uλi,k), (

sλi,k),
msαi,k with obvious mean-

ings. We also introduce

uL := ∪n,u−1i=1,k=0{uλi,k},
sL := ∪n,u−1i=1,k=0{

sλi,k}.
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We remark that the index i still runs from 1 to n even if the undersampling
has caused collisions. Then some uλi,k are merely duplicated.

Each dataset Φk is now a decimation of the set of samples {φ0, φ1, . . . ,
φN−1}. From this section on, each sample φj is always perturbed by noise,
but we choose to abuse the notation φj instead of φj +εj in order to not over-
load the presentation. Each set Φk is subject to an independent realization
of the noise because the latter affects each decimated signal in a different and
independent way. Thanks to the connection with the theory of Padé approxi-
mation and Froissart doublets, we know that the uλi,k and sλi,k form clusters
in the sets uL and sL respectively, around the true uλi = λui and sλi = λsi
with i = 1, . . . , n. Any generalized eigenvalues retrieved from overestimating
the model order n by ν > n, model the noise and are found scattered around
the complex unit disk, as explained in Section 2. To detect the clusters in
uL and sL we propose to use the density based cluster algorithm DBSCAN
[29].

DBSCAN requires two additional parameters: the density δ of the clusters
and the minimum numbermδ of required cluster elements. These parameters
are chosen in terms of the noise in the signal. Larger values of δ allow
the detection of wider clusters, which is useful in case of a higher noise
level. Smaller values of δ allow to detect denser clusters, which appear in
case of very stable estimates uλi,k or low levels of noise. A value for mδ

smaller than u allows to discard bogus estimates appearing as a consequence
of, for instance, an outlier in the data. When mδ is set equal to u, each
uλi needs to be confirmed by all the decimated analyses. Remember that,
through the coefficient matrix shared between (9) and (10), each element
from sL is connected to an element in uL. So any cluster detected in sL
is tied to a set of elements from uL of the same size. We also point out
that the introduction of decimation reduces the complexity of the numerical
algorithm and parallelizes the exponential analysis. Instead of solving a single
large structured generalized eigenvalue problem, one is facing u much smaller
structured generalized eigenvalue problems, which makes a big difference
even when solved sequentially. Each Φk is analyzed independently and the
computation of the uλi,k and sλi,k does not need data from other decimations.
All the results are collected after the individual runs and then passed to the
cluster analysis.

Essentially three different DBSCAN scenario’s can occur, as sketched in
Figure 6: at the left we find the result of running DBSCAN on the set uL
and at the right the result on the set sL.
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4.1. Standard scenario
A cluster uC1 is detected in the set uL and its center of gravity can serve

as an estimate of one of the λui . The elements sλi,k tied to the generalized
eigenvalues uλi,k ∈ uC1 also form a cluster, which we denote by sC1. Its
center of gravity then returns an estimate of λsi . From both centers of gravity
a reliable estimate of λi can be extracted as described in Section 3.2. With
each identified λi we can return a list of extra informational items:

• the number of elements validating uλi in the uL cluster,

• the number of elements validating sλi in the sL cluster,

• the actual radius of the uL cluster around uλi,

• the actual radius of the sL cluster around sλi,

The cardinality of the uL cluster uC1, which indicates how many decimated
analyses succeeded in retrieving λui , indicates the level of validation of the
retrieved λi, while that of the sL cluster sC1, in combination with its radius,
reflects the correct or poor resolution from the aliasing. The radius of uC1

on the one hand and of sC1 on the other, is a measure of the perturbation
suffered by respectively λui and λsi . Clusters with few elements and large radii
indicate that the conclusion may be wrong because of the inherent noise. The
total number of clusters detected in uL and validated in sL, is automatically
a good estimate of the model order n, as pictured in Figure 6.

4.2. Outlier scenario
It may happen that not all elements sλi,k tied to the uλi,k in a detected

cluster uC2 belong to a cluster sC2. In that case the remote elements in sL
are discarded and an estimate for sλi = λsi is still the center of gravity of
sC2. Here the number of decimated analyses validating λi is different in uL
and sL.

4.3. Collision scenario
In cluster uC3 of Figure 6 a collision is involved. As in (13) and pictured in

Figure 5, the msαi,k have identified more than one exponential contribution.
In sL different clusters of the sλi,k tied to the uλi,k in uC3 are identified instead
of one large cluster. The centers of gravity of these individual clusters serve
to identify the different generalized eigenvalues that have collided uC3 as a
consequence of the aliasing.
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Figure 6: The cluster algorithm as explained in Section 4, with the set uL at the left and
the set sL at the right.

4.4. On the choice of δ and mδ

At first sight, one may think that the new method, which now returns
the sparsity n of φ(t) automatically by counting the number of detected and
validated clusters, heavily depends on a proper choice of the new parameters
δ and mδ. This is actually not the case, because usually multiple DBSCAN
runs are performed, starting with a high validation rate mδ ≤ u and a small
radius δ, relaxing both gradually by decreasing mδ and increasing δ, until the
clusters detected in uL are not validated anymore by a cluster in sL. Starting
with more demanding validation parameters identifies the most stable results
first and then explores the remaining results in a less strict way. We often
choose mδ in the range [0.75, 0.95] × u. As the uλi values are usually less
affected by noise than the sλi which are obtained as solution of Vandermonde
structured linear systems, the clusters in uL are generally denser than the
ones in sL. So, in addition to the above, one should relax both mδ and δ a
bit when moving with DBSCAN from uL to sL.

All the above is best illustrated with an example of an extreme case.
We take n = 2, ν = 3 and u = 7, s = 9. We construct the illustration
so as to generate difficult and large clusters, even exceeding the maximal
theoretical cluster size u of the decimation, by considering many different
noise realizations. We aim for one dense and one diffuse cluster, with both
getting entangled as a consequence of their size and characteristic, and many
unwanted Froissart doublet poles on top. Consider for j = 0, . . . , 13 and
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Figure 7: Joint 7λ1,2 (at the left) and 9λ1,2 (at the right) of (14) for all noise realizations.

∆ = 0.6028,

φ(ts+ju) = α1 exp(−i3.3576922(s+ ju)∆) + α2 exp(i2.5206137(s+ ju)∆),
(14)

perturbed by white Gaussian noise with SNR = 20 dB. Such a collection
of 2 × 14 samples (for u = 7, s = 0 and u = 7, s = 9) can result from the
described decimation technique. For the time being, let us call one such
collection a snaphot and let us generate 512 snapshots by changing the noise
realization in the snapshot. From snapshot to snapshot the frequencies µi in
(2) remain unaltered. So the generalized eigenvalues uλi = exp(µi(u∆)), i =
1, 2 do not change from snapshot to snapshot. And neither do the values
sλi = exp(µi(s∆)), i = 1, 2. In Figure 7 one finds the 512× ν = 1526 values
uλi at the left and the same number of values sλi at the right. One clearly
observes two clusters in each of uL and sL, as should be the case since n = 2,
one denser and one more diffuse cluster, and a lot of scattered results coming
from the fact that n is overestimated by ν > n.

We now discuss the cluster detection in uL in more detail. Remember
that the process in sL is completely analogous, only with somewhat more
relaxed values for mδ and δ.

When running DBSCAN a single time, either with a small density δ or a
larger one, the correct result is not retrieved. When δ is small (take δ = 0.1),
then only the denser cluster is revealed. When δ is larger, large enough to go
beyond the dense cluster (take δ = 0.2), then both clusters are joined into
one. In both tries, we choose mδ = d0.85× 512e = 436.

When using multiple DBSCAN runs, as explained above, the correct re-
sult is revealed. Let us still fix mδ = 436, but now vary δ from small to
large as δ = 0.08`, ` = 1, . . . , 5. With δ = 0.08 a first cluster is detected in
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Figure 8: Dense cluster for (14) retrieved in uL (left) and sL (right).
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Figure 9: Diffuse cluster for (14) retrieved in uL (left) and sL (right).

respectively uL and sL, as shown in Figure 8. After detecting this cluster,
the concerned points are removed from the cluster analysis. With δ = 0.24 a
second cluster is detected in respectively uL and sL and shown in Figure 9.
For δ = 0.16 no cluster is found. Actually, from δ = 0.32 on, up to δ = 0.80
no clusters are identified anymore.

When continuing the search with δ = 0.88 then a very diffuse cluster of
504 elements pops up again in uL (see Figure 10 left) but without confirma-
tion by the clustering of the associated points in sL (see Figure 10 right). So
at this point, the search for clusters has definitely been taken across reason-
able values for δ.

Another unrelated consideration that must be made with respect to mδ

is the following. Let us denote mδ = p × u, 0 < p ≤ 1, where p denotes the
percentage of the maximal cluster size u that we minimally require for the
cluster cardinality. If the set of N signal samples still contains some, say `,
remaining outliers, despite an outlier filtering step which is the initial prepa-
ration step prior to any further analysis of the data, then in the worst case
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Figure 10: Candidate cluster for (14) retrieved in uL (left) without associated cluster in
sL (right).

only u− ` elements can be found in each cluster, and it is easily understood
that we do not want u − ` to be insignificantly small. This happens when
each outlier contaminates a different subset Φk, k = 1, . . . , u of the decima-
tion. So we have the constraint mδ ≤ u − ` or ` ≤ (1 − p)u, which is in
practice too strict, but presents at least another indication of the connection
between mδ and the quality of the data set. The strict bound on ` actu-
ally guarantees that the decimation and clustering will not be bothered by
the outliers. When the strict bound is violated, the success of the method
depends on the location of the outliers and the probability that sufficient
subsets Φk, k = 0, . . . , u− 1 in the decimation are outlier free.

5. Numerical illustration

At this moment we introduce the acronym VEXPA for the new procedure
that validates an exponential analysis carried out by a Prony-like method
applied to each of the decimated signals. In order to see the proposed method
at work, we present the results of two experiments, with the main aim to
illustrate the extra features listed in Section 4, which can now be added to
whatever underlying Prony-like method used for each separate decimated
analysis. For our experiments we use MP as the underlying method of choice
to compute the aliased results uλi,k modelling the data Φk and to compute
the recovery values sλi,k modelling the msαi,k. We then compare the VEXPA
results to those of either the stand-alone MP method or another popular
Prony-like alternative [9] and the atomic norm minimisation (ANM) [4].

All experiments are reproducible by downloading the matlab code and
data used in 5.1 and 5.2 from cma.uantwerpen.be/publications.
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5.1. Outlier experiment
As discussed earlier, the cluster analysis makes the underlying exponen-

tial analysis algorithm more robust with respect to outliers that may have
escaped an outlier filtering step. In general, it is known that neither meth-
ods of the Prony family nor basic implementations of ANM can deal properly
with impulsive noise or spikes in the data [30].

In Section 4.4 the relation ` ≤ u−mδ, between the undersampling factor
u of the decimation, the number of outliers ` in the data and the choice for
the validation number mδ, is explained. We illustrate all this in the following
example.

Consider φ(t) defined by the parameters |αi|, arg(αi), =(µi), <(µi), i =
1, 2, 3 listed in Table 1. The total number of samples is N = 300 and the
bandwidth is Ω = 1000. White circular Gaussian noise with SNR = 30 dB is
added as well as some outliers. We show the real part of the signal and disturb
with real-valued outliers. We notice no difference in the conclusions whether
the outliers are real, imaginary or complex. The following conclusions hold
throughout.

To establish some reference material, we first analyze the by noise cor-
rupted but outlier free signal. On the one hand, we use a TLS-Prony method
[9] which takes the numerical rank of the Hankel matrix 0

1H(N−ν)×ν as a guess
for the sparsity n. On the other hand, we compare this result to the output
delivered by VEXPA with underlying the Prony-like algorithm MP [8]. Both
methods recover the three terms and perform equally well. The singular
value plot of the Hankel matrix 0

1H200×100 used by the TLS-Prony method,
is given at the left in Figure 12. The root-mean-square errors are around
0.008 and the reconstructions are shown in Figure 11, with the data in black,
the TLS-Prony result in blue at the left and the VEXPA result in red at the
right.

Already from one randomly placed outlier, we see that the RMSE of
the result delivered by VEXPA on top of an exponential analysis method
is generally less than that of the stand-alone method. Let us, for instance,
subtract 18 from sample number 21. The singular value plot for the Hankel
matrix constructed with the data containing one outlier, is given in Figure 12
at the right. Thresholding of the singular values of 0

1H200×100 very obviously
suggests to truncate all but two terms in the TLS step, although n = 3
(opting for n = 25 instead, results in modelling the noise and outlier as well
as the signal). So the third term is fully buried by the outlier in the signal
and we see this happen in all the subsequent outlier tests on this signal. All
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Figure 11: Outlier free reference with original data (in black), TLS-Prony reconstruction
(left, in blue) and VEXPA reconstruction (right, in red).

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Figure 12: Numerical rank computation of 0
1H200×100, from outlier free data (left) and

single outlier data (right).

subsequent singular value plots look similar and are but slight variations of
this one. The reconstruction of the signal using the two recovered terms is
shown in Figure 13, at the left in blue. The reconstruction recovers quite
well from the outliers, but towards the end of the observation window, the
signal deviates more from the original. The RMSE, computed with respect
to the noisefree and outlier free signal, is 0.2912.

Next, the original signal is analyzed using VEXPA with underlying the
Prony-like algorithm MP without SVD thresholding, without a guess for n.
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Figure 13: Outlier experiment with original data (in black), TLS-Prony reconstruction
(left, in blue) and VEXPA reconstruction (right, in red).
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|αi| arg(αi) =(µi) <(µi)
1 0.3342 2π417.764 -0.1
1 0.8084 −2π17.4 0
0.5 0.5880 −2π19.5 0

Table 1: Section 5.1 experiment with n = 3 and N = 300.
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Figure 14: Cluster detection in uL (left) and sL (right) for the outlier experiment.

For VEXPA we take u = 7 and s = 11. So each Φk contains 42 or 41 samples.
The decimation Φ0 contains the outlier. So we can expect to find clusters
of 6 elements in uL instead of 7. Let us choose mδ = 5. We identify the
uL clusters using increasing δ-values, say δ = 0.01, 0.03, 0.05, to isolate the
most stable results first. In Figure 14 we show the results of the DBSCAN
cluster analysis on uL and sL. The VEXPA add-on clearly identifies n = 3
exponential terms in the signal and reconstructs the signal quite reliably over
the whole time interval. The signal reconstructed from the VEXPA output
is depicted in Figure 13, at the right in red. The RMSE is now 0.1164.

Very similar results are found with somewhat more outliers. The bound
` ≤ u−mδ for the worst case, where each outlier disturbs a different subset
Φk, is known to be too strict. But remember that we assume to be dealing
with only a few outliers that may have escaped a filtering step. We now
illustrate the capabilities of the new method in three different experiments,
all starting from the same signal and noise level:

• some statistical information on the RMSE in case of ` = 2 outliers,
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Figure 15: RMSE of 1000 runs of TLS-Prony (blue, top) versus VEXPA (red, bottom)
with 2 outliers randomly placed among the 300 samples.

which fits the constraint ` ≤ u−mδ when u = 7,mδ = 5,

• a more specific case belonging to these statistical data, where two out-
liers are located in each other’s vicinity,

• a typical situation where ` = 5 outliers are randomly placed, in this
case fortunately without affecting all Φk.

For the statistics, we add randomly chosen outliers belonging to the set
[−25,−15] ∪ [15, 25] to two randomly selected sample numbers between 0
and 299. We do not change the noise, so that the effect that we observe on
the computation, compared to Figure 11 with reference RMSE values around
0.008, solely comes from the outliers. The experiment is repeated 1000 times.
In Figure 15 we plot the 1000 RMSE of the TLS-Prony result versus that of
the VEXPA result.

To illustrate the effect of 2 nearby outliers, we add respectively −18 and
24 to the sample numbers 21 and 25. Again the result is very similar. The
TLS-Prony reconstruction with 2 terms is shown at the left in blue (see
Figure 16) with RMSE = 0.3241. The VEXPA reconstruction using 3 terms
is shown at the right in red (see Figure 16) with RMSE = 0.1393.

To create 5 outliers we, for instance, respectively add −18, 24, 17,−13, 20
to the sample numbers 21, 25, 134, 188, 258. The TLS-Prony method again
suggests very obviously to use two terms for the reconstruction (see Figure
17 at the left in blue) with a RMSE = 0.3320. The VEXPA method with
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Figure 16: Outlier experiment with 2 outliers placed close to one another.
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Figure 17: Outlier experiment with 5 outliers distributed over the signal.

the same parameters for δ and mδ reconstructs three terms (see Figure 17 at
the right in red) with a RMSE = 0.1390.

How has the computation of the αi profited from the cluster analysis as
well? Since the clusters in uL consist of 5, 6 or 7 elements, we can deduce
precisely which subset(s) Φk did not contribute to the validation and so we
can omit all data points from such subset(s) in the linear system delivering
the parameters αi. So the computation of the αi starts from outlier filtered
data.

5.2. High noise experiment
For our second experiment we consider a signal φ(t) defined by the param-

eters |αi|, arg(αi),=(µi),<(µi), i = 1, . . . , 12 in Table 2. The total number of
samples is again N = 300, but now with Ω = 100. We perturb the samples
with white circular Gaussian noise of increasing SNR. The perturbed signal
is then analysed using MP (with the added information that n = 12) on the
one hand and VEXPA (on top of MP without the added information that
n = 12) on the other. For the latter we choose u = 7 and s = 6. We pass
the correct model order n only to MP. The new VEXPA add-on detects it
automatically (for uL and sL we respectively take mδ = 6 and 4, and we
choose δ = 0.1 twice). For each SNR this experiment is repeated 500 times.
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The exponential analysis using MP is fed a 200× 100 generalized eigenvalue
problem which is being reduced to n = 12 columns after performing an SVD
step. On the other hand, each individual decimation solves a 27 × 15 (or
26× 15) generalized eigenvalue problem and afterwards a cluster analysis is
performed on the combined outputs of the u = 7 decimations.

Up to SNR = 10 dB both MP and VEXPA closely approach the desired
CRLB, as can be seen from Figure 18, where we show the CRLB for both
Ω = 100, N = 300 (in blue) and Ω = 100/7, N = 42 (in red), as in Figure 3.
Remember that for each decimation VEXPA is acually departing from the
latter situation. But after combining the different decimation results, and
effectively also using all the samples, the variance favourably compares to
the CRLB. In the meantime, several extra’s have been picked up:

• As a consequence of the decimation, the computational complexity is
greatly reduced because of the smaller independent generalized eigen-
value problems.

• Hence the numerical conditioning is improved and the analysis is par-
allellizable.

• In addition, as already mentioned, the model order n is an automatic
byproduct of the cluster analysis.

Remains to discuss the gain in reliability. While Figure 18 on the compar-
ison to the CRLB is most interesting in the SNR interval [10, 100], the issue
of reliability becomes more fascinating for SNR values less than 10. Since
the signal is an undamped one, it can also be unravelled using the ANM
implementation in [4]. Despite the fact that this implementation enjoys an
improved computational complexity of O(N2) per iteration step (maximum
of 2000 iterations), it takes several hundred times longer per execution than
either MP or VEXPA. Therefore the method is only executed 100 times per
SNR and this for the more interesting interval of SNR values from 0 to 20.
The results of all runs, either 500 or 100, are superimposed in Figure 19: we
show all retrieved =(µi)-values for MP (top), ANM (middle) and VEXPA
(bottom).

For higher noise levels (smaller SNR) the stand-alone MP method returns
unreliable results, while the VEXPA method implemented on top of MP
detects when the signal is heavily perturbed, namely when fewer computed
results are validated in the cluster analysis. So VEXPA, in its standard
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Figure 18: Variance of MP (blue) and VEXPA (red), compared to the Cramer-Rao lower
bounds obtained as in Figure 3.

implementation, does not return unreliable λi output. When none of the
results can be validated, then VEXPA does not return λi values at all. Such
type of reliability is also offered by ANM, as can be seen in the middle graph:
the retrieved frequencies are mostly correct, although some may be missing
in case of really small SNR. While the faster exponential analysis methods
of the Prony family traditionally suffer from an increased sensitivity to noise
(see the top graph on the stand-alone MP results), VEXPA adds as good
as the reliability that is normally offered by methods such as ANM (see the
middle graph of Figure 19), which can however be prohibitively slow. In
addition, we point out that VEXPA can easily be used on damped signals
for which the ANM algorithm does not qualify.

6. Conclusion

Exponential analysis methods of the Prony type are more sensitive to
noise. We offer an add-on technique that reconditions the problem statement
and stabilizes and validates the computed results. As we illustrate in the
numerical examples the algorithm works very well. In addition, the method
estimates the model order while performing the validation analysis. The
approach is highly suited for parallelization and hence further improves the
running time of the underlying Prony-like exponential analysis, while offering
a reliability comparable to that of the much more computationally intensive
atomic norm minimization implementations.
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Figure 19: Retrieved =(µi) by MP (top, blue), ANM (middle, green) and VEXPA (bottom,
red).
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|αi| arg(αi) =(µi) <(µi)
1 0 −2π5.93 0
2 π −2π4.05 0
2 π/4 −2π3.10 0
2 π/8 −2π1.82 0
2 3π/4 −2π1.31 0
1 π/10 2π1.90 0
3 −π 2π2.97 0
1.5 −7π/8 2π6.05 0
2 0 2π6.67 0
3 −78π/100 2π38 0
1 0 2π43 0
1 π/5 −2π24 0

Table 2: Section 5.2 experiment with n = 12 and N = 300.
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