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ABSTRACT

Performance lower bounds are known to be a fundamental design tool in parametric estimation theory. A
plethora of deterministic bounds exist in the literature, ranging from the general Barankin bound to the
well-known Cramér-Rao bound (CRB), the latter providing the optimal mean square error performance
of locally unbiased estimators. In this contribution, we are interested in the estimation of mixed real-
and integer-valued parameter vectors. We propose a closed-form lower bound expression leveraging on
the general CRB formulation, being the limiting form of the McAulay-Seidman bound. Such formulation
is the key point to take into account integer-valued parameters. As a particular case of the general form,
we provide closed-form expressions for the Gaussian observation model. One noteworthy point is the as-
sessment of the asymptotic efficiency of the maximum likelihood estimator for a linear regression model
with mixed parameter vectors and known noise covariance matrix, thus complementing the rather rich
literature on that topic. A representative carrier-phase based precise positioning example is provided to

GNSS
Ambiguity resolution

support the discussion and show the usefulness of the proposed lower bound.

1. Introduction

Integer parameter estimation appears in many signal process-
ing, biology and communications problems, to name a few. For
instance, consider a multi-hypothesis testing problem where we
want to identify the received signal over a (finite) set of possi-
ble transmitted signals, then a solution is to maximize the log-
likelihood function over the (integer) set of candidates. Another
problem involving estimation of integer quantities, jointly with a
real-valued vector, is that of carrier-phase based precise position-
ing in the context of Global Navigation Satellite Systems (GNSS)
receivers. In the geodesy and navigation community, a well known
estimation approach is referred to as Real Time Kinematic (RTK)
positioning [1]. Carrier-phase measurements have an unknown in-
teger part, referred to as the ambiguity, to be estimated in order
to achieve cm-level accuracy on the real-valued unknown position
of the receiver. The framework that underpins precise GNSS carrier
phase-based ambiguity resolution is the theory of integer aperture
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estimation [2,3], which also applies to other carrier phase-based
interferometric techniques, such as Very Long Baseline Interferom-
etry (VLBI) [4], Interferometric Synthetic Aperture Radar (InSAR)
[5], or underwater acoustic carrier phase-based positioning [6].

Regardless of the estimation problem addressed, when design-
ing and assessing estimators it is of fundamental importance to
know the minimum achievable performance, that is, to obtain tight
performance lower bounds (LBs). In general, in estimation prob-
lems we are interested in minimal performance bounds in the
mean squared error (MSE) sense, which provide the best achiev-
able performance on the estimation of parameters of a signal cor-
rupted by noise. There are two main categories of LBs, deterministic
and Bayesian [7]. While the former considers that the parameters
to be estimated are deterministic and evaluate the locally best es-
timator performance, the latter consider random parameters with
a given a priori probability and evaluate the globally best estima-
tor behavior. In this contribution we are interested in deterministic
parameter estimation, thus only the first class will be discussed.

It is worth saying that such LBs have been proved to be ex-
tremely useful, not only for characterizing an estimator asymptotic
performance, but also for system design [7-9]. The most popular
LB is the well-known Cramér-Rao Bound (CRB) derived for real-
valued parameter vector, mainly due to: i) its simplicity of calcula-
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tion, for instance using the Slepian-Bangs’ formula [10]; ii) it is the
lowest bound on the MSE of any unbiased estimator (i.e., it con-
siders local unbiasedness at the vicinity of any selected parame-
ters’ value); and iii) it is asymptotically attained by maximum like-
lihood estimators (MLEs) under certain conditions (i.e., high signal-
to-noise ratio (SNR) [11] and/or large number of snapshots [12]),
that is, MLEs are asymptotically efficient. Inherent limitations of
such CRBs are their inability to: predict the threshold phenomena;
provide tight bounds in certain cases [13]; and deal with integer-
valued parameter estimation, which is the contribution of this ar-
ticle.

Since the seminal CRB works, several deterministic bounds have
been proposed in the literature [14-22] to provide computable ap-
proximations of the Barankin bound (BB) [23], which is the tightest
(greatest) LB for any absolute moment of order greater than 1 of
unbiased estimators. In fact, the BB considers uniform unbiasedness
(i.e., unbiasedness over an interval of parameter values including
the selected value), resulting in a much stronger restriction than
the local unbiasedness condition of the CRB, but not admitting an
analytic solution in general.

In this contribution, in order to obtain a CRB-like closed-form
expression for the estimation of mixed parameter vectors, includ-
ing both real- and integer-valued parameters, we leverage on the
McAulay-Seidman bound (MSB) [16]. The MSB is the BB approxi-
mation obtained from a discretization of the Barankin uniform un-
biasedness constraint, using a set of selected values of the param-
eter vector, so-called test points. The MSB yields to a general def-
inition of the CRB, expressed as a limiting form of the MSB. We
derive a closed-form general CRB expression for mixed parameter
vectors and provide its particular closed-form for the Gaussian ob-
servation model, which encompasses the well known conditional
and unconditional observation models [24].

On another note, one must keep in mind that in many prob-
lems of practical interest, including the general (nonlinear) case of
the problem under consideration, no evidence of the achievability
of a given LB by realizable estimators exists [7,8,13]. Thus, from a
practical perspective, the LB considered may be too optimistic and
unable to represent the actual performance of any estimator. To
circumvent the unavailability of LB achievability results, a solution
relates to the derivation of an upper bound to provide a comple-
mentary vision to that of the LB. Unfortunately, upper bounds on
the MSE of unbiased estimates do not generally exist if the obser-
vation space is unbounded. Nonetheless, upper bounds on the sta-
tistical performance (not necessarily the MSE) may exist for spe-
cific estimators (not necessarily unbiased) in specific estimation
problems [1,25-27]. In particular, for the mixed integer linear re-
gression model, a rich literature on the statistical performances
of various estimators is already available (see [1]| and references
therein), and an upper bound on the probability that the MLE of
the real-valued parameter vector lies in a certain region exists [25].
Remarkably, a LB on the ambiguity success rate (probability of cor-
rect estimation of the integer-valued parameter vector) does exist
as well and appears to be the cornerstone to prove that the MLE
of the real-valued parameter vector is efficient in the asymptotic
regime (high SNR) when the noise covariance matrix is known,
thus completing the literature on that topic (see Section 3 for de-
tails). As a use case, we consider the linear regression problem in
the context of GNSS precise positioning to support the discussion
and show the usefulness of the proposed performance LB.

The article is organized as follows: Section 2 provides back-
ground on deterministic LBs and their derivation as a norm mini-
mization problem, mainly focused on the CRB as the limiting form
of the MSB. Section 3 details the derivation of the new bound, in
the general case and for the Gaussian observation model. It es-
tablishes the asymptotic efficiency of the MLE for a linear regres-
sion model with mixed parameter vectors and known noise covari-

ance matrix, and sketches possible generalizations and outlooks.
These results are then particularized for a linear regression prob-
lem, serving as motivating example and discussed in Section 4. The
paper concludes with a discussion of the results in Section 5.

2. Background on McAulay-Seidman and Cramér-Rao bounds
for a real-valued parameter vector

2.1. The McAulay-Seidman bound

Let y' be a random real-valued observations vector and Q c RM
the observation space. Denote by p(y; 0)2p(y|f) the pdf of the
observations conditional on an unknown deterministic real-valued
parameter vector f € © c R¥. Let £,(Q) be the real vector space
(iﬂuare integrable functions over 2. If we consider an estimator

g(0°)(y)  £Y () of g(8°), where 6° is a selected value of the pa-

rameter 6 and g(0) = (g1(9),...,gn(0))" is a real-valued function
vector, then the MSE matrix writes,

MSEy(5(6°) ) = Eyoo| (5(6°) ) - £(6%) ) )" (1)

By noticing that (1) is a Gram matrix associated with the scalar
product (h(y)[[(¥))go = Ey.go[h(¥)I(¥)]. the search for a LB on the
MSE (1) (w.r.t. the Lowner ordering for positive symmetric ma-
trices [28]) can be performed with two equivalent fundamental
results: the generalization of the Cauchy-Schwartz inequality to
Gram matrices (generally referred to as the "covariance inequal-
ity” [18]) and the minimization of a norm under linear constraints
(LCs) [17,19,20]. We shall prefer the “norm minimization” form as
its use requires explicitly the selection of appropriate constraints,
which then determine the value of the LB on the MSE matrix,
hence providing a clear understanding of the hypotheses associ-
ated with the different LBs on the MSE. To avoid the trivial so-
lution g(6°)(y) = g(0°), some constraints must be added. In that
perspective, Barankin [23] introduced the uniform unbiasedness for-
mulation,

Ey;o[g/((")\) (y)] =g(#).voc o, (2a)

leading to the Barankin bound (BB),

g@?r)n:ﬂr; (Q){MSE,,U (g?@)} s.t. n«:y:(,[g/(oo\) (y)] —g(6). V0 < ©,

(2b)

which does not admit an analytic solution in general. The
McAulay-Seidman bound (MSB) is the computable BB approxima-
tion obtained from a discretization of the uniform unbiasedness
constraint (2a). Let {8}" 2 {9}1"1 — {9, ... 0!} € O be a subset of
L selectic_l\values of @ (ak.a. test points). Then, any unbiased esti-
mator g(69)(y) verifying (2a) must comply with the following sub-

1 Italic indicates a scalar quantity, as in a; lower case boldface indicates a col-
umn vector quantity, as in a; upper case boldface indicates a matrix quantity, as
in A. The nth row and mth column element of the matrix A will be denoted by
Anm or [A]ym. The nth coordinate of the column vector a will be denoted by a, or
[a],. The matrix/vector transpose is indicated by a superscript ( - )" as in AT. |A| is
the determinant of the square matrix A. [AB] and [§] denote the matrix resulting
from the horizontal and the vertical concatenation of A and B, respectively. I, is the
identity matrix of dimension M. 1y, is a M-dimensional vector with all components
equal to one. For two matrices A and B, A > B means that A — B is positive semi-

) 90 91" I 9 oh(6o.y dh(by
then: & =[s0. 5. 90| > a0 =0 o 5| and (33 ) _ go)%.
p(y; 0)2p(y|@) denotes the probability density function (pdf) of y parameterized by

0. Ey.¢[g(y)] denote the statistical expectation of the vector of functions g( - ) with
respect to y parameterized by 6. For the sake of simplicity, (g(y))( - )" 2g(y)g(y)".



set of L LCs,
Ey.g [JGO\) (Y)] =g(0). 1=<i<L (3a)

which can be recast as
— T
2y o (v 16]') (5) ) - 5067)) |

r

(2(6") - (6°)

= : : (3b)

(5(6") ~£(6°))'
v
where vy (y: {0}) = (Upo (9 0"), ..., Ugo (1 01) ", Vo (y: 0) =
p(y; 0)/p(y; 0°) is the vector of likelihood ratios associated to

{6}:. The L LCs (3b) yields the approximation of (2b) proposed by
McAulay and Seidman [20],

@I;leg(ﬂ){MSEoo (@)} =V (42)

and defines the MSB (Lemma 1 in [29]) [16,20]
Ey:ao[(gf”\) ) —g(0°)>(~)T] > Ag(0°)R, ) A (6°),
Ag(0°) 2 Ag(oo, {0}L)
= [=(8") —=(¢") 5(6) - 5(0%)]:
Rop = R, ({0)) = By [veo (v: {6} v (v: {6}) ] (ab)

a generalization of the Hammersley-Chapman-Robbins bound
(HaChRB) previously introduced in [15,30] for 2 test points (L = 2).

2.2. CRB as a limiting form of the MSB

The CRB can be defined for any absolute moment (greater than
1) as the limiting form of the HaChRB [15,30], as showed in [23].
The extension to the multidimensional real-valued parameters case
for the MSE (i.e., absolute moment of order 2) was introduced in
[16], allowing to define the CRB as the limiting form of the MSB
(4b). Considering the subset of test points

{0}1+K = {00, 6° +1i.dOy, ..., 6° + i[(dQK}
under d6, #0, 1<k<K,
where i, is the kth column of the identity matrix I, leads to

) <[

Ag(0°) = [0

p(y:6°+irdoy)
p(y:6°)

g(0° +i1do,) —g(6°)
and, with d@ = (d6, ..
Ag(0°)R;! AJ(6°) = Ag(6°. dO)F(6°.d8) 'AJ(6°.d6).  (5a)

Vgo

p(v:0°+ikdd) "
p(v:6°) ’

g(0° + ixdoy) — g(6°)].

., dO) ", yields to (see Appendix A)

d01p(y:0)
F(6°, dO) = Eygo 5 o (sh)
docp(y:0°)

Ag (00, d0) - |:g(00+i]¢ilgél) _g(8")

Ok

s(auikwn—g(w)] (5¢)
which results in a general definition of the CRng(f)O) as

CRB, ) (6°) = Ag(6°. dO)F(6°,d6) 'A](6°.d8).  (6a)

lim
sup {d6; #0,...,d0#0}—0

If 09 ¢ ® c RX and g(#) and p(y; @) are C! at #9, then (6a) yields
the well known Fisher Information Matrix (FIM) F(#) and the usual
CRB expression

0l -0

F(6) = Eyﬂ[“‘;ﬁ,”(.f], (6b)
og(6°) i [og(6°)\

B (07) = 2 ) () ( 523) - 50

3. CRB for a mixture of real-valued and integer-valued
parameters

Leveraging the MSB and CRB results presented in the previous
Section 2, we derive in this section a LB for deterministic parame-
ter vector estimation, where such vector contains both real-valued
and integer-valued parameters. A general result is provided, then
particularized for the case of Gaussian observations.

3.1. General CRB for mixed parameter vectors

The main result derived in this article is summarized in the
form of Theorem 1. A corollary follows, which simplifies the for-
mer in a particular class of models.

Theorem 1 (General CRB for mixed parameter vectors). Assume a
set of observations y € Q@ c RM and an unknown deterministic real-
valued parameter vector € ® c R where 07 = [@",27], ® € R,
z € 7% K, + K, = K. Those quantities are related through a statistical
model of the form y|@ ~ p(y|@), which is available. Then, the MSE of
any unbiased estimator of a function g(00) € L5(2) for a selected

value of the parameter ° is lower bounded by

CRBy(6°) = Ag(6°)F(6°) " A (6°), (7)
with

M) =[5 5(0)-5()

F(6°) = [F“’"’(@

H(6°)

g(ozlg)_g(go)] (8)
H(6°) ] ©)

MS, 4(6°)
where the test points {()}ZKZ are defined as
0/ =00+ (-1 iy ) 1=j=2K (10)
that is,
[01 02 o 02Kz—1 021(2]
= [00 +ig, 1, 0% — g1, ..., 00 +ik, 00 — iK]-

The different terms in F(6°) are given by

0l ;0
Fojo(0°) = Ey.p0 |:M5(:)’)(-)T:|7 (11a)
dlnp(y; 6°
H(6°) = Ey.40 [a(w)t;&} (11b)
= [h(6°.6") h(6°6?) h(6°,6%)], (11c)
MS,j9(6°) = Ey.p0[tar, . | — 1ok 135 (11d)



where ty, is defined as

oo ) - (220 229

Py ) p(y 69

ply: 6%) )
p(y:6°) |~
(11e)

Proof. First, notice that in the real-valued parameter case, that
is, if 60 eR. and both g(@) and p(y; #) are C' at 62, then,
the constraints associated to the following two test points,
{6° +id6y, 6° + i (~dOy) } = {6° +id6y., 0° —id6, },

p(y:0°+id6, ) —p(v:6°) o .
By | | i) | (5090 —5(@°))
(—d6;)p(y:6°)

(g(9°+ikd0k)—g(0°) )T

0,

(g(ﬂ“—ikdé)k)—g((:’“) )T

(—dby)

(12)

aim at the same single constraint in the limiting case where
do, — 0,do;, # 0,

al - 09) ,—— T 9e(0°) "
Ey;oo[rf;g)(g("‘))(y)—g(ﬂf’)) } f,(gk) L)

However, this phenomenon is unlikely to happen if 9,? € Z in the
limiting case where df, — 0, df; # 0, since (12) then becomes

p(¥:6°+i )—p(v:6°)

Byoo| [y’ Sy aeer) | (80 —£(6°))

p(y:0°)

_ [(gwo +iy) g(ﬂf}))ﬂ, (14)

(8(6° - i) —g(6°))"

where (p(y: 6° +iy) — p(v: 0°))/p(y: 6°) and
(p(y: 0° — i) — p(v: 6°))/p(y: 0°) are unlikely to be linearly
dependent (i.e., notice that i(ao,dO) in (5b) must be invertible
to compute the CRng(OO) in (6a)). Therefore, in most cases, the
combination of LCs (13) and (14) yields, from Lemma 1 in [29],
the general definition (7) of CRBglo(OO) where the different terms

in F(#°) are given by

al 0°
Fujg (0°) = Eyp0 {npa(y)( ) :| (15a)
01 . 0°
H(0°) = Eyp0 |:lwa((§)(t2kz - 121<Z)T:|, (15b)
MSZ|0(00) = Eyzgo[(ty(z — 12Kz)(t2Kz — 12[(Z>T], (15C)

and where H(6°) and MSZw(OO) can also been expressed as
(11b) and (11d). O

Corollary 1. If g(0) = 0, matrix A0(00) in Theorem 1 simplifies to

Ag(ﬂo) = [i1 e g, g -k ... g —iK]
L, 0 0 0 0 0 0
0 1 -1 0 0 0 0

|0 0 0 1 -1 0 o0 (16)
0 0 0 0 0 1 -1

3.2. The Gaussian observation model

Let us consider an M-dimensional Gaussian real vector y
with mean my=m(@) and covariance matrix Cy=C(6): y~

Nu(m(6).€(0)) and p(y: ) = p(y: m(6).C(6)) such that
~3(y-m(9)) 1 (8) (y-m(6))

.m(),c(9)) = & (17)
p(y:m(6).(¢)) @)
If we define
c:J:[c((;v")*%c(._f)f)*1 c(oo)”]_l, (18a)
m? = ¢(6)"'m(6') + C(6') 'm(6’) - C(6°) 'm(6°).  (18b)
9 = m(#) c() 'm(®) + m(®) (&) 'm(®)
_m(oO)Tc(aO)M(oO), (18¢)

then we can obtain the different components required to compute
the CRB (7) (see Appendix B for detailed derivation of MSZ|0(00)

and h(6°, @)) as
GO 4oy o]

(@) ]c(87)]

[Ms,(6°)],; = ~1,  (18d)

ac(6°)™!

o ) -
x(m(07) - m(#°)) (m(®) - m(e°))")

+m®) " (40)”" (m(67) — m(00))

;rr(“ﬂ” (c(e°) -
(.0, - :

(18e)

1 1790 2600°) o1 goy 2€(6°)
= —_— 18f
+2tr<C (6°) For © (6°) oy | (18D
where (18f) is the Slepian-Bangs formula [31, p.47].
In the following, for sake of legibility, @ denotes either the vec-

A

tor of unknown parameters or a selected vector value (00) =
T T

(@) (2°)

3.3. Asymptotically efficient estimators for the Gaussian linear
conditional observation model (g(6) =6)

A case of particular interest is the Gaussian linear conditional
signal model, also known as the mixed-integer model [1, Ch. 23],

y= Bw + Az +n, HNN)\/I(O,Cn),
T=[w',z'], w R, zezk, (19)

where the noise covariance matrix C, is known and the parame-
ter vector of interest is g(a) = 0. For instance, in GNSS RTK precise
positioning, the M -vector y contains the pseudorange and carrier-
phase observables, the K;-vector z the integer ambiguities, and the
real-valued Ky -vector @ the remaining unknown parameters, such
as, for example, position coordinates, atmospheric delay parame-
ters (troposphere, ionosphere) and clock parameters. The theory
that underpins the resolution of (19) in the maximum likelihood



sense is the theory of integer inference [2,3] [1, Ch. 23]. The search
for the MLE of a selected value 6 for the mixed-integer model
(19) can be cast as a minimization problem over mixed integer-real
parameters,

0 =arg min
weRKo | ze7Kz

y—]D)O”in, D=[B A (20)

A closed-form solution to (20) is not known, due to the integer
nature of z. Instead, a three-step decomposition of the problem is
typically considered [32], and the resulting minimization problems
are sequentially resolved as [33]

2

. 2 @
— D =|y-Df - 21
weRm,H;sZKz y 0“(:“ ‘y (Z) C ( a)
- 2

min ||z -z 21b
+min [z -z, (21b)

. ~ 2
+ min |0(2) - |, (21¢c)

where ®(z) = @ — c,;,,ici—l (z — z). The first term (21a) corresponds
to the MLE solution where z is treated as a real valued vector
(instead of an integer valued vector). The output of this estimate

0T =[@",z"] is referred to as float solution and its associated co-
variance matrix is

1 G Coz|  (mTe-1m) !
CG_[CM G =('G'D)

which, by exploiting the four-blocks matrix inversion expression
[28], leads to

-1
Co) =Co — Co2C;'Co = (B'C,'B) .

The second term (21b) in the decomposition corresponds to the
integer-least-square (ILS), for which an integer solution Z is found.
Finally, the third term (21c) is the fixed solution, consisting on en-
hancing the estimates @ upon the estimated integer vector Z

®=02)=b-C;;C(Z-7). (22)

The improvement in @ accuracy is due to constraining the float
solution z to a more restrictive class of estimators. Three differ-
ent classes of estimators have been developed for mixed integer
models [34], and for each one the optimal estimators have been
identified: i) the class of integer (I) estimators [35]; ii) the class of
integer-aperture (IA) estimators [36]; and iii) the class of integer-
equivariant (IE) estimators [37]. The first class is the most restric-
tive class. This is due to the fact that the outcomes of any esti-
mator within this class are required to be integers. Well-known
examples of estimators from this class are integer rounding (Zg),
integer bootstrapping (zg) and the optimal solution so-called inte-
ger least-squares (Z;s) which is the MLE. The most relaxed class
is the class of IE-estimators. These estimators are real-valued, and
they only obey the integer remove-restore principle. An important
estimator in this class is the best IE-estimator (Zg;) since it has
the smallest variance, even smaller than the variance of the float
solution. The class of IA-estimators is a subset of the IE-estimators
but it encompasses the class of I-estimators. The [A-estimators are
of a hybrid nature in the sense that their outcomes are either in-
tegers or real. It is also worth noting that distributional results
are readily available [25,38]. Interestingly enough, integer round-
ing, integer bootstrapping, and integer least-squares estimators (zg,
Zg, 7;5) are uniformly unbiased [39] under Gaussian additive noise
(19), leading to an uniformly unbiased estimator @ (22), since then
E[@] = E[®@] = . Thus the proposed CRBW,(O) (7) is a relevant LB
for the Gaussian linear conditional signal model (19) and

Co =Co@ = CRB,9(0). Z € (Zx. Z5. Zis).

Firstly, as [1, (23.54)] P(zis=12) > P(Zg =2) > P(Zzg = z), and [1,
(23.23)] . (lcir? OP@R =12z) =1, then
"Cn)—

lim G.= lim G =

lim G =0.
tr(Ca)—0 5 7 tr(Ca)—0 2 7

tr(Ca)—0
Thus, for any Z e {Z.2p.Z;5}. since [25, (29)] Coe) =Coq) +
€3G GGG,

-1
lim Czz = (B'C,'B) .

tr(C)—0 0@ (B'G.'B)

Secondly, since it is well known that adding unknown parameters

leads to an equal or higher CRB, then (25a)

Ca@ = CRB,(¢) = F,(6) = (B'G'B) .

Therefore, for any Z € {Zg, Zg. Z;s}.

lim CRB,(8) = (B7C,'B) ",

im Cg@ - tr(Ca)—0

tr(Ca)—0
which proves that Zg, zz and Z;s are asymptotically efficient es-
timators. Last, since Zg is also uniformly unbiased with a MSE
less than or at the most equal to the MSE of Z;5[37, (24)], it is an
asymptotically efficient estimator as well.

3.4. Generalizations and outlooks

The proposed CRB for mixed parameter vectors (7) has been de-
rived in the context of “standard” deterministic estimation prob-
lems for which a closed-form expression of p(y; ) is available. In
the context of “non standard” deterministic estimation problems
(see [40] and references therein), p(y; @) results from the marginal-
ization of an hybrid p.d.f. depending on both random (6 € R™)
and deterministic (@) parameters, ie., p(y:0) = [ap P(V. 0-10)d6r,
which is mathematically intractable and prevents from using the
proposed standard CRB (7). Fortunately, any LB deriving from the
MSB, as for instance (7), can be transformed into two variants,
namely the so-called “modified” LB [40, Section IlI] and “non-
standard” LB [40, Section IV] fitted to non-standard deterministic
estimation. Thus, two CRB variants for mixed parameter vectors
can be readily introduced in the context of “non standard” deter-
ministic estimation. Since the proposed CRB (7) can also be re-
garded as a CRB dealing with restricting the set of possible values
of some of the unknown parameters, namely the integer-valued
parameters, it is worth noticing that (7) can also take into account
continuous restriction on the set of possible values of the real-
valued parameters. When the continuous restriction is described
by a set of P equality constraints, f(@) =0 R, 1 <P <K, —1,
where the matrix 0f(@)/d@™ € RP*K» has full row rank (P), which
is equivalent to requiring that the constraints are not redundant,
it leads to the so-called constrained CRB [41-44]. In the case of
mixed parameter vectors, it amounts to replace the LCs (13) with
[29]

By (U(w)TW) (g/(0\) V) - g(é’))T

-
dg(0)
= ( P U(a))) ,
f (@)

where U(w) e Rk ®o=P) is 3 basis of ker { 522
to update the definition of Fww(O) (11a), H(@) (11b) and Ag(0)
(8) as follows: Fw|0(0) — U(w)TFww(a)U(w), H(#) — U(w)"H(0),

and Ag(0) = [ EQu() g(07) - 5(6°) .. 5(6°<) - 5(6°)].

, which leads




4. Example of Gaussian linear regression problem: GNSS RTK
precise positioning

In this section, we exemplify the aforementioned results with a
particular example of Gaussian linear conditional signal model, aka
the linear regression problem with mixed real and integer param-
eters, that is the GNSS RTK precise positioning problem.

4.1. Signal model for GNSS RTK precise positioning

RTK is a GNSS-based relative positioning method, where the
position of a target is determined with respect to a base sta-
tion of known coordinates [45]. RTK exploits the use of code
and carrier-phase pseudorange observations. Carrier-phase obser-
vations are characterized by a noise (typically) two orders of mag-
nitude lower than code pseudorange measurement, but they are
ambiguous by an unknown number of integer ambiguities. Thus,
the achievement of high precision positioning requires the esti-
mation of the dynamical parameters of the target along with the
unknown integer ambiguities within a process referred to as Inte-
ger Ambiguity Resolution (IAR) [33]. We assume that M + 1 satel-
lites are tracked simultaneously by the base and target GNSS re-
ceivers. First, single-differencing the observations, i.e., subtracting
the observations at the target from the base stations, eliminates
the atmospheric and satellite-related delays. Then, the process of
double-differencing, i.e., subtracting the single-difference observa-
tions with respect to a reference satellite, removes the effects of
receivers clock offsets. The resulting GNSS RTK model can be mod-
eled as y ~ Ny (m(6), Cn) with

0] B A
m(6) :D[z] D=[BA] B= [B} A= [0]
G = [c&’ cﬂ (23)

where y" = [¢", p"] is the observation vector, composed by the
double-difference carrier-phase and code observations, denoted as
¢. p < RM respectively, whose corresponding covariance matrices
are C, and C,. @ € R3 is the target receiver to base station base-
line vector; and z € ZM is the vector of unknown integer ambigui-
ties. The matrix B is the so-called geometry matrix which is com-
posed of the unit line-of-sight vectors pointing from the receiver
to each satellite. A is the diagonal matrix with the wavelength of
the carrier-phase measurements [32,46]. The covariance matrices
Cy and C,, are defined as C; = 20, TW-'T" and C, = 207TW-'T",
where o4 and o, are the zenith-referenced undifferenced phase
and code standard deviations [46], T=[Iy; —1y] is the double-
differencing matrix, W = diag(wy, ..., wpy,1) is a diagonal values
and w; is the satellite elevation-dependent weight. As it is formu-
lated, the RTK problem can be seen to fit the linear regression
problem discussed earlier in Section 4. In practice, the solution
for the mixed real and integer model (20) is generally solved via
the mixed real-integer regression ((21a)-(21c)). Thus, the RTK po-
sitioning model constitutes a practical example of Gaussian linear
regression with mixed real- and integer-valued parameters.

4.2. CRB for GNSS RTK precise positioning

As aforementioned, in the RTK problem, the Gaussian linear ob-
servation model reads

y= [ﬁ] =DO+n, n~Ny(0,Cq),B=[by...bg,],

A= [31 ...a[(l]. (24)

From the results presented in Section 3.1, we recall that the CRB,
referred to as CRBpegjineger N the following, is given by

R 0(6) = Ao(0)F(0) " A} (0)

F(a)z[Fwo(") H(0) ]

H(O)" Ms,,(0)

where A4(#) is given by (16), and we have to compute F(6) using
the general Gaussian model equations given in Section 3.2. Since
Cp does not depend on 6, (18a)-(18c)) become

€V = €y, mY = ;' (m(0') + m(67) —m(0)).
8l m(oi)TC;lm(Of) + m(01)TC;‘m(0f)
—m(G)TC,ﬂm(H),
[MS];; = e(m(8)-m(6')-m(8))"C;'m(6)+m(8) " C;'m(¢/)

These equations allow computation of the elements in the CRB for-
mula. Particularly, computing Fww(O) for 1 <k, k¥ < K, becomes

[Foro (6) ] = om(o) (. ,om(®) _ [chnl [bkl

8wk 8a)k/ bk bk/

such that

Fo(0) =B'C,'B. (25a)

i _ Cqyi-1s i il
Let 6/=0+(-1) 1Kw+L}.§1J and 60'=0+(-1) By o 551 |-

Then,

[MS,10(6)],, = e(m®)-m(E)-m(@)) G Im(@) m(®) & 'm() _

_ o(0-6-8/) D¢ D0+ (8) DTG D(8) _ g (25b)

and for 1 < k < K, we have that

) am(6) " .
1(0.0)], - ") ;1 (m(0) ~m(o)

T
- [‘;ﬂ (0 6).

which leads to
H(0) = BTCH1D[in+1 _in+1 . i[( —iK]. (25C)

It is worth remembering that relaxing the condition on the
integer-valued part of the parameters’ vector, and assuming that
both parameters are real-valued, @ € RX», z ¢ Rz, then the stan-
dard CRB is given by the inverse of the following FIM,

F9(0) =D'C,'D, (26)

and is referred to as CRBg, in the following.
4.3. Illustrative example

To illustrate the validity of the proposed LB, a realistic GNSS
RTK experiment was simulated. Particularly, the receiver-satellite
geometry considered is illustrated in Fig. 1 (M + 1 = 13 satellites),
under a wide range of precision levels for the undifferenced code
observations -preserving the noise of carrier-phase (¢) measure-
ments two orders of magnitude lower than code (p) observable -.
To evaluate the LS performance, the root (total) MSE (RMSE), ob-
tained from 10 Monte Carlo runs, for both 3D position and the
12 (M) integer ambiguities was considered as a measure of perfor-
mance.

Fig. 2 (left) shows the 3D position (@) RMSE over the standard
deviation of code observations o, as well as the square-root of
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Fig. 1. Skyplot of the simulated GNSS receiver-satellite geometry.

the corresponding (total) CRBs, with a zoom of the low noise re-
gion given in Fig. 2(right). First, notice that the standard LS (equiv-
alent to the MLE) RMSE, as expected, coincides with the CRBg, for
the range of tested o, values, which gives the ultimate achievable
performance with both code and phase observables if no integer
constraint is imposed for ambiguities z. Secondly, the ILS perfor-
mance, considering that the float position estimate is always cor-
rected by the output ambiguities of the IAR, clearly depends on the
noise level. Three regions of performance can identified: i) large
noise regime: the ILS coincides with both standard LS and CRBg,g,
which is clear from the ILS success rate shown in Fig. 3, where
we can see that for o, > 5 [m] a correct integer solution is never
found, then, on average, is as if no integer constraint was imposed;
ii) low noise regime: the IAR obtains the correct ambiguity solu-
tion with high probability, then the ILS coincides with the so-called
Correct ILS (which only considers the successful outputs of the IAR)
and the CRBgegjjinteger» Which shows that the ILS is asymptotically
efficient; and iii) threshold region: below the so-called threshold
point (in this case, o, > 0.1 [m]), the ILS RMSE departs from the
CRBRegljinteger and rises towards the CRBg,q, With even a small re-
gion where the RMSE overpasses the performance of a standard LS

104 . .
—1S
—ILS
) Correct ILS
10° == 'CRBReal/Intﬁger E
snnns CRBpew
B 100} >
N
=
~
10721
104 : . L . . . .
10° 10* 103 100 10 1 0.1 0.01
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100
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‘-ILS Success rate
60 -
S
40 +
20 +
0
5 4 3 2 1 <0.1

Fig. 3. Success rate for the integer parameter estimation of the RTK positioning
problem.

(in this case, for 1 < 0, < 10 [m]). This region describes the be-
haviour of the ILS, which abandons its asymptotic efficiency and
ambiguous errors occur due to the (partially) wrong estimation of
the integer ambiguities. The threshold point varies with the satel-
lite geometry, number of observations (i.e., number of frequencies
tracked) and observation noises. Therefore, the precise prediction
for the transition point remains an open challenge. Finally, if we
considered only the successfully fixed ambiguities, the Correct ILS
would coincide with the CRBgegjjinteger- HoWever, the correct solu-
tion to the ILS problem cannot be guaranteed outside the asymp-
totic region.

Regarding the CRBgegjnreger and CRBgeq comparison, it is clear
that considering the integer nature of a part of the vector to be
estimated has a strong impact on the achievable performance, and
therefore, highlights the interest of the estimating the so-called
integer ambiguities. As a byproduct, this highlights the impor-
tance of the LB proposed in this contribution. Obviously, restrict-
ing the set of possible values (integer instead of real) leads to a
LB such that CRBgegjjinteger < CRBgeg For this bound there exists
also a noise threshold region from where the real/integer parame-
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Fig. 2. Positioning RMSE and square-root of CRBs as a function of the standard deviation of observation noise o,.
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Fig. 4. Ambiguity RMSE and square-root of CRBs as a function of the standard deviation of observation noise o,.

ters bound meets the real parameters bound. This implies that in
such high noise region the integer constraint does not improve the
estimates of the real parameters.

Fig. 4 (left) shows the ambiguity (z) RMSE as a function of the
standard deviation of the code observations o, (recall that o is
always set two orders of magnitude lower than o, in these simu-
lations), as well as the square-root of the corresponding CRBs, with
a zoom of the low noise region given in Fig. 4(right). Again, we
can identify the same behaviour as for the position estimate: i)
the standard LS ambiguity estimation coincides with the CRBgey;
ii) in the high noise region, the IAR output (i.e., all ambiguities)
coincides with the real ambiguity case; and iii) when the success
rate increases (i.e, for 1 > o, > 0.2), the ILS ambiguity RMSE
tends to decrease until the point where all the ambiguities are
correctly fixed (0, < 0.2) and then the RMSE coincides with the
CRBRegi|integer = 0, being in the asymptotic efficiency region. The
Correct ILS is not shown because both RMSE and CRBgegjjineger are
equal to 0. Together with the previous results for the position esti-
mate, this shows the validity and interest of the mixed real/integer
bound, and the consistency of the results related to the ambiguity
fixing capabilities (i.e., success rate).

5. Conclusions

The main object of this contribution was the derivation of LBs
on the estimation of mixed real- and integer-valued parameter vec-
tors. A closed-form Cramér-Rao bound (CRB) for this problem was
provided, which leverages the general CRB expression as the limit-
ing form of the McAulay-Seidman bound. The general CRB expres-
sion for mixed parameter vectors was particularized for the Gaus-
sian observation problem. To show the validity of the bound de-
rived in the article, results for a representative carrier phase-based
precise positioning example were provided. It was shown that the
CRB expression is able to predict the RMSE performance of the
MLE, and that an asymptotically efficient estimator for mixed pa-
rameter vectors exists in linear regression model with known noise
covariance matrix.
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Appendix A. Proof of (5a)-(5c)

Let &g(y; 0°) = g(6°)(v) — g(6°). From Lemma 3 in [29], the set
of linear constraints

OT
(8(6° +i1d6;) - g(6°))"

Ey.p0 [vao (3“ {0}1”{)8; (v: 00)] = ; =V,

(2(6° + o) — 5(6°))”
(A1)

are equivalent to

T Ey oo (v {0) 7 )eg (v:6°) | =TV



where (weighted subtraction of the first constraint)

1 0 0 .. 0
—1/d6;  1,d6; 0 0
T = -1/d6, 0 1/d6, 0
: : 0o . 0
—1/d0 0 ... 0 1/d6¢
that is
1
d6,p(y:6°)
Eyﬁo . 8; (y, 00)
d6kp(v:6°)
OT
(g(0°+i1d9])—g(00))T
gt fen) #f)

= . ) (A.2)
(g(0°+ixd0,<)—g(0°) ) !
a0
Moreover, since

p(y;6°+i1d6 ) —p(y:6°)
o p(y:6°)

Ey.g | 1x

p(y:6°+ixdoy ) —p(y:0°)
dGKp(y:OU)

e8]

p y:;)“+i 6,
‘JTK(E‘“’”[ (P(v:”g) K)] - 1)
-0,

we can apply Lemma 2 in [29] to assert that (A.1) and (A.2) are
equivalent to

p(y:6°+i1d61 ) —p(y:6°)
d0,p(y:0°)

Ey.go : £g (¥:6°)
p(¥:6°+ixdO ) —p(y;0°)
doxp(y:6°)

(g(0°+i1d01)—g(0°) )T

2

(g(0°+in6,:)—g(0°) )T |

do

Q.E.D.
Appendix B. Derivation of (18a)-(18d)

Let us consider an M-dimensional Gaussian real vector y
with mean my=m(f) and covariance matrix Cy=C(f): y~
Nu(m(6),€(6)) and p(y;0) = p(y:m(6).C(6)) as in (17). The
derivation of the components M51|o and H, of the CRBglo(OO) in

(7)-(11d) is based on the following factorization property of the
Gaussian real pdf,

p(y: 0')p(v: ¢) 3 p(y: m(6"). C(6")) p(y: m(6/). C(67))
p(y:6°) p(y: m(6°).C(6°))
= [MS];; p(y;: C/m", CV), (B.1)

where
o/ =[c(@) " +e@) @) '] (B.22)
mY = C(6") " 'm(6") + C(¢') 'm(#') —C(6°) 'm(¢°).  (B.2b)
81 = m(6")"c(6) ' m(6") + m(¢') ' C(6') 'm(eV)

~m(6°) "c(6°) 'm(¢°), (B.2¢)
S}, - [C1ICE)| 3 my comisr] (B.2d)

|c(67)[|c(®)]
which suggests a breakdown into items ([MSZ|9(00)]iJ, h(6°, )) de-

pending only on the selected value 09 and a couple of test points
{66} 791*%%7] a5 detailed in (11b)~(11d). Indeed, denoting

2ls)] = [ 2wp(y: . cV)ay. (B3a)
then
. 0 .9
IMS], = By P(v. O) P(v. 0)
p(v: 6°) p(y: 6°)
— [Ms],, / p(y: Cim?, €V)dy (B.3b)
. dInp(y: 0') p(y: 0') p(y: ¢)
h(6',07) = Ey.g0
( ) y; 0 |: 90 p(y; 00) p(y; 90)
| dlnp(y: 6
= [MS];; By |:8(0 )i| (B.3¢)

Therefore in the following we consider the representation y ~
Nu(CUmiJ, ), where CU, mJ are given by (B.2a)-(B.2d). To
compute the missing expectations, let us recall that p(y:0) =

e*%d)(yﬁ)/(mM |C(0)|) where q’)(y; 0) :tr(C(O)_]C/(O\)) and

—

C(0)=(y—m(6))(y- m(o))Tand that

O oy Ly, 210
_ _”<ac§gz c(o)).
Then,
W0y c(0) - m(8) + (s m(6)
<O (y -~ m (). (B4)
B.4
8ln§0(:' 0) _ ;tr<3cggk)] (C(O) C/(0\)>) (B.5)



From (B.6), we have that

J[omp(y:0)] 1 [ac)” .
By ae(k |- 2 zgez (<) Eyj[c((’)])
om(0) .,

+%k) c(®) " (Eiyl-m(9)), (BT
where
5[CO)] =+ () -m@) (1 -m(e)) . ®
Finally,
[MS];; = Iclgl;|)|lcl(c0(00)l|)| Aimems] (B2

(B.9a)

[h(0i, oj)]k = [MS],-qj[oc(O")]k, (B.9D)

where

%tr(ac("' (c(0)) — ) - ac(e)

)-
WW—M%@W“(%D
& SCONCEETT)

[«()], =

(
Moreover, since €% = (01) md = (01) ! (01), COimY% =
)

m(#)) and 8% =m(6 ) (0 1m( 7), then [MS]y;=1, and
h(6°.07) = (6.
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