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A B S T R A C T

The paper proposes a framework for unification of the penalized least-squares optimization
(PLSO) and forward-backward filtering scheme. It provides a mathematical proof that forward-
backward filtering (zero-phase IIR filters) can be presented as instances of PLSO. On the basis
of this result, the paper then represents a unifying approach to the design and implementa-
tion of forward-backward filtering and PLSO algorithms in the time and frequency domain. A
new block-wise matrix formulation is also presented for implementing the PLSO and forward-
backward filtering algorithms. The approach presented in this paper is particularly suited for
understanding the task of zero-phase filters in the time domain and analyzing PLSO algorithms
in the frequency domain. In this paper, we show that the task of a zero-phase digital Butterworth
filter in the time domain is to fit the signal with impulse train and penalties on the derivatives of
the fitted model. For a zero-phase digital Chebyshev filter, a linear combination of derivatives
of the model is used in the penalty term.

1. Introduction

Filtering/smoothing is a major branch of signal processing, based on prior assumptions on the signal and noise

structure, with the objectives of attenuating the noise and recovering the underlying signals. Therefore, signal filtering

and smoothing have been the subject of many research works. In this paper, we present a unifying framework for a

category of zero-phase filters and show that they can be presented as instances of penalized least-squares optimization

(PLSO).

PLSO offers a methodological approach for solving problems in a wide variety of application domains where the

problem is described as the minimization of a cost function, consisting of the sum of a data fit term and penalty terms.

It has been widely used in application areas like control [5, 11], economics and finance [10], communications [49],

signal and image processing [7, 20, 21, 17], compressed sensing [14], statistics [44], machine learning and computer

vision [3, 48, 50], to name just a few. In functional data analysis, PLSO is widely used for data smoothing, where the

penalty terms are connected to fitting data by a linear differential equation [32]. Total variation (TV) regularization

denoising is an example of the PLSO algorithm where the penalty term is defined by the simplest differential equation.
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Zero-phase Filtering: A PLSO Algorithm

Introduced first by Rudin, Osher, and Fatemi for imaging problems [33], TV has been widely modified and used in

many applications such as clustering and segmentation [7, 20, 21, 9]. An improved TV algorithm denoted as higher

degree TV (HDTV) introduced in [20], has been extended in [21] to higher dimensions and to a wider class of penalties

based on higher degree differential operators. HDTV has received significant attention by the researchers in the field

of signal and image processing in the past two decades [20, 17, 9, 8, 1, 30] due to its properties in recovered signal,

especially preserving fast transitions and discontinuities in the signal while preventing oscillations. In [42], Unser et

al. proposed algorithms for designing recursive regularized filters with first and second difference operations. In [43],

the authors presented a mathematical framework to justify the use of splines in signal processing applications and

studied the relation between smoothing splines and Wiener filter. Recently, we have proposed an improved smoothing

filter (i.e., smoothness priors or quadratic variation) using bilinear transform [23].

Recursive digital filters are the simplest usual method for signal denoising. They are mainly used to extract a

signal within a predetermined frequency band. Infinite impulse response (IIR) digital filters can be designed from the

classical analog filters (e.g., Butterworth, Chebyshev, elliptic and etc.) [28, 29, 39, 40]. IIR digital filters, however,

have nonlinear phase, which implies time-shifts varying according to the frequency. Hence, at the filter output, the

summation of the frequency components with different time-shifts generates signal distorsions. This issue is par-

ticularly important in biomedical signal processing where the signal patterns are often considered by clinicians and

biomedical engineers as indexes of some underlying pathologies. For example, the ST-segment in an electrocardio-

gram (ECG) signal can be analyzed for detecting ischemia and intrapartum fetal monitoring, and the peak-and-wave

pattern on an EEG tracing can be considered as a marker of epilepsy. Therefore, the filtering procedure should not

introduce any form of morphological changes that can mimic pathological changes. To avoid this risk, in biomedical

applications, the designed filters should have linear phase frequency response at least in the signal frequency range.

A common way to bypass problems related to a nonlinear phase response is to filter the noisy data with one causal

filter in the forward time direction, then time-reversing the output of that process and filtering it again with the same

filter and time reversing it again [38, 16]. The procedure is known as forward-backward filtering. It has applications

in zero-phase filtering and the implementation of non-causal filters.

In this paper, we propose a new framework for implementing the zero-phase filters. The contribution of this paper

is to present a framework for the unification of forward-backward filtering and PLSO algorithms. We especially prove

that, in the time domain, a zero-phase filter can be represented as a least-squares data smoothing with a delta impulse

train and a penalty on the derivatives of the fitted model. The proposed framework can find various applications in sig-

nal processing. As an example, we use it for appropriate cutoff frequency selection of zero-phase filters and frequency

analysis of PLSO algorithms. The paper also shows that zero-phase filters and PLSO are special cases of the optimal

Wiener filter: they can be formed as an optimal Wiener filter for a random process obtained from an autoregressive
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(AR) model driven by input white (innovation) noise in presence of white observation noise. Zero-phase filters and

PLSO algorithms such as smoothness priors and quadratic variation denoising2 algorithms, Butterworth and Cheby-

shev are optimal only when the signal is a random process obtained from a specific AR model driven by input white

noise in presence of white observation noise. In other cases, when the noises are not white (colored spectral noises),

the paper suggests that the regularization factor or cutoff frequency should be a function of the power spectral density

(PSD) of noises.

2. Background

Let us consider a noisy observation y(t), of an original signal x(t), modeled as

y(t) = x(t) + v(t), (1)

where v(t) is the additive noise which can be either white or colored random process signal. We assume that the noise

v(t) and signal x(t) are uncorrelated. Further, we consider x(t) as a signal with a decaying Fourier transform X(!),

i.e.,

∫

∞

−∞
|X(!)|(1 + |!|n)d! <∞

which implies that x(t) is globally n times continuously differentiable (see [25], Theorem 2.5). In order to digitally

process the signal, one needs to consider yk = y(kTs), the discrete-time samples of y(t), xk the sampled desired signal

and vk the sampled observation noise:

yk = xk + vk, k = 1,⋯ , L. (2)

We particularly consider the reconstruction procedures that recover the signal by one of the following approaches: 1)

using zero-phase digital filters (obtained by forward-backward filtering, instead). 2) by solving a PLSO problem. The

IIR digital filters can be approximated using well-formulated and well-understood classical analog filters [41, 40].

The most widely used classes of frequency-selective continuous-time filters are those referred to as Butterworth,

Chebyshev, and elliptic filters [29, 40].

Let us consider a frequency-selective continuous-time (CT) filter defined with magnitude-squared characteristics,

2Note that quadratic variation regularization is not equivalent to total variation regularization as the former is a linear smoothing filter and the
latter is a non-linear smoothing filter.
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|Hn(!)|2 [40, chapter 2]:

|Hn(!)|2 =
1

1 + �2Fn(!)F ∗n (!)
, (3)

where n is the order of the filter, ∗ denotes the conjugate operator and Fn(!) is a polynomial function in !:

Fn(!) =
n
∑

i=0
�i!

i, (4)

where �i are some constants. For Butterworth filter, Fn(!) is monomial:

FBn (!) = !
n,

where the superscript B stands for Butterworth. For Chebyshev filter, it is as [40]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

FC0 (!) = 1

FC1 (!) = !

FCn+1(!) = 2!F
C
n (!) − F

C
n−1(!)

(5)

Considering (3) as the base equation for the filter derivation (i.e., G(!) = |Hn(!)|2), the frequency response is real so

the phase is zero. In the Fourier domain, the output of the zero-phase filter G(!) is expressed as:

X̂(!) = G(!)Y (!) = Hn(!)H∗
n (!)Y (!) (6)

Under suitable conditions (Dirichlet condition), x is determined by x̂ via the inverse Fourier transform of (6):

x̂(t) = ℎn(t) ∗ ℎn(−t) ∗ y(t) (7)

where ∗ denotes the convolution operator. Following (7), the impulse response of the filter is ℎn(t) ∗ ℎn(−t). Since

the impulse response is even (i.e., the transfer function is real), it is a zero-phase non-causal filter. Therefore, the

standard approach to design (7) is obtained by the following procedure [28, 29]: a) polynomial root finding and iden-

tification of the impulse response of the causal continuous-time filter, ℎn(t), b) discretizing the impulse response using

a transform method (e.g. bilinear or impulse invariance transform), c) applying forward filtering backward smoothing

to avoid nonlinear phase response. The forward filtering is suitable for online filtering, however, as discussed in the

introduction, it is not linear-phase which limits its application to special applications where phase distortions are of
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less significance. In other applications which demand no phase distortion, backward smoothing is applied after for-

ward filtering. In the following sections, we provide a mathematical proof that zero-phase forward-backward filtering

can be represented as instances of PLSO problem. Consequently, the optimization problem can be applied directly

in the time domain. As a result, there is no need for identifying the causal continuous-time impulse response in the

frequency domain.

3. Zero-phase filtering: a PLSO problem

In the previous section, the standard approach for zero-phase digital filter design was reviewed. However, it needs

to resort to the frequency domain followed by a forward-backward filtering scheme. In this section, we show that

many classical filter design schemes have a constrained least-squares interpretation. Therefore, the zero-phase filter

can be directly designed in the time domain without resorting to the frequency domain. We first state the following

theorem.

Theorem 1. Any zero-phase filter with frequency response defined by (3) can be presented as an instance of the
following PLSO problem:

xopt(t) = argmin
x(t)

‖y(t) − x(t)‖2 + � ‖
‖

fn(t) ∗ x(t)‖‖
2 , (8)

where � is the regularization factor, ‖⋅‖2 denotes the Euclidean norm and fn(t) is the inverse Fourier transform of (4):

fn(t) =
n
∑

i=0
�iD

i�(t) (9)

The differentiation operator Di, which represents di∕dti is the i-th derivative and �(t) is the Dirac delta function.

To prove the theorem, first we state the following lemma.

Lemma 2. If  = ‖

‖

fn(t) ∗ x(t)‖‖
2, then )

)x(t) = 2fn(−t) ∗ fn(t) ∗ x(t).

Proof

 can be expressed as

 = ∫

∞

−∞

[

∫

∞

−∞
fn(u − �)x(�)d�

]2
du

The derivative of  with respect to x is equal to

)
)x(t)

= 2∫

∞

−∞
fn(u − t)∫

∞

−∞
fn(u − �)x(�)d�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
fn(u)∗x(u)

du (10)
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Defining  (t) = fn(t) ∗ x(t), (10) is expressed as

)
)x(t)

= 2∫

∞

−∞
fn(u − t) (u)du

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
fn(−t)∗ (t)

= 2fn(−t) ∗  (t)

Substituting  (t) with fn(t) ∗ x(t) we find

)
)x(t)

= 2fn(−t) ∗ fn(t) ∗ x(t),

which proves the Lemma.

The optimal solution of (8) is found by setting its derivative with respect to x to zero, which leads to

−2
[

y(t) − xopt(t)
]

+ 2�fn(−t) ∗ fn(t) ∗ xopt(t) = 0,

where xopt denotes the optimal solution of (8). After some simplification, we find

xopt(t) + �fn(t) ∗ fn(−t) ∗ xopt(t) = y(t) (11)

Taking the Fourier transform of (11), we find

Xopt(!) =
1

1 + �Fn(!)F ∗n (!)
Y (!) (12)

The frequency response of (12) (i.e., the solution of (8)) is

G(!) = 1
1 + �Fn(!)F ∗n (!)

(13)

Comparing (13) and (3), we find that they are equivalent if � = �2. Hence, we conclude that the zero-phase filter

transfer function is equivalent to the transfer function related to the solution of the PLSO problem defined by (8). It

means that designing a zero-phase filter can be viewed as solving a PLSO problem.

On the other hand, by substituting (9) in (8), any zero-phase filter can be represented by the following optimization

problem:

xopt(t) = argmin
x(t)

‖y(t) − x(t)‖2 + �2
‖

‖

‖

‖

‖

n
∑

i=0
�iD

ix(t)
‖

‖

‖

‖

‖

2

. (14)
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Denoting p(t) =
∑∞
m=−∞ �(t − mTs), the impulse train, with the sampling period Ts, the discrete time signal xp(t),

sampled at sampling period Ts, is deduced of x(t) as [28]:

xp(t) = x(t)p(t) =
∞
∑

m=−∞
x[mTs]�(t − mTs)

Accordingly (1) is expressed in discrete time (DT) domain as

yp(t) = xp(t) + vp(t)

xp(t) can also be represented as a linear combination of these basis functions:

xp(t) =
∞
∑

m=−∞
cm�m(t),

where cm = x[mTs] and �m(t) = �(t−mTs). Therefore, the smoothing problem defined in (14), changes to the estimate

of the parameters cm:

copt,m = argmin
cm

‖

‖

‖

‖

‖

yp(t) −
∞
∑

m=−∞
cm�m(t)

‖

‖

‖

‖

‖

2

+ �2
‖

‖

‖

‖

‖

n
∑

i=0
�iD

i
∞
∑

m=−∞
cm�m(t)

‖

‖

‖

‖

‖

2

(15)

where copt,m = xopt[mTs]. It means that the task of a zero-phase filter in the time domain is to smooth the sampled

signal with a penalty on the derivatives of the model. It can be rewritten as

xopt(t) = argmin
xp(t)

‖

‖

‖

yp(t) − xp(t)
‖

‖

‖

2
+ �2

‖

‖

‖

‖

‖

n
∑

i=0
�iD

ixp(t)
‖

‖

‖

‖

‖

2

4. An equivalent Wiener smoother for zero-phase filters

In the previous section, we showed that the zero-phase filter can be viewed as a PLSO problem. In this section,

we show that the zero-phase filter and PLSO are both special cases of the optimal Wiener filter. To this purpose, we

consider the linear state-space model corresponding to (8) which can be represented as [24]

fn(t) ∗ x(t) = w(t)

y(t) = x(t) + v(t)
(16)

where v(t) is known as the observation noise, w(t) is an additive zero-mean random term and known as the process

(model) noise. The model is depicted in Fig. 1 with black color. Consider the problem of optimal (Wiener) filtering in
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1
Fn(!)

w(t) x(t)w(t) y(t)

v(t)

+ 1
1+�2Fn(!)F ∗n (!)

xopt(t)

Figure 1: An equivalent Wiener filter structure for zero-phase filters defined by (3).

which the aim is to find a filter gW (t) such that its output, xopt(t)matches x(t) "as best as possible" in the least-squares

sense:

xopt(t) = gW (t) ∗ y(t) ≈ x(t).

The filter structure is shown in Fig. 1 via blue color. The optimum Wiener filter is [47]

GW (!) =
Sww(!)

Fn(!)Svv(!)F ∗n (!) + Sww(!)
(17)

where Sww(!) and Svv(!) are the PSD of w and v, respectively. Equation (17) can be written as

GW (!) =
1

1 + Svv(!)
Sww(!)

Fn(!)F ∗n (!)
. (18)

Consider a specific case where the observation and process noises are Gaussian white noises with variances �2v and

�2w, respectively. In this specific case, (18) can be expressed as

GW (!) =
1

1 + �2v
�2w
Fn(!)F ∗n (!)

. (19)

Comparing (19) with (3) and (13), we conclude that the zero-phase filters and PLSO are special cases of Wiener filter

when the parameters are chosen as

� = �2 =
�2v
�2w
. (20)

It means that the zero-phase filters and PLSO algorithms are optimal when the signal is a random process obtained

from a specific AR model driven by input white noise in the presence of white observation noise. In other cases, when

the noises are not white (colored spectral noises), (18) suggests that the regularization factor should be a function of
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the PSD of noises:

� =
Svv(!)
Sww(!)

. (21)

5. A block-wise matrix formulation for zero-phase filter

As discussed above, the standard solution for designing zero-phase filter needs to resort to frequency domain. In

section 3, we showed that the zero-phase filter can be viewed as a PLSO problem. In this section, we present a block-

wise matrix formulation for designing zero-phase filters directly in the time domain. Two transform methods, namely

step invariance (or ZOH-) transform [26, 35] and bilinear transform are employed to the design of the procedure. In

DT, (16) is expressed as [24]

fn,k ∗ xk = wk

yk = xk + vk
(22)

The desired signal xopt,k can be obtained by solving the following PLSO problem:

xopt,k = argmin
xk

L
∑

j=1

(

yj − xj
)2 + �

L
∑

j=2

(

fn,j ∗ xj

)2

(23)

5.1. Step invariance transform based matrix formulation

The step invariance technique is an extension of the impulse invariance transform method, in which the response

of the analog system is obtained by assuming that the input signal is approximated by a sequence of steps.

Lemma 3. For any function fn(t) defined by (9), a discrete form of fn(t) using step invariance is

fn,k =
n
∑

i=0
�i�k−i, (24)

where �i = (−1)i
∑n
j=i �j

(j
i

)

and �k−i is the shifted delta function.
Proof of Lemma 3: see Appendix 8.1.

Now, putting (24) in (23) yields

xopt,k = argmin
xk

L
∑

j=1

(

yj − xj
)2 + �

L
∑

j=2

( n
∑

i=0
�ixj−i

)2

Denoting x = [x1, ..., xL]T , y = [y1, ..., yL]T , the previous equation becomes:

xopt = argmin
x

‖y − x‖2 + � ‖
‖

Λnx‖‖
2 , (25)
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where Λn is

Λn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�n … �1 �0 0 … 0

0 �n … �1 �0 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ �0 0

0 … 0 �n … �1 �0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

By setting the derivative of (25) with respect to x equal to zero, we get the following matrix equation:

(I + �ΛTnΛn)xopt = y,

where ΛTn denotes the transpose of the matrix Λn. If (I + �ΛTnΛn) is invertible, the optimal solution is

xopt = (I + �ΛTnΛn)
−1y (26)

We refer to (I + �ΛTnΛn)
−1 as the smoothing matrix using step invariance.

5.2. Bilinear transform based matrix formulation

In this section, the bilinear transform [12] is employed to implement zero-phase filters directly in the DT domain.

We first make the following observation:

Lemma 4. A discrete form of fn(t) using bilinear transform is described with the following linear time invariant (LTI)
system:

n
∑

i=0

(

n
i

)

fn,k−i =
n
∑

i=0

i�k−i, (27)

where the parameters 
i are determined from the following system equation:

n
∑

i=0

iz

−i =
n
∑

i=0
�i

(

2
Ts

)i(n
i

)

(1 − z−1)i(1 + z−1)n−i

Proof. See Appendix 8.2.

Equation (27) can be expressed as

(z)fn,k = Γ(z)�k, (28)
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where z−ifn,k = fn,k−i and

(z) =
n
∑

i=0

(

n
i

)

z−i and Γ(z) =
n
∑

i=0

iz

−i

If (28) is causal and invertible, then it can be represented by the following AR model [31, Chapter 2]:

fn,k =
Γ(z)
(z)

�k (29)

Convolving both sides of (29) with xk yields

fn,k ∗ xk =
Γ(z)
(z)

xk (30)

Putting (30) in (23), we have

xopt,k = argmin
xk

L
∑

j=1
(yj − xj)2 + �

L
∑

j=1

(

Γ(z)
(z)

xj

)2

, (31)

which can equivalently be represented in the following optimization problem [22]:

xopt = argmin
x

‖Υn(y − x)‖2 + �‖Γnx‖2 (32)

The optimal solution of (32) is

xopt = (ΥTnΥn + �Γ
T
n Γn)

−1ΥTnΥny, (33)

where Γn is

Γn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝


n … 
1 
0 0 … 0

0 
n … 
1 
0 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ 
0 0

0 … 0 
n … 
1 
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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and Pascal’s triangle gives us the elements of Υn for the expanded binomial of the form (1 + z−1)n:

Υn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(n
0

) (n
1

)

…
(n
n

)

0 … 0

0
(n
0

) (n
1

)

…
(n
n

)

⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱
(n
n

)

0

0 … 0
(n
0

) (n
1

)

…
(n
n

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Υn can also be defined as the Toeplitz matrix form of dn where dn is defined by the following recursion:

⎧

⎪

⎨

⎪

⎩

d1 ≜ (1, 1) n = 1

dn = dn−1 ∗ d1 n > 1

We refer to (ΥTnΥn + �Γ
T
n Γn)

−1ΥTnΥn, as the smoothing matrix using bilinear transform. In the next section, several

applications of the proposed framework are presented.

5.3. An FIR filter

The smoothing matrices (ΥTnΥn + �Γ
T
n Γn)

−1ΥTnΥn and (I + �ΛTnΛn)
−1 are symmetric, positive definite. Using

Cholesky decomposition, they can be decomposed as the product LLT where L is a lower triangular matrix. Of course,

LLT is symmetric too, i.e., LLT = LTL. Consequently, (26) and (33) can be written as

xopt = LTLy (34)

Substituting LT with JLJ, (34) can be expressed as

xopt = JLJLy (35)

where J is the exchange matrix, a “row or column-reversed” version of the identity matrix. The proposed smoothing

filters can be implemented as a combination of a forward filtering the input signal y with the FIR filter L (as L is a

lower triangular matrix) and backward filtering with the same filter. The forward filtering output at time k is obtained

as

xfopt,k =
k−1
∑

i=0
L(k, k − i)yk−i, (36)

where superscript f stands for forward filtering. The proposed FIR filter has the advantage to be inherently stable.
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6. Applications

The proposed framework can find various applications in engineering science, such as appropriate cutoff frequency

selection for zero-phase filters, frequency analysis of PLSO algorithms, band-pass smoothing filter, and zero-phase

Chebyshev filter design.

6.1. Precise cutoff frequency selection

In many applications of signal processing such as ECG denoising, LTI filters are still the standard choice for ECG

system front-ends, as they impose weak assumptions on the signals [46]. The performance of these filters depends

on the choice of cutoff frequency. However, in actual applications, the cutoff frequency is unknown. Therefore, an

efficient algorithm for cutoff frequency selection remains an important and challenging issue. In this section, we

consider a zero-phase Butterworth filter and present an efficient algorithm for selecting its cutoff frequency. Although

the proposed technique is presented for Butterworth cutoff frequency selection, its principles are easy to extend to

other zero-phase filters. Recall that the original Butterworth filter of order n is defined by [28]

|HB
n (!)|

2 = 1
1 + ( !!c

)2n
. (37)

According to Theorem 1, by setting � = 1∕!2nc , FBn (!) = !n and fBn (t) = Dn�(t), the zero-phase Butterworth filter

can be designed as

xopt(t) = argmin
x(t) ∫ [y(�) − x(�)]2 d� + �∫

[

fBn (�) ∗ x(�)
]2 d�. (38)

Therefore, the appropriate choice of cutoff frequency is related to the optimal value of regularization factor �. The

discrete Butterworth filter is also the solution of the following PLSO

xopt,k = argmin
xk

L
∑

j=1

(

yj − xj
)2 + �

L
∑

j=1

[

fBn,j ∗ xj
]2
, (39)

where, fBn,j can be obtained either with step invariance or bilinear transform. Note that FBn (!) = !n ant its Laplace

transform is FBn (s) = s
n. If we use bilinear transform, then we have

FBn (s) = s
n ⟹ FBn (z) =

Γ(z)
(z)

=
(

1 − z−1

1 + z−1

)n
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According to (28)-(32), we can express (39) in the following matrix notation

xopt = argmin
x

‖

‖

Υn(y − x)‖
‖

2 + � ‖
‖

ΓB,nx‖‖
2

The optimal solution is

xopt = (ΥTnΥn + �Γ
T
B,nΓB,n)

−1ΥTnΥny, (40)

where the operator Υn was defined before and ΓB,n is the matrix:

ΓB,n =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�Bn … �B1 �B0 0 … 0

0 �Bn … �B1 �B0 ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ �B0 0

0 … 0 �Bn … �B1 �B0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where the entries �Bi are the coefficients of the binomial expansion of (1 − z−1)n:

�Bi = (−1)
i
(

n
i

)

.

ΓB,n can also be defined as the Toeplitz matrix form of bn where bn is defined by the following recursion:

⎧

⎪

⎨

⎪

⎩

b1 ≜ (1, −1) n = 1

bn = bn−1 ∗ b1 n > 1

We refer to (ΥTnΥn + �Γ
T
B,nΓB,n)

−1ΥTnΥn, as the n-th order Butterworth smoothing matrix using bilinear transform3.

6.2. Computation of the hyperparameter �

The bi-criterion problem discussed in [4, Ch. 6] can be used to find the optimal regularization factor, �opt. The

bi-criterion problem is

minimize (w.r.t R2+) (‖‖
‖

Υn(y − xopt)
‖

‖

‖

2
, ‖‖
‖

ΓB,nxopt
‖

‖

‖

2
) (41)

The optimal regularization factor, �opt, is found using L-curve which is obtained by plotting ‖

‖

‖

Υn(y − xopt)
‖

‖

‖

(the norm

of the residual term) versus ‖‖
‖

ΓB,nxopt
‖

‖

‖

(the norm of the regularized term) as � varies over (0,∞). Note that � is used

3When step invariance is used to implement the discrete Butterworth filter, (z) = 1 and consequently Υn = I .
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to compute xopt. As a primarily example, we use the procedure for a specific case (record 119m from the PhysioNet

Computing in Cardiology Challenge 2014 [2]). Fig. 2 shows the original ECG (blue color) and its noisy signal (red

color) with SNR = 5 dB. The L-curve corresponds to the noisy ECG plotted with green color. The � corresponding to

the corner of the curve (i.e., the point at which ‖‖
‖

Υn(y − xopt)
‖

‖

‖

+‖‖
‖

ΓB,nxopt
‖

‖

‖

is minimized) can be chosen as the optimal

regularization factor. We denote this value with �opt. A motivation for choosing � = �opt is that it seeks to balance

the regularized term and the residual error in the estimated signal xopt due to noises in the measurement y. In other

cases when � is small, then the estimated signal xopt of (40) is of huge norm and is likely to be contaminated by the

propagated error that stems from noises in y. Conversely, when � is large, the estimated signal is a poor approximation

of a solution of xopt = y and the associated residual error term is of large norm. We refer the interested readers to

[18, 19]. Now, the optimal regularization factor can be used to find the appropriate cutoff frequency in DT. To this

purpose, we need to find the relation between cutoff frequency and regularization factor. In order to find the relation

between them, we write (40) in the following form [22]:

xopt,k = (ℎn,−k ∗ ℎn,k + �bn,−k ∗ bn,k)−1 ∗ ℎn,−k ∗ ℎn,k ∗ yk (42)

The impulse response of (42) is obtained by substituting yk with �k [22]. The frequency response is obtained by taking

the Z-transform of impulse response. Hence, the impulse and frequency responses are4

gn,k = (ℎn,−k ∗ ℎn,k + �bn,−k ∗ bn,k)−1 ∗ ℎn,−k ∗ ℎn,k

GBTn (z) =
(1 + z−1)n(1 + z)n

(1 + z−1)n(1 + z)n + �(1 − z−1)n(1 − z)n

, (43)

where the “BT ” superscript stands for “Bilinear Transformation”. Eq. (43) becomes in the Fourier domain

GBTn (ejw) = 1
1 + � tan2n !2

(44)

The optimal value of regularization factor corresponding to −6 dB cutoff frequency fc is found by setting (44) equal

to 1∕2, which leads to

�opt =
1

tan2n !c2
. (45)

4Please note that Hn(z) = (1 + z−1)n and bn(z) = (1 − z−1)n.
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Figure 2: A segment of original ECG, record 119m from MIT-BIH Atrial Fibrilation Database [2] (blue), noisy ECG (red),
the optimal trade-off L-curve using the proposed approach (green) and denoised ECG using zero-phase Butterworth
filter (black).

Equation (45) shows that the optimal regularization factor is related to cutoff frequency. Finally the appropriate cutoff

frequency is found by

fc =
fs
�
arctan( 1

2n
√

�opt
). (46)

where fs = 1∕Ts. The denoised ECG using zero-phase Butterworth filter with the optimal cutoff frequency is plotted

in Fig. 2 with black color. In the following the Butterworth filter is employed to ECG signal denoising and the

proposed approach is used to find the optimal cutoff frequency. We show that the L-curve can be used for precise

cutoff frequency selection.
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6.3. Experimental result

In order to evaluate the performance of the proposed method, we tested the approach over the PhysioNet PTB

Diagnostic ECG Database [2]. The database contains 549 records from 290 subjects. Each record consists of twelve

conventional ECG leads plus the three Frank’s ones, sampled at 1kHz with 16-bit resolution. The noise was added to

the original signals with varying SNR (from 0 to 25 dB). Then the ECG signals were reconstructed using Butterworth

filter. We compared the Butterworth filter on this problem in two cases. First when bilinear transform is used to

Butterworth filter design. In this case, we compare the optimal regularization factor obtained using L-curve and the one

that minimizes the reconstruction error. Secondly, we compare bilinear transform based approach and step invariance

based approach for Butterworth filter design. In this case, the L-curve is used to find the optimal regularization factor

for both approaches. To quantify the performance of the methods, we employed noise to signal ratio (NSR), i.e., the

ratio between the power of the reconstruction error and the power of the original signal, given by [22]

NSR =

√

√

√

√

√

∑

k
(

xk − xopt,k
)2

∑

k x
2
k

.

In the first experiment, we employ Butterworth filter (estimated using bilinear transform) to ECG denoising with two

methods for cutoff frequency selection. First we choose the cutoff frequency that minimizes the NSR as optimal

cutoff frequency. As an example, in Fig. 3(a), we plot the NSR variation against the choice of the cutoff frequency for

different SNR. The curves are similar to the L-curve. Second, we use L-curve to find the optimal cutoff frequency.

The mean of NSR versus different input SNRs achieved over the ECG segments are plotted in Fig. 3(b). Compared

to the one that minimizes the NSR, the results are close when the cutoff frequency is approximated using L-curve.

Finally, we compare step invariance and bilinear transform for designing Butterworth filter for ECG denoising.

For both methods, we employed the L-curve to find the optimal regularization factor, i.e., the cutoff frequency. In Fig.

4, we plot the mean values of NSR as a function of the input NSR for Butterworth filter designed using these methods.

Clearly, the two design methods give very good and similar results, even if the bilinear transform provides a slightly

better signal reconstruction, especially for high input SNR than the step invariance method.

In the last part of our experiments, we employ the proposed FIR filter (34) presented in Section 5.3 for the design

and implementation of an FIR Butterworth filter. We compare our proposed FIR Butterworth filter with the traditional

implementation of IIR Butterworth filter (using the Matlab command: filter). The NSRs obtained using both methods

are reported in Figure 5(a). Figure 5(a) shows that the obtained NSR for the proposed FIR Butterworth is less than the

obtained NSR for the traditional IIR Butterworth. Since the causal filters induces delay, we also compared them using

cross-correlation, where a good reconstruction is related to a cross-correlation close to 1. The results (Fig. 5(b)) show

that the proposed FIR Butterworth filter outperforms the traditional IIR Butterworth filter.
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Figure 3: Comparing the optimal regularization factor obtained using L-curve and the one that minimizes the recon-
struction error. a) The variation of NSR as a function of fc . b) Mean values of NSR for signal reconstruction by
Butterworth, using the cutoff frequency that minimizes the NSR (blue color) and the one that is obtained using L-curve
(yellow color).

6.4. Frequency analysis of PLSO algorithms

Let us consider the PLSO problem defined by (8). Its solution depends on the regularization factor which can be

found using L-curve function. However, in some cases, we need to extract a signal within a predetermined frequency

band. In this specific case, a closed-form expression can be found for the regularization factor using the frequency

response of the PLSO as discussed in the following. According to (13), we have

G(!) = 1
1 + �Fn(!)F ∗n (!)

(47)

The optimal value of the regularization factor, corresponding to −6 dB cutoff frequency !c , is found by setting (47)

equal to 1∕2, which leads to

�opt =
1

Fn(!c)F ∗n (!c)
. (48)
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Figure 4: Mean values of NSR for signal reconstruction by Butterworth using bilinear transform and stepinvariance, as
a function of the input SNR.

It shows that the regularization factor is related to the cutoff frequency. On the other hand, (47) can be expressed in

the Laplace domain

G(s) = 1
1 + �Fn(s)Fn(−s)

(49)

The filter (49) is non-causal but can be factorized as the cascade of a minimum-phase system (considering the causal

poles and zeros) and a maximum-phase system (considering the non-causal poles and zeros):

G(s) = Hcausal(s)Hnon−causal(s) = H(s)H(−s) (50)

The minimum phase system can be implemented using causal filter and the whole procedure can be implemented

using forward-backward filtering.

As an example, in signal denoising/smoothing [37, 45, 13, 34], PLSO is used to smooth the signals by considering

the following penalty:

PEN1(x) = ∫

[ d
d�
x(�)

]2
d� = ‖Dx(t)‖2 (51)

The algorithm is known as smoothness priors or quadratic variation (QV) denoising. For the n-th degree QV, the
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Figure 5: Mean values of NSR and cross-correlation for signal reconstruction by Butterworth using Matlab command
and the proposed FIR filter (34), as a function of the input SNR.

following PLSO is considered in one dimension [21]:

xopt(t) = argmin
x(t) ∫ [y(�) − x(�)]2 d� + �∫

[ dn

dn�
x(�)

]2
d� (52)

which is known as high degree QV (HDQV). Using the idea presented in previous sections, the solution can be

expressed as

xopt(t) =
[

�(t) + �fQVn (−t) ∗ fQVn (t)
]−1 ∗ y(t) (53)

Taking the Laplace transform of (53), we obtain

X̂QV
opt (s) =

1
1 + �FQVn (s)FQVn (−s)

Y (s), (54)

where FQVn (s) = sn. The interesting result is that FQVn (s) = FBn (s). Hence, we conclude that the QV algorithm and
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Figure 6: Amplitude response of the the HDQV, a) for different values of � (or cutoff frequency) b) for different values
of n.
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Figure 7: An equivalent Wiener smoother for zero-phase Butterworth filter or HDQV algorithm when bilinear transform
is used for their DT implementation.

the Butterworth filer introduced in 1930 [6] leads to the same filter. The frequency response of (54) is

|HQV
n (s)|2 = 1

1 + �(−1)ns2n
. (55)

The frequency response of the first order HDQV for different values of � is shown in Fig. 6(a). � changes from 0.01

to 100. The result shows that it acts as a low-pass filter. As � increases the cut-off frequency decreases. In Fig. 6(b),

we plot the frequency response for !0 = 10 and different values of n (higher degree QV).

Finally, using the idea presented in this paper, Butterworth filter or HDQV algorithm can be viewed as an opti-

mal Wiener filter. An equivalent Wiener filter scheme for the Butterworth filter or HDQV algorithm (when bilinear

transform is used for implementation) is depicted in Fig. 7.
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Figure 8: Amplitude response of the the PLSO, for different values of � .

6.5. Zero-phase Band-pass filter

For analyzing periodic data, it would be more natural to use the harmonic acceleration operator [36] in the penalty

term [32, chapter 5]:

PEN(x) = ‖

‖

‖

(D2 + 2�!0D + !20)x(t)
‖

‖

‖

2
(56)

In the following, we analyze the PLSO problem with the penalty term (56), in both CT and DT domains. In CT

domain, the frequency response of the PLSO with penalty term (56) is

G(s) = 1
1 + �F (s)F (−s)

F (s) = s2 + 2�!0s + !20

In DT domain, both step invariance and bilinear transform can be used for discretizing (56). If the step invariance is

used then (56) is converted to

PENn(x) =
‖

‖

‖

(a + bz−1 + z−2)xk
‖

‖

‖

2
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where

a = 1 + !20 + 2�!0

b = −2(1 + �!0)

In this case, its frequency response is expressed as

GSI (z) = HSI (z)HSI (1
z
) = 1

1 + �F (z)F ( 1z )

F (z) = a + bz−1 + z−2
(57)

where “SI" stands for step invariance. The product in (57) is equal to the cascade of a minimum phase system,HSI (z),

considering the causal poles (the poles inside unit circle) and maximum phase system, HSI ( 1z ), considering the non-

causal poles (the poles outside unit circle). The poles of (57) can be recognized simply by looking at the roots of the

polynomial:

P (z) = 1 + �F (z)F (1
z
) = a�z4 + �b(a + 1)z3 + [1 + �(1 + a2 + b2)]z2 + �b(a + 1)z + a� (58)

The filter transfer function is determined from the poles which are located inside the unit circle, and thus provide a

stable system, HSI (z). In the Fourier domain, (57) is expressed as

G(ej!) = 1
1 + �(1 + a2 + b2 + 2b(a + 1) cos(!0) + 2ac cos(2!0))

(59)

The frequency response of the PLSO, GSI (z), for two specific values of !0 as a function of � is depicted in Fig. 8.

Note that we set the regularization factor such that |GSI (ej!)| = 1
2 , which leads to the following regularization factor

� = 1
1 + a2 + b2 + 2b(a + 1) cos(!0) + 2ac cos(2!0)

The quality factor Q of a band-pass smoothing filter is the ratio of the smoothing filter’s center frequency over its

bandwidth. The value Q is a measure of the sharpness of a bandpass smoothing filter. A variable-Q filter is obtained

by changing the regularization factor. The Q-factor is inversely related to the regularization factor. As � increases

the Q-factor decreases. The frequency response of the variable-Q filter using step invariance is depicted in Fig. 9(a).
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Figure 9: Amplitude response of the the band-pass PLSO, for !0 = 0.1 and � = 0 for different values of � a) using step
invariance b) using bilinear transform.

Table 1
Penalty terms for different orders of the zero-phase Butterworth and Chebyshev filters.

Filter n
1 2 3 4 5

Butterworth Dx(t) D2x(t) D3x(t) D4x(t) D5x(t)
Chebyshev Dx(t) (2D2 − 1)x(t) (4D3 − 3D)x(t) (8D4 − 8D2 + 1)x(t) (16D5 − 20D3 + 4D)x(t)

Finally, if we employ the bilinear transform, the frequency response of the PLSO is as

GBT (z) =
(1 + z−1)(1 + z)

(1 + z−1)(1 + z) + �F (z)F ( 1z )
(60)

The frequency response of the variable-Q filter using bilinear transform is depicted in Fig. 9(b).

We note that although the optimal choice of regularization factor in sections 6.4 and 6.5 is linked to bandwidth,

the factor can also be computed similar to those in section 6.1 using L-curve function.
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6.6. Zero-phase Chebyshev Filter

Chebyshev filter is another example that can be studied in the hereby presented framework. Using the idea pre-

sented in previous sections, a zero-phase Chebyshev filter is the solution of (8) with the following penalty:

PENn(x) =
‖

‖

‖

fCn (t) ∗ x(t)
‖

‖

‖

2

where fCn (t) is found by taking the inverse of (5):

fCn (t) = 2Df
C
n−1(t) − f

C
n−2(t) n ≥ 2

fC0 (t) = �(t)

fC1 (t) = D�(t)

We refer to fCn (t) as the Chebyshev smoothing operator. The Chebyshev discrete smoothing operator is found by

discretizing fCn (t). In table (1), we compare the penalty term for different orders of Butterworth and Chebyshev in

CT. If we employ step invariance, then the Chebyshev discrete smoothing operator is computed by the following

recursion:

fCn,k = 2(1 − z
−1)fCn−1,k − f

C
n−2,k n ≥ 2

fC0,k = �k

fC1,k = (1 − z
−1)�k

Therefore, the following PLSO problem is obtained for the n-th order Chebyshev filter:

xopt,k = argmin
xk

‖

‖

yk − xk‖‖
2 + �2 ‖‖

‖

fCn,k ∗ xk
‖

‖

‖

2

The optimal solution is

xopt = (I + �2ΓTC,nΓC,n)
−1y (61)

where ΓC,n is defined as the Toeplitz matrix form of cn and cn is defined by the following recursion:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c1 ≜ (1, −1) n = 1

c2 ≜ (1, −4, 2) n = 2

cn = 2c1 ∗ cn−1 − cn−2 n > 2
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The transfer function of (61) is

GCn (z) =
1

1 + �2cn(
1
z )cn(z)

The zero-phase Chebyshev filter design using bilinear transform is straightforward.

7. Conclusion

This paper presented a framework for the unification of the PLSO and zero-phase filters. We showed that a zero-

phase filter can be viewed as a least-squares data smoothing with impulse train and a penalty term on the derivatives

of the fitted model. We proposed an FIR filter for implementing the zero-phase filters which has the advantage of

being inherently stable. Based on the results of this paper, a unified framework was proposed for PLSO algorithm

and zero-phase filter design in both time and frequency domain. Especially, we show that each type of filter is related

to a particular penalty (regularization) term, and that the balance parameter allows us to choose accurately the cutoff

frequency for low-pass or high-pass filters and the Q-factor for a band-pass filter. The computational complexity of

the traditional implementation of a zero-phase IIR digital filter is O(n). Our solutions (26) and (33) can be solved

with complexity O(n) [15] as the smoothing matrices (ΥTnΥn + �Γ
T
n Γn)

−1ΥTnΥn and (I + �ΛTnΛn)
−1 are symmetric,

positive definite. However, our method enjoys of being inherently stable as it can be implemented as a combination

of a forward filtering the input signal with an FIR filter and backward filtering with the same FIR filter.

8. Appendix

8.1. Proof of Lemma (3)

Taking the Laplace transform of (9), we obtain

Fn(s) =
n
∑

i=0
�is

i (62)

The transform is defined by [27]

Fn(z) = ZOH{Fn(s)} = (1 − z−1){Sampling{−1{
Fn(s)
s

}}}

where −1 and {⋅} denote the Laplace inverse and -transform, respectively.

In order to derive the discrete form of fn(t), we use the step invariance by substituting s with 1 − z−1:

Fn(z) =
n
∑

i=0
�i(1 − z−1)i (63)
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Expanding (63) using binomial expansion, we get

Fn(z) =
n
∑

i=0
�i

i
∑

j=0

(

i
j

)

(−z−1)i−j

which is equal to

Fn(z) =
n
∑

i=0

n
∑

j=i
�j(−1)i

(

j
i

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
�i

z−i

Substituting (−1)i
∑n
j=i �j

(j
i

)

with �i, we obtain

Fn(z) =
n
∑

i=0
�iz

−i (64)

Taking the inverse transform of (64), we find

fn,k =
n
∑

i=0
�i�k−i (65)

which proves the Lemma.

8.2. Proof of Lemma (4)

In order to derive the discrete form of fn(t) using bilinear transform, we substitute s with 2
Ts
1−z−1
1+z−1 [28]. Hence in

the -domain, (62) is expressed as

Fn(z) =
n
∑

i=0
�i

(

2
Ts

)i(1 − z−1

1 + z−1

)i
(66)

Expanding (66) using binomial expansion, we get

Fn(z) =
1

(1 + z−1)n

n
∑

i=0
�i(

2
Ts
)i(1 − z−1)i(1 + z−1)n−i

which is equal to

(1 + z−1)nFn(z) =
n
∑

i=0
�i

(

2
Ts

)i
(1 − z−1)i(1 + z−1)n−i
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It can be written as

n
∑

i=0

(

n
i

)

Fn(z)z−i =
n
∑

i=0

iz

−i (67)

where the parameters 
i are obtained from

n
∑

i=0

iz

−i =
n
∑

i=0
�i

(

2
Ts

)i(n
i

)

(1 − z−1)i(1 + z−1)n−i

Taking the inverse transform of (67), we find

n
∑

i=0

(

n
i

)

fn,k−i =
n
∑

i=0

i�k−i
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