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Abstract

We study the problem of exact support recovery: given an (unknown) vector

θ∗ ∈ {−1, 0, 1}D with known sparsity k = ‖θ∗‖0, we are given access to the
noisy measurement

y = Xθ∗ + ω,

where X ∈ RN×D is a (known) Gaussian matrix and the noise ω ∈ RN is
an (unknown) Gaussian vector. How small can N be for reliable recovery of
the support of θ∗? We present RAWLS (Randomly Aggregated unWeighted
Least Squares Support Recovery): the main idea is to take random subsets of
the N equations, perform least squares over this reduced bit of information,
and average over many random subsets. We show that the proposed procedure
can provably recover an approximation of θ∗ and demonstrate its use through
numerical examples. We use numerical simulations to demonstrate that the
proposed procedure is beneficial for the task of support recovery. Finally, we
observe that RAWLS is at par with several strong baselines in the low informa-
tion regime (i.e. N is small or k is large).

Keywords: Support Recovery, Compressed Sensing, Least Squares.

1. Introduction

The problem of support recovery, plays an important role in machine learning,
signal processing, bioinformatics, and high dimensional statistics. In some ap-
plications, identifying the support leads to direct benefits such as reduction of
memory and computational costs [1], identification of cancer risk genes [2]. In
other tasks, such as image denoising [3], the coefficients θ are of interest; based
on the recovered support these could be estimated using least squares.
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y = θ∗ +w

Figure 1: We try to recover the support of θ∗ from the observations X and y, where y =
Xθ∗ + ω. The (known) matrix X is a Gaussian random matrix, so is the (unknown) noise
ω, we try to recover the support of θ∗ with few measurements.

In the regime N < D, the support recovery problem (illustrated in Fig. 1)
is under-determined: we have fewer equations N than variables D, and the
observations are contaminated by additive noise ω. In this setting sparsity is a
useful assumption and it would be natural to estimate θ∗ by minimizing

‖y −Xθ‖22 s.t. ‖θ‖0 ≤ k.

Since optimizing over this equation is intractable; several authors have replaced
the `0 norm by the `1, which induces sparsity and leads to the well known
Least Absolute Shrinkage and Selection Operator (LASSO) [4]. We note that
the sparsity properties of `p norms, for p > 1 was studied in [5]. The LASSO,
typically formulated using a regularized version of the problem, enjoys efficient
optimization schemes [6, 7]. [8] showed that exact support recovery using the
LASSO can occur with probability one if N > 2k log(D − k). Several iter-
ative methods for support recovery have been proposed, including: Iterative
Support Detection (ISD) [9], the iteratively reweighted least squares (IRLS)
[10] and the iteratively reweighted `1 minimization (IRL1) [11]. The problem
has also been addressed using greedy methods such as Orthogonal Matching
Pursuit (OMP) [12], Random OMP [13] and other extensions [14, 15], or non
convex schemes such as Trimmed LASSO (TL) [16] or smoothly clipped absolute
deviation (SCAD) [17]. Recently, in [18], the authors proposed a constrained
matching pursuit algorithm for support recovery. The importance of the prob-
lem has made it quite impossible to give an accurate, complete summary of the
literature: we refer to the surveys [19, 20, 21, 22].
In this study, we propose RAWLS (Randomly Aggregated unWeighted Least
Squares Support Recovery), a simple scheme for support recovery from noisy
measurements

y = Xθ∗ + ω,

where θ∗ ∈ {−1, 0, 1}D is a sparse vector. The ternary model for θ∗ is moti-
vated by several applications such as: compressing neural networks [23, 24] or
representing biological signals [25]. RAWLS relies on subsampling the full set
of equation and performing least squares on each subset. After averaging over
the different solutions, we estimate the support using the most significant coef-
ficients of the least squares solution. We prove a bound on the approximation of
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θ∗ based on the proposed procedure. Finally, we demonstrate the applicability
of RAWLS to the task of support recovery using different sparsity and noise
levels. We observe, that our method outperforms several leading baselines in
the low information regime.
The paper is structured as follows. In Section 2 we describe and motivate the
proposed idea and our main results. Then, in Section 3 we provide a full descrip-
tion of RAWLS and demonstrate it efficacy using several examples. Finally, in
Section 4 we prove our main result.

2. The Idea and the Main Result

2.1. The Idea.

Our idea is quite simple: to estimate θ∗, we will use least squares. This naive
approach is a bad idea since

θ̂ = arg min
θ∈RD

‖Xθ − y‖22

tends to require a fairly large number of queries N to recover θ∗ stably. The
proposed scheme is based on the following observation: instead of running
least squares on the full set of equations, we can use only a random subset
of the equations. The underlying idea behind RAWLS (Randomly Aggregated
Unweighted Least Squares Support Recovery)3 is that none of the equations are
distinguished: taking merely a subset of them amounts to a loss of information
but provides a particularly unique point of view. However, since no particular
subset of the equations is distinguished over any other subset, we average over
a number of randomly selected subsets. Our analysis shows that this is indeed
advantageous: while applying least squares using fewer equations leads to errors
from the lack of information, these errors cancel (to some degree) when aver-
aged. More precisely, let A ⊂ {1, . . . , N}, we define XA to be the restriction of
X onto the rows whose index is in the set A and likewise for yA. We then find

θ̂A = arg min
θ∈RD

‖XAθ − yA‖22. (1)

We average this result over many subsets (Ai)
m
i=1 which we assume, for some

fixed n < min(N,D), to be taken uniformly at random from all n−element
subsets of {1, 2, . . . , N} and use this as our estimate for a rescaling of θ∗. We
hope that

1

m

m∑
i=1

θ̂Ai
∼ n

D
θ∗.

3‘The natural distribution is neither just nor unjust; nor is it unjust that persons are born
into society at some particular position. These are simply natural facts. What is just and
unjust is the way that institutions deal with these facts.’ (John Rawls, ’A Theory of Justice’
[26]).
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Figure 2: The reconstructed vector is much larger on the support of θ than off the support of
θ and correctly identifies its sign.

An example (see Fig. 2) is as follows: let us define θ ∈ R64 by setting the first
k = 16 entries to be ±1 (randomly) and the rest to be 0. We take a random
Gaussian matrix X ∈ R64×80, take subsets of size n = 58 equations and average
the least-square recovery over m = 100 random choices of these 58 equations.
We observe that the reconstructed vector is much larger on the actual support
than it is off the support; moreover, it correctly identifies the sign of the entry
of θ.

0 10 20 30 40 50 60

Figure 3: Reconstructing a noisy vector in RD, D = 64 (supported on the first 16 coordinates)
using N = 30 equations (projected on n = 18−dimensional subsets) with RAWLS.

Once we go down to a smaller number of equations N , something remarkable
happens. For simplicity of exposition, we consider the same problem as above
(reconstruction of a vector in D = 64 dimensions) except now we only observe
N = 30 equations and we average over random subsets of these equations of size
n = 18. We emphasize that this quite the extreme setting; we are operating with
very little information. This is reflected in the reconstructed vector (see Fig. 3):
it is certainly not the case that the largest k = 16 entries (by absolute value)
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correspond to the support of θ. However, what we observe in this setting is the
largest entry is indeed located on the support of θ: for this particular choice of
parameters (D,N, n) = (64, 30, 18), this happens in ∼ 90% of all cases. This
motivated our RAWLS-based peeling algorithm discussed in §3, where we itera-
tively remove the coordinate corresponding to the largest reconstructed vector.
We note that correctly identifying the first coordinate is the most difficult task;
after that we have reduced the problem by decreasing the size of the support,
one less dimension D → D − 1, and the same number of equations N . This is
an easier problem.

2.2. The Result

We can show that this yields provably good results. Before formally stating
the result, we will quickly outline its meaning. Instead of trying to recover the
vector θ∗, we will try to reconstruct its rescaled version (n/D)θ∗ via an

average over random projections
1

m

m∑
i=1

πAi
θ∗,

where πAi denotes the projection onto the subspace Ai and the Ai are, by an
abuse of notation, subspaces of size n chosen uniformly at random (subspaces
spanned by the rows of X indexed by Ai). However, we do not have access
to θ∗ ∈ RD, we only have access to y = Xθ∗ + ω. Instead of taking a least
squares projection of y, we will use the least squares projections of yAi

for
random subsets of the equations in the hope that this approximately recovers
θ∗

1

m

m∑
i=1

θ̂Ai
∼ n

D
θ∗.

Theorem. Let θ∗ ∈ RD be an arbitrary vector. Then, by projecting onto subsets
of n < 0.9 ·D equations of the N equations given by y = Xθ∗ + ω, we have

EX,ω

∥∥∥∥∥ 1

m

m∑
i=1

πAi
θ∗ − 1

m

m∑
i=1

θ̂Ai

∥∥∥∥∥
`2

.
n√

N
√
D − 2

+
n

D
.

Several remarks are in order.

1. The statement is independent of θ∗. In particular, there is no underlying
assumption about the structure of θ∗ (and θ∗ need not be sparse). We
also observe that the size of θ∗ does not appear on the right-hand side.
This respects the problem setup where instead of Xθ∗ we are given the
(additive) noisy version Xθ∗ +ω, where ω is a standard Gaussian vector
ωi ∼ N (0, 1).

2. In the setting n ≤ N � D our analysis is accurate down to constants,
both quantities on the right-hand side are asymptotically correct (in the
sense of having the correct constant, 1, in front) if the scales separate more
and more (see Figs. 4, 5 and the Remark in §4.2).
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3. The randomness in the choice of the Ai is not at all necessary. In fact,
the proof suggests that one could simply pick completely deterministic
subsets of the N equations as long as none of the individual dimensions
are featured too prominently and all are represented roughly an equal
number of times in the projections. This is also substantiated by numerical
evidence. This poses the question of whether there are ‘good’ deterministic
choices of subsets or whether there is a natural weight one could assign
to the outcome resulting from each subset of equations (some ‘measure of
reliability’).

4. The result suggests that using a smaller n leads to a smaller error. How-
ever, it also leads to a smaller projection. We can compensate for that by
inserting the appropriate scaling in our result from which we obtain

EX,ω

∥∥∥∥∥∥∥∥∥∥
1

m

D

n

m∑
i=1

πAi
θ∗︸ ︷︷ ︸

≈θ∗

− 1

m

D

n

m∑
i=1

θ̂Ai

∥∥∥∥∥∥∥∥∥∥
`2

.

√
D√
N

+ 1.

This shows that there is some flexibility in the choice of n. In practice
we have found that n = 0.6 min(N,D) seems to be particularly suited
(though not very different from, say, n = 0.5 min(N,D)). The precise role
of n could be an interesting object for further study.

We conclude by showing Theorem 1 in a simple example. As mentioned above,
the terms in the upper bound (without the implicit constant and constant 1
instead) correspond to the sharp asymptotic limiting case where n ≤ N � D.
We show the case where D = 10000, N = 100 and 1 ≤ n ≤ 100. For each value
of n, we sample over m = 20 random subsets of size n of the N equations. As
for the vector θ, it does not actually play a role, we chose it to be a Gaussian
vector in RD. We observe that the prediction is quite accurate (and the proof
explains why this would be the case – various quantities start concentrating
tightly around their expectation).
We also quickly illustrate that the restriction n < 0.9 ·D is not just an artifact
of the proof but, in fact, necessary (this also explains why RAWLS is better at
recovering θ than an application of least squares to the full set of equations).
We consider θ to be a unit vector (obtained from normalizing an instance of
a Gaussian vector) in D = 200 dimensions. We take N = 200 equations and
see what happens for 1 ≤ n ≤ 195 (see Figure 5). What we observe is that
the theoretical error bound (with the implicit constant assumed to be 1) nicely
dominates the error until n starts getting very close to D (we plot it for 1 ≤
n ≤ 195 < 200 = D). We see that the error starts exceeding the size of the
vector by many orders of magnitude. The proof will explain this as a degeneracy
of the smallest singular value of a rectangular Gaussian matrix which becomes
approximately square.
The error observed around n = 195 ∼ N = D demonstrates why least squares
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Figure 4: The error bounds in Theorem 1 (orange; ignoring the implicit constant) compared
to the actual error (blue) for D = 10000, N = 100 and 1 ≤ n ≤ 100.

Figure 5: The error bounds in Theorem 1 (orange; ignoring the implicit constant) compared
to the actual error (blue) for D = 200 = N and 1 ≤ n ≤ 195.

using the full set of equations does not work; we obtain similar results also for
N � D, the averaging has a natural stabilizing effect. We refer to the Remark
in §4.2. for a prediction for what one would expect the error to look like when,
say, n = 0.99D.

2.3. Open Problems.

Theorem 1 raises a lot of open questions. Is there a particularly natural choice
of subspaces on which to project? We are investigating the case of random pro-
jections but the proof does not seem to require this; are there natural ‘adapted’
subspaces that one can derive from a given matrix X?
We conclude with a particularly interesting question. We recall that the random
projections reduce the size of the resulting vector. We can compensate for that
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by inserting the appropriate scaling in our result from which we obtain

EX,ω

∥∥∥∥∥∥∥∥∥∥
1

m

D

n

m∑
i=1

πAiθ︸ ︷︷ ︸
≈θ

− 1

m

D

n

m∑
i=1

x∗Ai

∥∥∥∥∥∥∥∥∥∥
`2

.

√
D√
N

+ 1.

In the case where we assume θ ∈ {−1, 0, 1}D, we want to make sure that we
are properly able to distinguish two different vectors of that type and this can
then be seen to require N ∼ D (not entirely surprising, we are not making any
assumptions on the sparsity of θ). However, a more refined approach is conceiv-
able: ultimately, we are using the entries of our approximating vector to derive
statements about the support. As such, the `2 is perhaps not the only interest-
ing quantity and estimates on `∞ would be quite desirable. In particular, what
we observe in practice (and what motivated the peeling algorithm) is that very
large entries (either very large or very small) in the recovered approximation is
a good indicator for θ having support in that coordinate. This simple observa-
tions forms the basis of the algorithm discussed in §3. It would be interesting
to have results in that direction.

We also emphasize that the idea underlying RAWLS might have many other
applications: it is ultimately an `2−based concept and as such many natural
variations seem conceivable. One such applications, a nonlinear variant that is
shown to work particularly well in the support recovery problem, is discussed in
the next section. A second question, outside the scope of this paper, is whether
other methods used for support recovery could conceivably be merged with our
philosophy: running it on random subsets of the equations and hoping that the
averaging effects compensates for the loss of information.

3. Support Recovery with RAWLS

3.1. The Idea.

If it is indeed the case that

1

m

m∑
i=1

πAi
θ∗ ≈ n

D
θ∗ + some error

and if the error is nicely random (as one usually expects in these cases), then
the largest (or smallest) entries of the vector should be contained in the support

of θ∗. In a more elementary formulation, if we are given v ∈ {−1, 0, 1}D (such
that ‖v‖0 is not too small compared to D) and add a random Gaussian vector
g to it, then the largest (absolute) entry of v + g will be attained (with high
probability) on the support of v. This is a simple consequence of the rapid
decay of the Gaussian, and motivates the Algorithm proposed in the following
subsection.
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3.2. Peeling with RAWLS

1. Compute the approximation

θ̂ =
1

m

m∑
i=1

θ̂Ai
,

where θ̂ is estimated based on Eq. 1.

2. Find the element of largest absolute value of θ̂. If this element θ̂` is
positive, then we assume that θ∗` = 1; if negative, we assume θ∗` = −1.

3. Remove the corresponding column from the matrix X and update the
right-hand side y by subtracting the X projected onto the estimated co-
ordinate θ̂`.

4. Return to (1) until k non-zero entries of θ̂ are estimated.

This algorithm is thus a fairly simple greedy algorithm that identifies likely
candidates for the support of θ∗ by looking for particularly large entries in
the RAWLS-reconstruction of θ∗. We emphasize that for this type of iterative
algorithm, each step is more difficult than the next one: having found a correct
entry, the problem is reduced to a simpler problem D → D−1 while maintaining
the same amount of information N → N . We point out that the method, just
as other methods, should also be suitable for partial recovery: finding a set of
k entries that has a large overlap with the ground truth, we do not pursue this
here. We do not have any theoretical guarantees for the success rate of the
peeling algorithm at this point and consider this to be an interesting problem.
Perhaps the most interesting question at this stage is whether there are other
implementations of these underlying ideas that can yield even better results.

3.3. Numerical Performance

In this section we support the effectiveness of RAWLS using numerical simula-
tions. We focus on the task of exact support recovery using a random Gaussian
design matrix X with values drawn independently from N(0, 1) and random
additive Gaussian noise ω with values drawn independently from N(0, σ2). As
baselines, we compare the method to LASSO [4], IRL1 [11], TL [16], OMP [12],
RandOMP [13] and STG [27]. To evaluate the probability of exact support
recovery we run each method 100 times and count the portion of successful es-
timations. A successful estimation of the support is counted if S(θ) = S(θ̂),
where S(θ) := {i ∈ 1, ..., D|θi 6= 0}. To improve the stability of LASSO, after
each run we select the top k coefficients of θ as the estimated support.
First, in Figure. 6 we present the probability of successful support recovery
using D = 64 variables, a fixed sparsity of k = 10 and different number of mea-
surements N . This example demonstrates that RAWLS can successfully recover
the unknown support with fewer measurement compared with OMP,RandOMP
and the LASSO.
Next, we demonstrate how the sparsity level k affects the success of RAWLS in
recovering the support of θ∗. We use 100 simulations with design matrix X and
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Figure 6: Numerical evaluation for the probability of exact support recovery vs. number of
measurements N . We compare Peeling with RAWLS to several baselines for: σ = 0.5 (top
panel) and σ = 1 (bottom panel).

Gaussian noise ω defined as in the previous example and evaluate the perfor-
mance of RAWLS for sparsity levels k in {2, 4, ..., 34}. In Figure 7 demonstrate
that RAWLS success rate is comparable to IRL1, STG and TL for large values
of k.
We further evaluate the performance of RAWLS for other type of measurement
matrices. Specifically, we generate a Bernoulli design matrix X taking values
{−1, 1} with equal probability. We use additive Gaussian noise with zero mean
and standard deviation of σ = 0.5. Here, we also compare RAWLS to stochastic
resonance OMP (SR OMP) [28]. In Fig. 8 we present the probability of sup-
port recovery using RAWLS and several other baselines. In this example, the
sparsity level is k = 10 with dimension D = 64 and the results are based on 100
simulations.
Finally, we evaluate the performance of RAWLS in the regime of low informa-
tion. Specifically, we use a vector with a sparsity level k = 30, with D = 64
variables, and focus on the regime of 30 ≤ N ≤ 90. Here, we restrict our com-
parison to the leading baselines, namely to IRL1 and TL. As observed in Fig. 9,
RAWLS outperforms IRL1 and TL, in the regime of low information. Precisely,
for N ≤ 55, RALWS recovers the support with a higher probability compared
with the competing methods.
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Figure 7: Numerical evaluation for the probability of exact support recovery vs. sparsity level
k. Here the number of variables and measurements are fixed, specifically D = 64, and N = 40.
We compare Peeling with RAWLS to several baselines for: σ = 0.5 (top panel) and σ = 1
(bottom panel).

Figure 8: Numerical evaluation for the probability of exact support recovery vs. number
of measurements N . Here the number of variables and sparsity are fixed, specifically D =
64, and k = 10. We compare Peeling with RAWLS to several baselines for a binary design
matrix with values drawn from a fair Bernoulli distribution. The additive noise is Gaussian
with zero mean and standard deviation σ = 0.5
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Figure 9: Numerical evaluation for the probability of exact support recovery vs. number
of measurements N . Here the number of variables and sparsity are fixed, specifically D =
64, and k = 30. The additive noise is Gaussian with zero mean and standard deviation
σ = 0.5. RAWLS outperforms state of the art method in the low information regime.

4. Proof of the Theorem

4.1. Setup.

Let θ∗ ∈ {−1, 0, 1}D be a sparse vector with support ‖θ∗‖0 = k and let X ∈
RN×D be a design matrix all of whose entries are i.i.d. random variables drawn
from N (0, 1). We will also use the notation g = (gi)

N
i=1 to denote the Gaussian

vectors in RD dimensions that are forming the rows. We are given

y = Xθ∗ + ω,

where each entry of ω is i.i.d. normally distributed ωi ∼ N (0, 1). We try to
understand how our algorithm performs on this data. Let A ⊂ {1, . . . , N} be a
random subset of size |A| = n. We are trying to understand the least squares
solution in Eq. 1 where XA denotes the restrictions onto the rows of X indexed
by A and likewise for yA. If n ≤ D, then the system has more variables than
equations and always has a solution: we are interested in the solution with the
smallest `2−norm and will denote it by θ̂A.

4.2. A Single Projection.

The purpose of this statement is to provide the analysis of a single projection
onto a random subspace spanned by a random subset of the rows. The main
insight is that this projection can be approximately deconstructed into the pro-
jection of the ground truth, a highly structured Gaussian error on top of that
and a relatively small error term.

Lemma. Let θ∗ ∈ RD be fixed, let X ∈ RN×D be a random Gaussian matrix
and let A ⊂ {1, 2, . . . , N} be a randomly chosen subset of size |A| = n < 0.9 ·D.
Then the orthogonal (noisy) projection of θ∗ onto the subspace spanned by the
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rows indexed by A (given by y = Xθ∗ + ω) satisfies

θ̂A = πAθ
∗ +

(∑
a∈A

ga
‖ga‖2

ωa

)
+ e,

where ga is the a-th row of the matrix X, and e satisfies, with high likelihood,
EX,ω ‖e‖ . n

D .

The purpose of this Lemma is to show that the (noisy) projection of θ∗ onto a
random subspace (this is one interpretation of y = Xθ∗ +ω) leads to substan-
tial distortions; however, these distortions are not arbitrary and follow a fairly
regular pattern up to a small error. The second term is not necessarily that
small; however, its form will allow us to show that averaging it over multiple
subspaces will further decrease the size. We emphasize that in the case n� D
our estimate is sharp and we expect ‖e‖ ∼ n/D with tight concentration and a
small error (this could be made precise when D/n becomes large).
The proof makes use of the following basic fact in linear algebra that we recall
for the convenience of the reader: let (ga)na=1 be n vectors in RD with D > n
and let v ∈ span {g1, . . . , gn}. Then

σmin(G)2‖v‖2 ≤
n∑
a=1

|〈ga,v〉|
2 ≤ σmax(G)2‖v‖2,

where σ denotes the singular values of the matrix G obtained by collecting
{ga}na=1 as column vectors (or, alternatively, the largest and smallest eigenvec-
tors of GTG). This follows easily from observing that

n∑
a=1

|〈ga,v〉|
2

= ‖GTv‖2.

This is well-known in frame theory: the frame constants for finite-dimensional
problems are given by the singular values of the associated matrix.

Proof of the Lemma. We will use θ̂A to denote the `2−smallest vector satisfying
Eq. 1. This solutions is contained in the vector space V = span {ga : a ∈ A} (if
θ had a component that was orthogonal to these rows, then it would not have
any effect in the matrix multiplication XAθ and removing that component
would result in a smaller `2−norm). Since the number of variables, D, is larger
than the number of equations, n, andX is Gaussian we know that the minimum
is 0 with likelihood 1. Thus XAθ̂A = yA = XAθ

∗ + ωA. We will analyze this
equation for a single row. For any a ∈ A,〈

ga, θ̂A

〉
= 〈ga,θ

∗〉+ ωa =

〈
ga,θ

∗ +
ωa
‖ga‖2

ga

〉
.

We will use this equation for all a ∈ A. By definition of the orthogonal projec-
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tion, we have, for all a ∈ A, 〈ga,θ
∗〉 = 〈ga, πAθ

∗〉 , and thus the identity〈
ga, θ̂A

〉
=

〈
ga, πAθ

∗ +
ωa
‖ga‖2

ga

〉
. (2)

This is an interesting way of interpreting the introduction of additive noise: the
error that we are given makes it seem as if the inner product was not with πAθ

∗

but instead with πAθ
∗ and a small additional multiple of ga. In practice, if

n� D, then the Gaussian vectors are “almost” orthogonal and “almost” form
an orthogonal basis of the space that they span. This motivates the ansatz

θ̂A = πAθ
∗ +

(∑
a∈A

ga
‖ga‖2

ωa

)
+ e,

where πA is the orthogonal projection onto the vector space V = span {ga : a ∈ A}
and e ∈ RD is an error term whose size we try to investigate. We plug in our
ansatz in to Eq. 2 and obtain, for all a ∈ A,

〈ga, e〉 = −

〈
ga,

∑
a6=i∈A

gi
‖gi‖2

ωi

〉
.

We emphasize that, since the ga span V with probability 1, these n equations
uniquely identify e ∈ V with probability 1. We first try to understand the
quantity on the right-hand side. We have〈

ga,
∑
a6=i∈A

gi
‖gi‖2

ωi

〉
=
∑
a 6=i∈A

〈gi, ga〉
‖gi‖2

ωi.

The inner product of two random Gaussians is a random variable at scale
〈gi, ga〉 ∼

√
D, the size of an individual Gaussian vector is at scale E‖gi‖2 ∼

D + O(
√
D) with high likelihood. The ωi ∼ N (0, 1) have an additional ran-

domization effect. The sum runs over n − 1 elements. Altogether, we expect
the quantity to be a random variable at scale∣∣∣∣∣∣

∑
a6=i∈A

〈gi, ga〉
‖gi‖2

ωi

∣∣∣∣∣∣ ∼
√
n√
D
.

An explicit computation shows that

E

∣∣∣∣∣∣
∑
a 6=i∈A

〈gi, ga〉
‖gi‖2

ωi

∣∣∣∣∣∣
2

= E
∑
a 6=i∈A

〈gi, ga〉
2

‖gi‖4
ω2
i

+E
∑

a 6=i1 6=i2∈A

〈
gi1 , ga

〉
‖gi1‖2

〈
gi2 , ga

〉
‖gi2‖2

ωi1ωi2 .
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The second expectation is clearly 0 since ωi ∼ N (0, 1) and these are indepen-
dent of each other. It remains to evaluate the first expectation. Since ωi are
independent of gi, we get

EX,ω

∑
a6=i∈A

〈gi, ga〉
2

‖gi‖4
ω2
i = EX

∑
a6=i∈A

〈gi, ga〉
2

‖gi‖4
.

This sum can be decoupled into two parts

EX

∑
a 6=i∈A

〈gi, ga〉
2

‖gi‖4
= EX

∑
a 6=i∈A

〈
gi
‖gi‖

, ga

〉2
1

‖gi‖2
.

We observe that gi/‖gi‖ is a random vector on the unit sphere (this follows
from the rotational symmetry of Gaussian vectors); as such, it is completely
independent of its length ‖gi‖ allowing us to treat both quantities as indepen-
dent random variables. However, the first term is simply an inner product of a
Gaussian vector against a unit length vector, thus〈

gi
‖gi‖

, ga

〉
is a Gaussian variable and E

〈
gi
‖gi‖

, ga

〉2

= 1.

The remaining quantity is the mean of an inverse χ−distribution which is 1/(D−
2) for D ≥ 3 and thus

EX
∑
a 6=i∈A

〈gi, ga〉
2

‖gi‖4
= EX

∑
a6=i∈A

1

‖gi‖2
=

n− 1

D − 2
.

n

D
.

Summing up, we obtain E
∑
a∈A |〈ga, e〉|

2 . n2

D .However, since e ∈ span {ga : a ∈ A},
we have the basic inequality

σ2
min‖e‖2 ≤

∑
a∈A
|〈ga, e〉|

2 ≤ σ2
max‖e‖2.

The smallest singular value of a random rectangular Gaussian matrix was de-
termined by Silverstein [29] who showed that we can expect, in the limit, that
σmin ∼

√
D −

√
n. Combining all these results shows that we expect, in the

regime where d has a bounded gap from D, say n ≤ 0.9 ·D, that

‖e‖ . n

D
.

Remark. We observe that the first part of the argument is fairly tight, in
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particular, we expect

E
∑
a∈A
|〈ga, e〉|

2 ∼ n2

D

with tight concentration. The second part of the argument is not precise down
to constants but it becomes tight if we have n� D. We observe that if n� D,
then we actually have σmin ∼ σmax since the singular are expected to be in the
interval [

√
D−
√
n,
√
D+
√
n]. Since all the estimates we carried out are actually

quite tightly concentrated, we thus expect, with a fair degree of accuracy,

‖e‖ ∼ n

D
.

More precise, estimates are conceivable: if e is uniformly distributed across all
singular vectors, then we could hope that

1

‖e‖2
∑
a∈A
|〈ga, e〉|

2 ∼ Z2,

where Z is the Marchenko-Pastur distribution modeling the singular values of
the random matrix X. When n� D, then Z ∼

√
D±
√
n ∼
√
D and we recover

the usual estimate. As soon as n starts approaching D, the distribution of Z
gets closer and closer to 0 and the inverse distribution 1/Z2 spreads over many
scales. However, in principle, if e is uniformly distributed over the singular
vectors, then one could use this heuristic to predict the sharp constant to be
expected when, for example n = 0.99 ·D. Basic numerics seems to indicate that
this is a reasonable assumption.

4.3. Multiple Projections.

We now discuss the effect of averaging quantities like∑
a∈A

ga
‖ga‖2

ωa

over multiple randomly chosen sets A.

Lemma. Let X ∈ RN×D be a matrix with i.i.d. standard N (0, 1) entries and
let ω ∈ RN be a random vector all of whose entries are i.i.d. N (0, 1). Let
A ⊂ {1, . . . , N} denote a random set of size n (chosen uniformly at random
among all n−element subsets of A). Then

EX,ω lim
`→∞

∥∥∥∥∥1

`

∑̀
i=1

∑
a∈Ai

ga
‖ga‖2

ωa

∥∥∥∥∥ ≤ n

N
√
D − 2

.

Proof. We observe that the vectors ga are, albeit Gaussian random vectors,
fixed once given and so are the ωa. Thus, the law of large numbers implies
that averaging over many randomly chosen subsets A ⊂ {1, 2, . . . , N} of size A
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results, ultimately, in each coordinate being picked the same number of times
and thus

lim
`→∞

1

`

∑̀
i=1

∑
a∈Ai

ga
‖ga‖2

ωa =
n

N

N∑
a=1

ga
‖ga‖2

ωa.

We have

n

N

N∑
a=1

ga
‖ga‖2

ωa =
n

N

N∑
a=1

ga
‖ga‖

ωa
‖ga‖

.

We interpret this as follows: the vector ga/‖ga‖ is uniformly distributed over
the unit sphere in RD (a consequence of the radial symmetry of the Gaussian
distribution), the vector ω∗ = (ωa/‖ga‖)Na=1 is interpreted as a random vector.
Again, as a consequence of the radial symmetry, the vector ga/‖ga‖ and the
size ‖ga‖ can be interpreted as independent random variables. We compute

EX,ω

∥∥∥∑N
a=1

ga

‖ga‖
ωa

‖ga‖

∥∥∥2 as

N∑
a1,a2=1

EX,ω

〈
ga1
‖ga1‖

ωa1
‖ga1‖

,
ga2
‖ga2‖

ωa2
‖ga2‖

〉

=

N∑
a=1

EX,ω
ω2
a

‖ga‖2
=

N∑
a=1

EX
1

‖ga‖2
= E

N

‖g‖2
.

This quantity is the mean of an inverse χ−distribution which is 1/(D − 2) for
D ≥ 3. Thus, using the Cauchy-Schwarz inequality, we get

EX,ω
n

N

∥∥∥∥∥
N∑
a=1

ga
‖ga‖

ωa
‖ga‖

∥∥∥∥∥ ≤ n

N

√
N√

D − 2
=

n√
N
√
D − 2

.
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