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Abstract 

As the first step of the restoration process of painted relics, sketch extraction 

plays an important role in cultural research. However, sketch extraction suffers from 

serious disease corrosion, which results in broken lines and noise. To overcome these 

problems, we propose a deep learning-based hierarchical sketch extraction framework 

for painted cultural relics. We design the sketch extraction process into two stages: 

coarse extraction and fine extraction. In the coarse extraction stage, we develop a 

novel detail-aware bi-directional cascade network that integrates flow-based 

difference-of-Gaussians (FDoG) edge detection and a bi-directional cascade network 

(BDCN) under a transfer learning framework. It not only uses the pre-trained strategy 

to extenuate the requirements of large datasets for deep network training but also 

guides the network to learn the detail characteristics by the prior knowledge from 

FDoG. For the fine extraction stage, we design a new multiscale U-Net (MSU-Net) to 

effectively remove disease noise and refine the sketch. Specifically, all the features 

extracted from multiple intermediate layers in the decoder of MSU-Net are fused for 

sketch predication. Experimental results showed that the proposed method 

outperforms the other seven state-of-the-art methods in terms of visual and 

quantitative metrics and can also deal with complex backgrounds. 
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1. Introduction 

Painted cultural relics inherit the cultural essence of a country and provide 

valuable materials for historical research. Due to environmental changes and human 

damage, painted cultural relics are being destroyed in varying degrees around the 

world. Obtaining a drawn sketch is an important step in the protection and restoration 

of painted cultural relics. The sketch reflects the original ideas of the painters and the 

main structure and content of the painted images [1, 2, 3, 4]. Traditionally, the sketch 

is depicted manually by professional copyists, which is not only time-consuming but 

also affected by the different painting skills of different copyists [5, 6, 7]. To assist 

archaeologists and improve the accuracy of the sketch extraction, computer-aided 

sketch extraction for the painted images has been investigated [8, 9, 10].  

Most of the existing computer-aided sketch extraction methods are based on 

edge detection techniques [8, 9, 11, 12, 13], which can be mainly divided into the 

three categories described below. 

(1) Gradient-based algorithms [14, 15]. Typically, these algorithms compute the 

gradient information of the intensity or color to detect edges. Liu et al. [8] proposed 

an interactive sketch generation method to extract image outlines and learn the styles 

from examples. He et al. [9] generated the sketch by extracting hierarchical blocks 



and replaced the missing content with interactions. Kang et al. [14] proposed a 

flow-based anisotropic filtering framework (FDoG) to extract sketches. Sun et al. [10] 

designed an automatic generation sketch system based on the FDoG algorithm. Sun et 

al. [11] combined heuristic routing and high-frequency enhancement to 

collaboratively present a complete mural sketch. Xu et al. [12] used threshold 

segmentation and edge detection algorithms to combine gray information and edge 

information for sketch extraction. These methods can effectively extract landscape 

details in painted cultural relics. However, they are sensitive to areas with dense 

gradient changes. Due to the different degrees of disease, such as armor, chapped, 

faded [16, 17], and so on, painted cultural relic images always have complex 

backgrounds. With the above-mentioned methods, it is easy to extract noise in areas 

with serious disease. Moreover, the lines that do not have a significant gradient 

change will be lost, which makes the extracted sketches incoherent. 

(2) Learning-based algorithms [18, 19, 20, 21, 22, 23]. These algorithms 

manually design features, such as intensity, gradients, and textures, to detect the edges 

through complex paradigm learning. Zitnick et al. [19] used the straight lines and 

T-junctions structures in local image patches to learn the edge detectors. Hussein et al. 

[24] proposed a hybrid optimization model combining particle swarm optimization 

with a local search algorithm for sketches. Qi et al. [25] proposed a learning ranking 

strategy that uses perceptual grouping to automatically generate sketches. These 

methods fuse prior knowledge into the sketch extraction and are robust to scattered 

lines and complex noise. However, they are developed based on the manual features, 

which mea-ns that they do not have sufficient differentiation to recognize sudden 

changes in complex relic images. 

(3) CNN-based algorithms [26, 27, 28, 29, 30, 31, 32, 33]. These algorithms 

have shown promising edge detection performance with automatic features learning. 

Xie et al. [28] proposed an edge detection model with an overall nested structure. Liu 

et al. [34] obtained richer edge features by fusing convolutional intermediate layers. 

Hu et al. [31] added auxiliary branches to assist in extracting powerful advanced 

features for edge detection. He et al. [33] proposed a Bi-Directional Cascade Network 

(BDCN) and used scale enhancement modules to enrich edge features. Pan et al. [13] 

first proposed a CNN-based image fusion method for the sketch of the Dunhuang 

murals. These methods can automatically repair broken lines and suppress noise by 

deep feature learning. However, most of these deep learning approaches require large 

amounts of data to train the models and painted cultural relics data is limited. On the 

other hand, the CNN-based methods pay more attention to global characteristics while 

losing the detail information during deep propagation, which leads to blurred lines. 

In this paper, we propose a detail-aware hierarchical neural network for accurate 

sketch extraction (as shown in Fig. 1). The proposed sketch extraction framework 

consists of two stages: coarse extraction and fine extraction. For the coarse extraction 

stage, we first designed a detail-aware BDCN model based on transfer learning and 

propose a novel fusion weighted loss function that incorporates the traditional edge 

detection algorithm (FDoG) and the BDCN. It not only keeps the advantage of 

traditional edge detection but also uses the edge information as the prior knowledge to 



guide the deep network focus on the extraction of detail features. Then, the results of 

coarse extraction are used as the input of the fine extraction stage. We designed a 

multi-scale U-Net (MSU-Net) model that fuses all the features extracted from 

multiple intermediate layers in the decoder to suppress disease and remove blur in the 

sketch. This framework combines the advantages of the traditional edge detection and 

deep learning methods as well as achieves promising sketch extraction of the painted 

cultural relics. 

Our main contributions can be summarized as follows: 

1. We are the first to develop a hierarchical deep network framework for the sketch 

extraction of the painted cultural relics. Different from the previous method, we 

designed a hierarchical structure to perform coarse sketch extraction and fine 

sketch extraction. The proposed hierarchical deep network framework is 

promising in its ability to extract a clear, coherent, and complete sketch of painted 

cultural relics. 

2. We designed a novel detail-aware BDCN model for coarse sketch extraction, 

which combines the advantage of traditional edge detection in detail extraction 

and deep feature learning in edge detection and noise suppression. It not only 

solves the problem of limited relics data, but also produces coarse sketches with 

good coherence and complete information for further fine sketch extraction. 

3. We designed a novel MSU-Net combining multiscale high-level features for the 

fine sketch extraction. Based on the results of coarse extraction, MSU-Net fused 

different levels of feature in the deep network, which not only suppresses complex 

diseases but also refines the lines and removes the blur. 

The remainder of this paper is organized as follows: Section 2 introduces related 

edge detection work. Section 3 describes the proposed methods in this paper. All the 

experimental results and analyses are shown in Section 4. A summary and some 

closing remarks are made in Section 5. 

 

2. Related Works 

2.1 Flow-Based Difference-of-Gaussians (FDoG) 

FDoG [14] is a traditional edge detection algorithm. It uses a kernel-based 

nonlinear smoothing of vector field meth-od to construct the edge flow field to 

highlight the edge tangential direction. Then, a linear DoG filtering [35] is applied in 

the gradient direction while moving along the edge flow. The last step accumulates 

the filtered responses along the flow to extract the lines. The edge tangential flow 

construction filter definition is given in Eq. 1. 
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where )(x  denotes the neighborhood of x; )(tcur y  denotes the normalized tangent 

vector at y; s  is the spatial weight function, given the neighborhood size; m  is 

the magnitude weight function, giving the greater weight for higher gradients to 



ensure the main edge direction; and 
d  is the direction weight function, which 

measures the gradient difference between the neighborhood pixels, and uses the 

symbol function 1} ,{-1),( yx to make a close alignment of the vectors. 

Compared with other traditional edge detection algorithms, the FDoG algorithm 

preserves the significant edges and guides the weak edges to follow the direction of 

the significant edges in the neighborhood. It can maintain the line coherence as much 

as possible and extract the details completely. However, the FDOG algorithm is based 

on gradient information. Therefore, it may produce dense noise lines in complex 

background regions with the disease. To improve line coherence, it is inevitable to 

smooth the sketch extracted by the local core, which may cause abstraction and 

distortion. Overall, FDoG can extract complete details while it easily suffers from 

complex noise and partial abstraction. 

 

2.2 Bi-Directional Cascade Network (BDCN) 

As shown in Fig. 1, the structure of the BDCN [33] for edge detection is based 

on VGG16 [36] without three fully connected layers and the last pooled layer. It 

consists of five convolution layers stages. Each stage is called an Incremental 

Detection Block (ID Block) which gradually expands the receptive field with the 

pooling layer to get different scales. Then, to predict different scales of edges, it 

implements layer-specific supervision through a bi-directional cascade structure. 

Each ID blocks is formed by inserting a Scale Enhancement Module (SEM) [37] 

into several convolution layers corresponding to VGG16. Where SEM consists of 

several dilated convolutions of different dilation rates. Then the SEM output in each 

ID block is fused and fed into two 1×1×21 and 1×1×1 convolutions respectively 

to generate two edge predictions dsP 2 and d2sP at this scale. For the two complementary 

supervised learning at the scale of s, it is defined by Eq. (2) to achieve a specific layer 

to be learned by specific supervision. Where dsP 2 is the prediction from the shallow to 

the deep, and d2sP is the prediction from the deep to the shallow. Then upsampling the 

deep feature maps to the original image size to generate edge predictions for the 

corresponding scale. Finally, use a 1× 1× 1 convolutional layer to fuse the  

multi-scale edge prediction to generate the final edge prediction. 
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The BDCN method can learn the multiscale feature through dilated convolution 

[37] and it has advantages in the edge detection task because of layer-specific learning. 

However, deep BDCN requires large amounts of data to train the models, which is a 

challenge for the limited painted cultural relics data. Furthermore, it may appear 



blurry and there may be a loss of details at the edge as the depth of the network 

becomes deeper. 

 

2.3 U-Net 

The U-Net network first appeared in the field of medical image segmentation 

[38], which is an end-to-end network based on the fully convolutional network. The 

structure of U-Net is composed of a symmetrical encoder and decoder. The encoder 

uses convolution and pooling layers to mine deep image features. The decoder 

combines the upsampling with the feature map of the encoder pooling layer, and then 

upsampling to the size of the original picture layer by layer. Especially, the 

high-resolution position feature of the encoder is combined with the high-level 

abstract feature of the decoder via skip connection. The U-Net network has been 

widely used for image denoising [39, 40] and segmentation [41, 42, 43], and has 

shown promise in this field.  

 

3. Method 

The sketch extraction framework proposed in this paper is shown in Fig. 1, 

which consists of coarse extraction and fine extraction. In the coarse extraction stage, 

a detail-aware BDCN method is developed that uses the traditional edge detection 

method as prior knowledge and pre-trains the model with the natural image dataset. 

Then, the detail-aware BDCN is fine-tuned by the painted cultural relics images. In 

the fine extraction stage, the outputs of the detail-aware BDCN are used as the inputs 

of the proposed MSU-Net, which fuses multiscale features for refining the sketch and 

denoising. 

 

Figure 1: The proposed sketch extraction framework. 

 

3.1  Coarse Extraction Based on Detail-Aware BDCN 

In Fig. 2, there are four natural images along with their true edge labels of the 

BDCN and sketches extracted by the FDoG algorithm. It can be seen that the typical 

BDCN meth-od focuses on the contour extraction of the object in the images, while it 

loses plenty of image details. As the network deepens, the features learned by BDCN 

will become more abstract. FDoG algorithm extracts the edge in the image based on 

using the gradient, which is sensitive to differences of color and texture. The sketch 

from the FDoG algorithm contains rich details while it suffers from noise and fake 

edges. Thus, this paper proposed a novel detail-aware BDCN integrating existing 



BDCN and FDoG algorithms to complement each other. It firstly used natural images 

and extractions by FDoG to pre-training the model, which not only solved the 

problem of the limited relics data, but also utilized low-level features of natural 

images including shapes, texture, etc. Then, we fine-tuned the deep network on relics 

data with the extractions by FDoG, which not only used the prior knowledge to help 

the deep network focus on the learning of boundaries and details but also captured 

deep abstract features. 

 

Figure 2: Edge detection on natural images. (a) Original natural images; (b) True edge labels of 

BDCN; (c) Sketches extracted by FDoG algorithm. 

We design a learning method that uses traditional FDoG edge detection 

algorithms to assist in the enhancement of detail awareness, which can force deep 

learning to pay attention to details to extract sketch with more complete information. 

Firstly, the FDoG algorithm is used to extract sketch, and it is combined with the 

labels of the edge detection network to form a supervisory pair. And we designed a 

weighted loss function to constrain the learning of the network: 

                  ),(),( e d g ec o a r s eF D o Gc o a r s ec o a r s e YPLYPLL                   (3) 

Where FDoGY denotes the sketch extracted by the FDoG algorithm which contains 

rich details, edgeY denotes the label of the edge detection, 
coarseP denotes the prediction 

of coarse extraction of the sketch. and  are the weights of the predicted sketch 

between the FDoG extraction sketch and the label of the edge detection in the loss 

calculation, respectively. 

In this study, a prediction was given for each pixel. For the ground truth, the 

pixels on the sketch were defined as the positive samples, that is,  γ, jj  yyY . 

The non-sketch pixels were defined as the negative samples, that is,  0, jj  yyY . 

Besides, γ was the threshold for dividing pixels into positive and negative samples. 

However, the distribution of sketch and non-sketch pixels was heavily biased. Lin et 

al. [44] proposed a focal loss and designed two balance factors to solve the problems 

of hard and easy sample imbalance and positive and negative sample imbalance. 

Since our positive and negative pixels were seriously imbalanced, we adopted the 



method of adding a class balance factor in the focal loss, that is, using the following 

class-balanced cross-entropy loss function to define Eq. 3: 
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Where Ŷ  is the predicted sketch and )(/)/(   YYYYYY  ，  is 

used to balance the positive and negative samples. 

During the training stage, we used the natural image dataset to pre-train the 

detail-aware BDCN and the relic image dataset to fine-tune the model. In fine-tuning, 

we replaced edgeY  with the ground truth of painted cultural relics for training, which 

provided more relics details and also made the sketch extraction model more in the 

style of the cultural relics. 

Coarse extraction based on detail-aware BDCN combines the advantages of deep 

feature learning and traditional edge detection algorithms, which overcomes the 

problem of detail loss and produces a coarse sketch. Because FDoG easily suffers 

from noise, it is more likely to introduce noise into the prior detail knowledge 
FDoGY , 

which leads to fake lines in the coarse sketch. Moreover, there are various scales of 

the object in the painted cultural relics images. According to our experience, 

detail-aware BDCN generates blur and artifacts in some pixels because of the network 

directly upsampling all the features to the same scale for prediction. To overcome 

these problems, we propose an MSU-Net method to further refine the coarse sketch. 

 

3.2  Fine Extraction Based on MSU-Net 

The typical U-Net follows the encoder-decoder paradigm for feature learning, 

which is a promising image denoising and reconstruction method [38, 39, 45, 40, 46]. 

In this study, we considered the disease suppression and sketch extraction tasks in the 

painted cultural relics to be a denoising problem and reconstruction tasks. Instead of 

using the typical U-Net for image reconstruction directly, we propose an MSU-Net to 

refine the coarse sketch. Typical U-Net commonly uses feature maps from the last 

layer in the decoder path to make the prediction. However, the features from 

convolutional learning will gradually become abstract as the network became deeper. 

Many meaningful multiscale detail features may be lost [34, 47, 48, 49], which should 

be considered in the sketch extraction. 

The structure of the proposed MSU-Net is shown in Fig. 3. The MSU-Net keeps 

the main structure of the typical U-Net in which the features of the encoder path are 

connected into the decoder path for the fusion of features from the encoder path and 

decoder path. The fused features can contain the different size receptive fields 

information from the encoder path. In the decoder path, different from like U-Net 

directly upsampling the fused feature, we add a multiscale feature fusion path. In this 

path, the fused features are copied and connected to a 1×1×1 convolutional layer. 

Then, a sketch prediction is generated for each scale (called side-outputs, as shown in 

Fig. 3) by using a transposed convolutional operator to upsample all the feature maps 



from the convolutional layer to the same size of the original image. The side-outputs 

directly access the prediction results of different scales. Due to the different receptive 

fields of the convolutional layer of the decoding path, when the side-output predicts 

from shallow to deep, it focuses on small details and gradually captures larger targets, 

which can directly predict both low-level information and object-level information. 

Finally, in order to fuse the results of different levels of prediction, the output feature 

map of the decoder path and all the side-outputs are combined and fed into a 1 x 1 x 1 

convolutional layer for sketch prediction. Based on this, we enhanced the 

representation of multi-scale features, which is beneficial to our capture of multi-scale 

disease and the learning of edge and details. Note that the 3×3 convolutional layers 

used to extract features in MSU-Net are set to padding = 1 to ensure that the output is 

the same size as the input image.  

 

Figure 3: The detailed architecture of MSU-Net. 

 

The highlights of MSU-Net are that it not only utilizes feature maps from 

multiscale receptive fields in the encoder path to suppress the effect of disease in the 

relic image but it also utilizes multiscale feature maps in the decoder path for 

de-blurring and refining the sketch. 

 

3.3 A Hierarchical Deep Network Framework for Sketch Extraction 

The hierarchical deep network framework concatenates the detail-aware BDCN 

and MSU-Net, as shown in Fig. 1, in which there are three steps during the training 

stage: 1) The detail-aware BDCN model is pre-trained with the natural image dataset. 

Since painted cultural relics data are limited, it is difficult to directly train a deep 

network with good performance. We used a natural image dataset with the truth edges 

and the extracted sketches by the FDoG algorithm to pre-train a detail-aware BDCN 

model as described in Section 3.1. 2) The painted cultural relic images were used to 

fine-tune the detail-aware BDCN model as the coarse extraction model. In this step, 

we first used the FDoG algorithm to extract the edge from the painted cultural relic 

images and then combined it with the true sketch delineated by the expert to fine-tune 



the detail-aware BDCN model. 3) We trained the MSU-Net as the fine sketch 

extraction as described in Section 3.2. The coarse sketches from the detail-aware 

BDCN were used as the inputs of MSU-Net and the true sketches were used as the 

outputs of MSU-Net. MSU-Net was trained with the proposed fusion loss function in 

Eq. 6. We finished the training of the whole framework with the above three steps. At 

the test stage, test samples were passed through the two stages in the framework for 

sketch extraction. 

In the proposed framework, transfer learning was used to solve the limited 

training dataset problem and the FDoG and BDCN were integrated for coarse sketch 

extraction, which preserves both contour and details at the same time. Furthermore, 

MSU-Net fused multiple predictions with different scales for the refinement of relic 

sketches.  

 

4. Experimental Results and Discussion 

4.1 Dataset 

Natural image dataset: We used the public natural image dataset, BSDS500 

[18], to pre-train the detail-aware BDCN model. The BSDS500 dataset contains 500 

images and reference edge labels.  

The painted cultural relics images: We collected 53 relic images from Fengguo 

Temple, Qianling, and the Dunhuang murals, which contain complex scenes like 

Buddha images and Tang Tomb. All the reference sketches of the relic images were 

delineated by the experienced experts from the Shaanxi History Museum. The sizes of 

the images range from 160×160 to 1000×1000. In our experiments, we selected 41 

images and cropped them into 82 sub-images (to increase the number of images) for 

training the model. During training, we adopted the data augmentation strategy [28, 

50, 30] to make our model more robust. To validate the performance of the proposed 

method, the remaining 12 images were used for testing, which contained two scenes: 

clean background images (e.g., Echographic of Dunhuang murals, as shown in the 

first and second rows of Fig. 4) that have less disease and complex background 

images (e.g., "Polo Painting" and "Preparing horses painting," as shown in the third 

and fourth rows of Fig. 4) that have cracks and shedding.  

Hyperspectral painted cultural relics images: To validate the generalization 

ability of the proposed method, we extended an experiment, passing a characteristic 

band of the hyperspectral image through two stages in the hierarchical sketch 

extraction framework for testing. We used hyperspectral imaging equipment, 

'SOC710,' to collect more than 20 relic images from Fengguo Temple and Qianling. 

Based on different data characteristics, we manually selected different bands with 

more obvious sketch information as the test data, for example, "Qianling hunting trip 

painting," as shown in Fig. 8(a), and its 755th band as shown in Fig. 8(a1) ; "Buddha’s 

seat of lotus flower painting," as shown in Fig. 8(b), and its 740th band as shown in 

Fig. 8(b1); "The Eighteen Arhats in the Fengguo Temple," as shown in Fig. 8(c) and  

Fig. 8(d), and their 6th band after Minimum Noise Fraction Rotation (MNF) [51], as 

shown in Fig. 8(c1) and Fig. 8(d1). 

 



4.2 Experimental Setups 

To demonstrate the effectiveness of the proposed method, seven state-of-the-art 

algorithms, of which there were six edge detection algorithms, including Canny [52], 

FDoG [14], Edge-Boxes [19], HED [28], RCF [34], BDCN [33], and the related 

algorithm U-Net [38], were chosen for comparison. 

The root mean squared error (RMSE) [53], structural similarity index (SSIM) 

[53], and average precision (AP) [15] were used to evaluate the results of the sketch 

extraction, which respectively measure the error, structural similarity, and average 

accuracy between the extracted sketch and the ground truth. The larger the value of 

SSIM and AP are, the better the performance. The smaller the value of RMSE is, the 

better the performance. 

Furthermore, we investigated and analyzed the effect of each module on the 

performance of the proposed method, including detail-aware BDCN, MSU-Net, and 

several key parameters. Finally, an experiment on hyperspectral images was 

conducted to show the generalization ability of the proposed method. 

 

5. Experimental Results 

5.1 Comparison with Other Works 

The results of our method and the compared methods are given in Tab. 1. For the 

HED, RCF, and BDCN methods, the results of two cases are reported 1) without "*", 

which means that we use the methods trained on natural images and tested on our 

testing dataset, and 2) with "*", which means that we trained the methods on our 

training dataset and tested them on our testing dataset. 

Table 1: Comparison of existing edge detection works and related works. 

Method RMSE SSIM AP 

Canny 0.3615 0.8268 0.4172 

FDoG 0.2561 0.8993 0.5491 

Edge-Boxes 0.3747 0.6367 0.3569 

HED 0.3237 0.8105 0.3432 

RCF 0.3206 0.7598 0.3561 

BDCN 0.3186 0.8263 0.3887 

HED* 0.2938 0.7531 0.5321 

RCF* 0.2969 0.7216 0.5245 

BDCN* 0.2436 0.8491 0.5541 

U-Net* 0.2280 0.9931 0.6678 

Ours 0.1956 0.9963 0.7846 

 
 

In terms of the RMSE and AP metrics, deep learning-based methods (HED*, 

RCF*, BDCN*, and our method) outperformed some traditional edge detection 

methods (Canny) and the learning-based method (Edge-Boxes) on our cultural relics 

data. In particular, U-Net* and our method outperformed the compared traditional 

methods (Canny, FDoG) and learning-based method (Edge-Boxes) in three metrics, 



which proves the advantage of deep learning-based methods on sketch extraction. 

Second, the proposed method outperformed the other six edge detection methods in 

three performance metrics, which were around 5~17%, 1~35%, and 23~44% in terms 

of RMSE, SSIM, and AP, respectively. Specifically, the proposed method achieved AP 

values around 23% higher than those of the BDCN* and FDoG algorithms, which 

indicates that the proposed method had a visible improvement in the completeness 

and accuracy of sketch extraction compared to the other two methods. The proposed 

method outperformed the FDoG and BDCN* algorithms by about 6% in RMSE, 

which indicates that the extracted sketches by our method had a smaller average error 

in the whole images. Moreover, the proposed method achieved the highest value in 

the SSIM, which means that the extracted sketches had the best structural similarity 

with the ground truth. 

In addition, U-Net* outperformed BDCN* by about 14% in SSIM, which 

indicates that the sketches extracted by U-Net had a higher structural similarity with 

the relic style, showing the capacity of U-Net to refine sketches. The proposed 

method reached the highest in SSIM, and it was superior to U-Net* by about 11% in 

AP value and about 3% in RMSE value. Compared with U-Net*, which only uses 

relic data for training, our hierarchical framework uses a coarse extraction model 

trained on a large number of natural data and then refines it, which effectively solves 

the problem of insufficient data to achieve better performance. 

The extracted sketches and some partially enlarged details of the four images by 

the different methods for the visual evaluation are shown in Fig. 4. As shown, FDoG 

suffered from noise and generated discrete points and broken lines, especially in the 

third and fourth images, which have serious diseases. The extraction results of the 

Edge-Boxes are blurred and many important details were lost in the four images. The 

sketches from RCF suppressed the effect of complex noise; however, they appeared 

blurry in the four images and many details were lost, especially the facial features in 

the first two images and the boots texture in the fourth image. The sketches from 

BDCN* that were trained with relic data are relatively complete, but areas with denser 

details were easily blended and blurry. The extraction results of U-Net* show 

insufficient learning, which not only resulted in the loss of much information but also 

caused them to suffer from noise. Compared with those results, the sketches from the 

proposed method are much clearer; they are not only complete and continuous but 

also have vivid details. These results illustrate the advantages of our method on 

disease suppression and detail extraction for relic sketch extraction. 



 

Figure 4: (a) The original painted cultural relics image; (b) Ground truth; (c) FDoG; (d) BDCN; (e) 

Our coarse extraction. The right figures (a1-e1) are the corresponding partially enlarged details. 

Overall, the proposed method achieves much better performance for relic sketch 

than the previous methods in the objective and visual evaluation. 

 

5.2 Analysis of Each Module 

Two sets of experiments were designed to verify the effect of the detail-aware 

BDCN in coarse extraction and MSU-Net in fine extraction. Furthermore, we discuss 

the weight parameters of FDoG in the coarse extraction and the performance of fuse 

side-output layers in MSU-Net. 

 

5.2.1 The Effect of Detail-Aware BDCN 

Detail-aware BDCN was designed on the deep edge detection algorithm (BDCN) 



and guided by the gradient-based edge detection algorithm (FDoG) to focus on detail 

feature learning. Specifically, we designed a weighted loss function to guide the 

network learning during the training stage, where   and   were used to balance 

the loss between the prediction and the edges obtained by FDoG and the loss between 

the prediction and the true edge. Sketches from the coarse extraction stage were 

compared with different parameters in the weighted loss function to verify the effect 

of detail-aware BDCN, as shown in Tab. 2 and Fig. 5. 

Table 2: The performance of weight parameter for coarse extraction sketch. 

/  0/1 0.05/0.95 0.1/0.9 0.2/0.8 

Recall 0.459 0.731 0.916 0.918 

RMSE 0.337 0.320 0.341 0.374 

In this experiment, the weight (  and  ) was varied to tune the effect of the 

FDoG algorithm on the detail-aware BDCN and recall [15] and RMSE were used as 

the performance metrics. Because recall is the number of correct pixels divided by the 

number of results that should have been extracted, the larger the value of recall is, the 

more correct pixels there are in the sketch. The smaller the value of RMSE is, the less 

noise in the sketch. 

In Tab. 2, 0/1 denote the results from BDCN without the guidance of the FDoG 

algorithm. As shown, the recall value improved as the value of   increased. 

Specifically, there were obvious improvements in recall value when   increased 

from 0 to 0.05, which means that the deep network captures more details with the 

guidance of the FDoG algorithm. Increasing   from 0.1 to 0.2 yielded only minor 

improvements of the recall value, while the RMSE value rose. The reason for this 

could be that the FDoG algorithm is sensitive to noise in the original image, which 

may introduce noise in the results when FDoG has more effects. Thus, we set  =0.1 

and  =0.9 in our experiments for a balance of details extraction and noise 

suppression.  

 
Figure 5: (a) The original painted cultural relics image; (b) Ground truth; (c) FDoG; (d) BDCN; (e) 

Our coarse extraction. The right figures (a1-e1) are the corresponding partially enlarged details. 

Similar conclusions can be made from a visual evaluation, as shown in Fig. 5. 



The results from the FDoG algorithm have lots of discrete points and broken lines 

because of noise and disease in the original images. Compared with the FDoG 

algorithm, the results from BDCN extract the contour of the object with continuous 

lines and have fewer effects from the noise and disease. However, the BDCN method 

lost many details in regions of interest and generated blurring lines in most of the 

edges. Compared with those two methods, the proposed detail-aware BDCN 

overcame those problems and generated a coarse sketch with rich details and clear 

outlines. Although the results from detail-aware BDCN have some blurs in local 

regions caused by the disease, it successfully utilized the advantages of the FDoG and 

BDCN algorithms to generate a coarse sketch for the next refinement. 

 

5.2.2 The Effect of MSU-Net 

To verify the effect of the proposed MSU-Net in the fine extraction, two group 

experiments were designed based on the coarse sketch extracted by detail-aware 

BDCN: (1) we used BDCN, U-Net and MSU-Net respectively as the fine extraction 

network to compare and verify the effect of MSU-Net to the sketch refinement and (2) 

we varied the structure of MSU-Net with different fusion strategy.  

 

Figure 6: (a) Ground truth; (b) Coarse sketch; (c) Fine extraction by BDCN; (d) Fine extraction by 

U-Net; (e) Fine extraction by MSU-Net. The right figures (a1-e1) are the corresponding partially 

enlarged details. 

The results produced by different fine extraction methods are shown in Fig. 6. 

The coarse sketches generated by the detail-aware BDCN have rich details of interest 

and outlines while containing blurred and fake lines caused by noise and disease. The 

refined sketches by BDCN still have blurred lines, especially in the densely detailed 

areas like the first and second images. U-Net and our MSU-Net had better 

performance than that of BDCN on the de-blurring, leading to more clear sketches in 

all the cases. Furthermore, we compared the effect of U-Net and MSU-Net. To verify 

the effect of refinement, we enlarged the details from the first and second images. 

MSU-Net had a better reconstruction effect on the sketches and retained a more 

complete sketch. Moreover, to verify the effect of disease suppression, we enlarged 

the cracks and shed disease areas in the third and fourth images. As shown, MSU-Net 

was less affected by noise and disease and produced fewer false lines in the sketches. 



The reason for this could be that the proposed MSU-Net fuses the predictions from 

multiple scales, which overcomes the effects of the noise and disease. Overall, this 

experiment proved that the proposed MSU-Net could make up for the shortcomings of 

the detail-aware BDCN and generate satisfactory results through hierarchical sketch 

extraction. 

Furthermore, we investigated the effect of MSU-Net structure by varying the 

fusion of the side-outputs, as shown in Tab. 3. Side-output5 means that only the last 

layer in the decoder path was used for prediction, that is, the same as traditional 

U-Net. Side-output5, 4 indicates that layer 5 and layer 4 were used in the decoder path 

for predictions, respectively, and then these two predictions were fused for the final 

sketch. The rest could be completed in the same manner. 

Table 3: The performance of fuse side-output layers in MSU-net. 

fuse side-output layers RMSE SSIM AP 

Side-output5 0.2185 0.9921 0.6745 

Side-output5,4 0.2095 0.9897 0.6980 

Side-output5,4,3 0.2061 0.9788 0.7335 

Side-output5,4,3,2 0.2003 0.9905 0.7385 

Side-output5,4,3,2,1 0.1956 0.9963 0.7846 

From three evaluation metrics, it was found that the performance of MSU-Net 

generally improved as the number of the fused side-outputs increased. It achieved the 

best results when fusing all the side-outputs. We also show each side-output in Fig. 7, 

where there are different predictions with the variety of network’s depth in the 

decoder path. These predictions focus on different receptive fields. The proposed 

MSU-Net effectively fused those predictions to make a better prediction that contains 

vivid details without being affected by noise and disease.  

 
Figure 7: Several examples of the side-outputs of MSU-Net. (a) The original painted cultural 

relics image; (b) Side-output1; (c) Side-output2; (d) Side-output3; (e) Side-output4; (f) 

Side-output5. The first line and the second line are the "Lady painting" and the "Polo painting" in 

the tomb of Tang Wei imperial concubine, respectively. 

 

5.2.3 Generalization Ability of the Proposed Method 

Hyperspectral imaging technology can obtain the spatial and spectral information 

of each pixel at the same time. For painted cultural relics, hyperspectral images have 

advantages on the distinguish of substances with spectral-spatial information, which 

will greatly improve the ability to identify areas covered by dust, pollutants, and mine 



sketch information hidden under visible light. Due to the particularity of cultural relic 

images, hyperspectral imaging has been widely used in cultural relic research in 

recent years [54, 55, 56, 57, 58]. Therefore, we conducted experiments on 

hyperspectral images, combining the ability of hyperspectral technology to mine 

features to further validate the generalization ability of our method. 

Hyperspectral images have a large number of bands and high information 

redundancy. For some noisy and complex images, we first performed MNF to reduce 

noise and then manually selected a band with obvious sketch information for testing. 

The selected band (Fig. 8(a1-d1)) could provide richer hidden information than visible 

light (Fig. 8(a-d)). Moreover, we passed it through two stages in the hierarchical 

sketch extraction framework for testing, which could make full use of the information 

to extract accurate sketches. 

 

Figure 8: (a-d) Visible light images; (a1-d1) Manually selected hyperspectral band; (a2-d2) Sketch 

extracted by our method; (c3-d3) Ground truth. 

The extraction results are shown in Fig. 8. For some unclear painted cultural 

relics in visible light, our method in combination with hyperspectral imaging 

technology could still extract clear sketches. Furthermore, the proposed meth-od 

could capture rich details, such as the costume details of the human in Fig. 8(a), the 

facial features in Fig. 8(b), the bracelet of Arhat in Fig. 8(c), and the stripes of clothes 

in Fig. 8(d). Furthermore, the noise suppression effect was very good for images with 

such serious diseases, such as the large number of wear tracks in Fig. 8(a), the disease 

in Fig. 8(b), and the corrosion marks and cracks in Fig. 8(c) and Fig. 8(d). This shows 

the generalization ability of the proposed method for the sketch extraction of 

hyperspectral data. The proposed method could still be extended to hyperspectral data 

sources to extract more accurate sketches for painted cultural relics images when the 

visible light is unclear. This has important significance for the complexity of cultural 

relics data and also provides higher practicality for actual cultural relics restoration 

and research work. 

 

Discussion and Conclusion 

In this paper, we propose a novel hierarchical relic sketch extraction framework 

that consists of a detail-aware BDCN and MSU-Net. The proposed detail-aware 

BDCN integrates the FDoG and BDCN algorithms for the coarse sketch extraction. 

With the transfer learning technique, the detail-aware BDCN not only solves the 

limited training dataset problem in the relic sketch extraction but also preserves 

details and outlines well in the coarse sketch. The coarse sketch is used as the input of 



the proposed MSU-Net for refinement. Based on U-Net, the proposed MSU-Net fuses 

multiscale predictions from the decoder path, which not only utilizes feature maps 

from multiscale receptive fields in the encoder path for suppressing the effect of 

disease in the relic image but also utilizes multiscale feature maps in the decoder path 

for de-blurring and refining the sketch. The effectiveness of the proposed hierarchical 

sketch extraction framework was verified through experiments. 

Moreover, we investigated the effects of two modules on the performance of the 

proposed method: detail-aware BDCN and MSU-Net. Experimental results showed 

that the detail-aware BDCN captures more detail without too many effects of noise 

and disease, which is an effective coarse sketch method. Compared with typical 

U-Net, MSU-Net shows a better performance in the noise suppression and line 

refinement. Our framework which combines with detail-aware BDCN and MSU-Net 

is the promising sketch extraction method. 

Furthermore, we evaluated the generalization ability of the proposed method on 

hyperspectral relic images. Experimental results showed that the developed method is 

generalizable on the different source images, which provides more possibilities for 

sketch extraction of cultural relics images with complex conditions. In the future, we 

will continue to study the use of more effective bands of hyperspectral images to 

improve the accuracy of sketch extraction. 

In summary, the proposed relic sketch extraction method achieved the best 

results among the compared state-of-the-art methods in each case and it can deal with 

the images with complex backgrounds, thereby indicating that the proposed method is 

a promising and effective relic sketch extraction method. 
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