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Abstract

This paper derives the analytical solution of a novel distributed node-specific

block-diagonal linearly constrained minimum variance beamformer from the

centralized linearly constrained minimum variance (LCMV) beamformer when

considering that the noise covariance matrix is block-diagonal. To further re-

duce the computational complexity of the proposed beamformer, the Sherman-

Morrison-Woodbury formula is introduced to compute the inversion of noise

sample covariance matrix. By doing so, the exchanged signals can be computed

with lower dimensions between nodes, where the optimal LCMV beamformer

is still available at each node as if each node is to transmit its all raw sensor

signal observations. The proposed beamformer is fully distributable without

imposing restrictions on the underlying network topology or scaling computa-

tional complexity, i.e., there is no increase in the per-node complexity when new

nodes are added to the networks. Compared with state-of-the-art distributed

node-specific algorithms that are often time-recursive, the proposed beamformer

exactly solves the LCMV beamformer optimally frame by frame, which has much

lower computational complexity and is more robust to acoustic transfer func-

tion estimation error and voice activity detector error. Numerous experimental

results are presented to validate the effectiveness of the proposed beamformer.
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1. Introduction

Wireless acoustic sensor networks (WASNs) generally consist of several nodes,

where each node has one or many sensors, a processing unit, and a wireless

communication module allowing them to exchange data. Compared with the

traditional and single sensor array [1], WASNs can physically cover a wider area,

which have more opportunity to select a subset of nodes close to some target

sources, and thus higher signal-to-noise ratio (SNR) and direct-to-reverberant

ratio (DRR) can be expected [2, 3]. As the next-generation technology for au-

dio acquisition and processing, WASNs have many potential applications, such

as binaural hearing aids [4, 5, 6], (hands-free) speech communication systems

[7, 8, 9], and acoustic monitoring systems [10, 11, 12, 13].

In principle, all the sensor signal observations from different nodes can be

transmitted to a fusion center, and then an optimal beamformer can be com-

puted, where this approach is known as the centralized estimation [14, 15, 16].

The centralized estimation requires a large communication bandwidth, a large

transmission power consumption at the individual nodes, and a nonnegligible

computational complexity at the fusion center. However, both the power and

the communication bandwidth resources in WASNs are often limited. Further-

more, in many WASNs applications, the fusion center may be undesirable due

to privacy considerations [17]. A trivial solution is obtained by only utilizing

the local sensor signal observations at a single node without any communication

link with other nodes. Whereas, this solution cannot utilize the entire informa-

tion from the WASNs and hence is only sub-optimal. A promising solution is to

develop a suitable distributed approach, which often has three stages [18]. At

the first stage, each node processes its own sensor signal observations to obtain

some compressed signals. At the second stage, only these compressed signals

are transmitted to reduce the communication bandwidth. At the last stage, a
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target signal is obtained by merging all these compressed signals properly.

Distributed speech enhancement algorithms can be roughly divided into two

main categories: node-specific and non-node-specific. For the node-specific es-

timation algorithms, each node in the WASNs can estimate a different target

signal, that is to say, a target source for one node may be an interfering source for

another node, and vice versa. The node-specific estimation problem is intrinsic

in a blind beamforming framework where the acoustic transfer functions (ATFs)

between the target sound sources and the sensors are generally unknown. For

these blind beamformers, some subspace estimation algorithms can be used to

estimate the subspace of the ATFs [19, 20], and then the target signal can be

estimated as it is observed at a reference sensor. If each node in the WASNs

chooses its own local sensor as reference, the spatial information of the target

source can be preserved. Therefore, the node-specific estimation algorithms are

preferred for many practical applications [21].

Several non-node-specific speech enhancement algorithms have been pre-

sented in [17, 18], and [22], where different nodes shared a common reference

sensor. In [17], each node was assumed to have one sensor and a distributed

delay and sum (DDS) beamformer in a randomly connected network was pro-

posed. The DDS with the randomized gossip algorithm [23] is an iterative

algorithm for solving averaging consensus problems in a distributed way, where

all nodes’ outputs are expected to converge to the same optimal average value.

The DDS typically needs many iterations to converge to the optimal solution,

as well as multiple (re)-broadcasts of the intermediary variables. The DDS

is more suitable for estimating the fixed or slowly varying parameters [24]. In

[18], a time-recursive distributed generalized sidelobe canceler (DGSC) was pro-

posed for a fully connected network. The DGSC has two components including

constraints subspace and its corresponding null-space, and updates the filter

coefficients during speech-absent segments. The DGSC needs to transmit S-

dimensional raw signal observations, with S the number of target sources, in

addition to the compressed signals to construct the constraints subspace com-

ponent. The DGSC requires a larger communication bandwidth than those
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distributed algorithms transmitting only the compressed signals when one aims

to get the estimation of the S target source signals separately. In [22], the pro-

posed block-diagonal LCMV (BD-LCMV) beamformer utilizes a set of linearly

equality constraints to reduce the full-element noise sample covariance matrix

to a block-diagonal form, and the imposed block-diagonal structure of the esti-

mated sample covariance matrix results in a naturally separable objective func-

tion. Then the distributed optimal problem can be solved by the primal-dual

method of multipliers (PDMM) [25]. The BD-LCMV requires lots of iterations

to achieve high performance, and therefore we need to make a trade-off between

per-frame optimality and communication overhead in practice.

Several node-specific estimation algorithms have been proposed in [4, 5, 14,

24, 26, 27], and [28], where two main criteria including the minimum mean

square error (MMSE) and the minimum variance distortionless response (MVDR)

are used. The mean square error (MSE) between the output signal and the de-

sired signal comprises two components, namely the desired signal distortion and

the residual noise [18]. The MVDR, first proposed by Capon [29], minimizes

the noise power at the output signal while maintaining a distortionless response

towards the desired direction. Er and Cantoni [30] generalized the single dis-

tortionless response to a set of linear constraints, and denoted this beamformer

as LCMV.

In [4], a distributed node-specific speech enhancement algorithm was pro-

posed using the MMSE criterion in a 2-node network for binaural hearing aids

applications. The node-specific estimation is required to preserve the auditory

cues at the two ears. This method relies on the speech-distortion-weighted mul-

tichannel Wiener filter (SDW-MWF), and was referred to as the distributed

MWF (DB-MWF). In [5], an iterative distributed MVDR (DB-MVDR) beam-

former was introduced for a similar binaural hearing aids setting. Both meth-

ods assume a single target source to obtain convergence and optimality, and are

equivalent when the trade-off factor between noise reduction and distortion is

zero in the SDW-MWF. A more general case was presented in [24], [26], and

[27], where multiple target sources and J(J ≥ 2) nodes are considered in a
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so-called distributed adaptive node-specific signal estimation (DANSE) scheme.

The scheme considers each node in the WASNs as a data sink, gathering the

compressed signals from other nodes, and then estimates the optimal filter co-

efficients in an iterative fashion. In [26] and [27], the algorithms were proposed

for a fully connected network and a network with a tree topology (T-DANSE),

respectively. In [24], the algorithm is topology-independent (TI-DANSE). The

TI-DANSE algorithm has a slower convergence rate compared to [26] and [27],

and requires a larger number of frames to obtain near optimal performance

[22]. In [14], a distributed LCMV beamformer referred to as LC-DANSE was

proposed by combining the DANSE scheme with the LCMV beamformer. For

the DANSE algorithms in [24], [26], and [27], they attempt to align the signal

components from the same source in different microphone signals. However, the

alignment of the signal components is only possible when the filter length is

at least twice the maximum time difference of arrival (TDOA) between all the

sensors. This means that in general, the noise reduction performance degrades

with increasing TDOA and a fixed filter length [6]. For the LC-DANSE algo-

rithm, the raw signal observations at one node and the compressed signals from

other nodes are concatenated into a new vector. In fact, the new vector still has

very high dimensions, especially when the number of target sources S is large,

and requires a high complexity to compute the inverse of its covariance matrix.

Besides, both the DANSE and the LC-DANSE algorithms are time-recursive

and require multiple frames to reach optimality, which incurs a slow tracking

performance [22]. In [28], each node was assumed to have more than one sen-

sor. The recursive estimation of the inverse noise or noisy sample covariance

matrix is structured as a consensus problem and is realized in a distributed

manner via the randomized gossip algorithm for arbitrary topologies, similar

to [17]. In each iteration, each node needs to transmit M -dimensional, with

M the total number of sensors in the WASNs, signals to obtain the product

of the M ×M inverse sample covariance matrix and the M -dimensional sensor

signal observations. The communication cost may be higher than that of the

centralized algorithm, and the convergence error accumulates across time when
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the aforementioned product is not accurately estimated.

In this paper, we propose a distributed node-specific block-diagonal lin-

early constrained minimum variance (DNBD-LCMV) beamformer. The DNBD-

LCMV utilizes a set of linear equality constraints to reduce the full-element

noise sample covariance matrix to a block-diagonal form and then its analyt-

ical solution can be derived from the centralized LCMV beamformer directly.

The inverse noise sample covariance matrix at each node is proposed to update

by the Sherman-Morrison-Woodbury formula [31] and is used to compute the

exchanged signals. The proposed DNBD-LCMV can significantly reduce the

number of signals exchanged between nodes, yet obtains the optimal LCMV

beamformer at each node as if each node can transmit its all raw sensor signal

observations. The DNBD-LCMV is fully distributable for any network topology

and is completely scalable, i.e., there is no increase in the per-node computa-

tional complexity when new nodes are added to the networks. Compared with

the state-of-the-art distributed node-specific algorithms, the DNBD-LCMV ex-

actly solves the LCMV beamformer optimally in each frame, which has much

lower computational complexity and is more robust to ATF estimation error

and voice activity detector (VAD) error.

The remainder of this paper is organized as follows. In Section 2, the signal

model is introduced, and the centralized LCMV is also presented in this section.

In Section 3, the DNBD-LCMV and extension of DNBD-LCMV are shown,

and its computational complexity and communication bandwidth are analyzed

in Section 4. The experimental results are presented in Section 5 and some

conclusions are given in Section 6.

2. Preliminaries

2.1. Signal Model

We consider the WASNs with J sensor nodes, where the set of nodes is de-

noted as J = {1, · · · , j, · · · , J}. Each node j is equipped with Mj microphones

and thus the total number of microphones is M =
∑J

j=1Mj . The distributed
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speech enhancement problem is often formulated in the short-time Fourier trans-

form (STFT) domain and the vector y (f, l) is given by

y (f, l) =
[
yT
1 (f, l) , · · · ,yT

j (f, l) , · · · ,yT
J (f, l)

]T
, (1)

where f denotes the frequency index, and l denotes the time-frame index.

yj (f, l) is an Mj × 1 vector consisting of locally received microphone signals

at the jth node, and the superscript T denotes the transpose operator. y (f, l)

can be modeled as

y (f, l) = H (f, l) s (f, l) + n (f, l) , (2)

where s (f, l) is a signal vector containing S speech sources, n (f, l) is a noise

vector, and

H (f, l) =
[
HT

1 (f, l) , · · · ,HT
j (f, l) , · · · ,HT

J (f, l)
]T

(3)

is a full-rank M × S ATF matrix. In particularly, Hj (f, l) is the ATF matrix

between the S speech sources and the Mj microphones at the jth node. In the

following, H (f, l) can be approximated as time-invariant in each frame and all

derivations refer to a single frequency bin. The frame index l and the frequency

index f will be omitted when no confusion arises.

2.2. Centralized LCMV Beamforming

For the centralized LCMV beamformer, node j applies a M -dimensional

estimator wj to the M -dimensional microphone signals y to obtain the node-

specific output dj = wH
j y, where the superscript H denotes the conjugate

transpose operator. wj can be obtained from the following general optimization

problem [32][33]

min
wj

wH
j Rnnwj ,

s.t. wH
j H = gH

j ,

(4)

where Rnn = E
{
nnH

}
is the noise covariance matrix and E{·} denotes the

expected value operator. gj is an S×1 desired response vector for the S speech
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sources. Its entries usually consist of ones and zeros to preserve the target

sources and eliminate other interfering sources simultaneously. The solution of

(4) can be given by

wj = R−1nnH
(
HHR−1nnH

)−1
gj . (5)

The node-specific output can be expressed as

dj = wH
j y

= gH
j

(
HHR−1nnH

)−1
HHR−1nn (Hs + n)

=

S∑
k=1

g∗j (k) s (k) + wH
j n,

(6)

where gj (k) and s (k) are the kth entries of gj and s, respectively. The super-

script “∗” marker denotes the conjugate operator.

Equations (5) and (6) require each node to have access to all microphone

signals y to estimate Rnn and then obtain dj . Therefore, all the locally re-

ceived signals yj at the jth node need to be transmitted, which results in a

large communication bandwidth and a large transmission power in the WASNs.

Besides, the computational power grows dramatically with the increase of M

when computing the inversion of Rnn.

3. Method

In the previous section, it is assumed that each node transmits all its mi-

crophone signals to every other node in the WASNs such that each node can

compute (5) and (6). We now look, instead, to the case where each node only

transmits a linearly compressed version of its microphone signals by means of the

distributed node-specific block-diagonal LCMV (DNBD-LCMV) beamformer.

For the sake of an easy exposition, we first assume that the ATF matrix H is

known, and describe the DNBD-LCMV for a fully connected network, where

each node is able to directly communicate with every other node in the WASNs.

Then, all derivations are extended to a blind beamforming framework and any

topology, similar to [22].
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3.1. DNBD-LCMV with Known ATF Matrix

If the reverberation time of a room is moderate or large enough and/or the

noise is far away from the microphones, i.e., the distance between the noise

and the microphones is larger than the reverberation radius, its reverberant

sound field is diffuse, homogenous, and isotropic [22] and [34]. In this case,

the normalized correlation Ωm,m1
(f) between two microphones m and m1 with

distance λm,m1
at a frequency f can be given by

Ωm,m1
(f) =

sin (2πfλm,m1/c)

2πfλm,m1
/c

, (7)

where c = 343 m/s is the sound speed. The correlation can be roughly divided

into two frequency regions: one highly correlated at low frequencies and the

other much less correlated at high frequencies. The boundary between the two

regions occurs at the first zero-crossing frequency fc = c/ (2λm,m1). When the

distance λm,m1 is large, the frequency fc is small. For example, fc equals 171.5

Hz for λm,m1
= 1 m.

For the WASNs, the microphones within a node are often nearby, whereas the

microphones from different nodes are further away. The noise can be assumed

to be uncorrelated across the different nodes [22], and then Rnn (l) has the

following block-diagonal form approximately

Rnn (l) = Blockdiag (∆nn,1 (l) , · · · ,∆nn,j (l) , · · · ,∆nn,J (l))

=



∆nn,1 (l) · · · 0M1×Mj · · · 0M1×MJ

...
. . .

...
...

...

0Mj×M1 · · · ∆nn,j (l) · · · 0Mj×MJ

...
...

...
. . .

...

0MJ×M1 · · · 0MJ×Mj · · · ∆nn,J (l)


,

(8)

where ∆nn,j (l) is the noise covariance matrix at the jth node, and 0Mj1×Mj2

is an Mj1 ×Mj2 null matrix.

Note that the noise covariance matrix used in the existing node-specific

algorithms, such as [14, 24, 26, 27], and [28], is full-element. In the non-node-

specific algorithm BD-LCMV [22], the block-diagonal Rnn (l) is adopted and
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the weight vector associated with the jth node is given by

wj(l) = ∆−1nn,j (l) Hjµ (l) , (9)

where µ (l) is a Lagrange multiplier shared by all nodes. Then the dual opti-

mization problem is introduced to compute the optimal µ (l) and is solved by

PDMM. Finally, the signal ej(l) = wH
j (l)yj(l) is exchanged between nodes and

the output dj(l) is obtained by summing all ej(l).

In this paper, the proposed beamformer has a completely new scheme. From

(5) and (8), the weight vector corresponding to the lth-frame microphone signals

can be expressed by

wj(l) = R−1nn (l) H
(
HHR−1nn (l) H

)−1
gj ,

=



∆−1nn,1 (l) H1

...

∆−1nn,j (l) Hj

...

∆−1nn,J (l) HJ


 J∑

j1=1

HH
j1∆

−1
nn,j1

(l) Hj1

−1 gj . (10)

The S-dimensional compressed signals zj (l) and the S × S matrix Dj (l)

related to the jth node are defined as

zj (l) = HH
j ∆−1nn,j (l) yj (l) ,

Dj (l) = HH
j ∆−1nn,j (l) Hj .

(11)

From (6) and (10), the node-specific output can be rewritten as

dj (l) = wH
j (l) y (l)

= gH
j z̃ (l) ,

(12)

where z̃ (l) is the product of D−1 (l) and z (l),

z̃ (l) = D−1 (l) z (l) . (13)
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In particularly, D (l) and z (l) are obtained by summing all zj (l) and all Dj (l)

separately,

D (l) =

J∑
j=1

Dj1 (l) , z (l) =

J∑
j=1

zj2 (l) . (14)

The above derivations assume that the noise covariance matrix ∆nn,j (l) at

the jth node is perfectly known. However, for practical applications, ∆nn,j (l)

is unknown and needs to be estimated from the noisy observations. This often

requires a hard or soft VAD to determine whether the speakers are present or

not. It is noted that the design of a VAD mechanism is a hot research topic on

its own, and is out of the scope of this paper [18, 24, 35]. In the following, two

methods including non-recursive (moving average) smoothing and first-order

recursive smoothing are considered to estimate ∆nn,j (l).

3.1.1. Non-Recursive Smoothing Method

For the non-recursive smoothing method, the set of microphone signals

frames and the set of noise-only frames for the current block of microphone

signals are denoted by Ly and Ln (Ln ⊆ Ly), respectively. The block has |Ly|

frames microphone signals and |·| denotes the cardinality of a set. The noise

covariance matrix at the jth node can be estimated using the set of noise-only

frames,

∆nn,j (l) ≈ ∆̂nn,j (l) =
1

|Ln|
∑

ln∈Ln

yj (ln) yH
j (ln) . (15)

Rigorously, all the estimated values need to use “̂” to distinguish them from

their true values. Analogously to ∆nn,j (l) in (15), we omit “̂” in the following

for the sake of brevity when no confusion arises. For the current block of mi-

crophone signals, ∆nn,j (l) only needs to be estimated once. From (11), Dj (l)

also needs to be estimated once.

We assume that each block has B frames microphone signals, i.e., |Ly| = B.

The scheme of the DNBD-LCMV with the non-recursive smoothing method is

shown in Fig. 1 and it consists of the following steps:

1) Initialize: i← 0.
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Figure 1: The scheme of the DNBD-LCMV with the non-recursive smoothing method for the

current block of microphone signals (J = 2). Each node j computes its node-specific output

dj (l) using its own S-dimensional compressed signals zj (l) and S-dimensional compressed

signals transmitted by the other node (Dj (l) only needs to be transmitted once for the

current block of microphone signals).

2) Each node j ∈ J performs the following operation cycle:

• Collect the current block of microphone signals yj (l) , l ∈ Ly = {iB, iB+

1, · · · , (i+ 1)B − 1}.

• For the current block of microphone signals, ∆nn,j (l) is estimated with

(15).

• HH
j ∆−1nn,j (l) is applied to Mj-dimensional microphone signals yj (l) to

obtain the S-dimensional compressed signals zj (l) with (11). Besides,

Dj (l) can also be obtained.

• zj(l) and Dj (l) are transmitted. In particularly, Dj (l) only needs to be

transmitted once for the current block of microphone signals.

• Each node can have access to all zj(l) and Dj (l), and computes z(l) and

D (l) with (14). Then, the inverse matrix D−1 (l) is multiplied with z(l)

to obtain z̃(l). Finally, gj is applied to z̃(l) to obtain dj(l).

3) i← i+ 1.

4) Return to step 2).

From Fig. 1, for each block of microphone signals, Dj (l) only needs to be
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transmitted once. Since Dj (l) is a Hermitian matrix and its main diagonal

entries are real numbers, the transmission of Dj (l) results in a total of S2

transmitted real numbers for each frequency bin per block. The transmission

cost is slight and can be neglected.

3.1.2. First-Order Recursive Smoothing Method

For the first-order recursive smoothing method, the noise sample covariance

matrix ∆nn,j (l) at the jth node is updated by [36]

∆nn,j (l) = (1− Pj (l))
(
α∆nn,j (l − 1) + (1− α) yj (l) yH

j (l)
)

+ Pj (l) ∆nn,j (l − 1) ,
(16)

where Pj (l) = 1 when speech component is detected in the lth-frame micro-

phone signals yj (l); and Pj (l) = 0, otherwise. When the binary VAD decision

is replaced by a soft speech presence probability (SPP) [37], Pj (l) can vary from

0 to 1, which will not be further considered here. α is a forgetting factor ranging

from 0 to 1.

When Pj (l) = 1, ∆nn,j (l) is not updated, i.e., ∆nn,j (l) = ∆nn,j (l − 1).

Similar to Section 3.1.1, only the transmission of zj(l) is required. While, for

Pj (l) = 0, i.e., yj(l) = nj(l), the current noise-only frame is included to update

∆nn,j (l) by the following equation

∆nn,j (l) = α∆nn,j (l − 1) + (1− α) yj (l) yH
j (l) . (17)

A naive solution is obtained by transmitting Dj(l) and zj(l) for each noise-only

frame, where a total of (S2 + 2S) transmitted real numbers and the inversion

operation of ∆nn,j (l) are required. The communication cost and computational

load are huge and need to be further reduced.

With the help of the Sherman-Morrison-Woodbury formula [31], the inversion

of ∆nn,j (l) in (17) can be expressed by

∆−1nn,j (l) =
1

α

(
∆−1nn,j (l − 1)−

∆−1nn,j (l − 1) yj (l) yH
j (l) ∆−1nn,j (l − 1)

α/ (1− α) + yH
j (l) ∆−1nn,j (l − 1) yj (l)

)
. (18)
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We further define c̄j (l) , cj (l), and c̃j (l) as follows:

c̄j (l) = HH
j ∆−1nn,j (l − 1) yj (l) ,

cj (l) = yH
j (l) ∆−1nn,j (l − 1) yj (l) ,

c̃j (l) = ∆−1nn,j (l − 1) yj (l) .

(19)

By substituting (18) and (19) into (11), we get

Dj (l) = HH
j ∆−1nn,j (l) Hj

=
1

α

(
Dj (l − 1)−

c̄j (l) c̄Hj (l)

α/(1− α) + cj (l)

)
,

(20)

and

zj (l) = HH
j ∆−1nn,j (l) yj (l)

=
c̄j (l)

α

(
1− cj (l)

α/ (1− α) + cj(l)

)
.

(21)

By substituting (19) into (18) , (18) can be further written as

∆−1nn,j (l) =
1

α

(
∆−1nn,j (l − 1)−

c̃j (l) c̃Hj (l)

α/ (1− α) + cj (l)

)
. (22)

For the noise-only frame, i.e., Pj (l) = 0, from (20), (21), and (22), the scheme

of the DNBD-LCMV with the first-order recursive smoothing method is shown

in Fig. 2, and it consists of the following steps:

1) Each node j ∈ J performs the following operation cycle:

• The inverse matrix ∆−1nn,j (l − 1) is applied to Mj-dimensional microphone

signals yj (l) to obtain the Mj-dimensional vector c̃j (l) and the real

number cj (l) with (19), where the S-dimensional vector c̄j (l) can also

be obtained by using Hj . Then, ∆−1nn,j (l) is estimated with (22).

• c̄j (l) and cj (l) are transmitted.

• Each node can have access to c̄j (l) and cj (l), and reconstructs Dj (l)

and zj (l) with (20) and (21), respectively. Then, D (l) and z (l) are

computed with (14). The inverse matrix D−1 (l) is multiplied with z (l)

to obtain z̃ (l). Finally, gj is applied to z̃ (l) to obtain dj (l).
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Figure 2: The scheme of the DNBD-LCMV with the first-order recursive smoothing method

(J = 2,Pj (l) = 0). For each node j, the S-dimensional vector c̄j (l) and the real number cj (l)

are transmitted to reconstruct Dj (l) and zj (l) with (20) and (21), respectively, at the other

node. The inverse matrix ∆−1
nn,j (l) is updated with (22). Each node j computes its node-

specific output dj (l) use its own S-dimensional compressed signal zj (l) and the reconstructed

signal zq (l) , q ∈ J \ {j}, where Dj (l) and the reconstructed matrix Dq (l) are also used.

2) l← l + 1.

3) Return to step 1).

From Fig. 2, for each noise-only frame, the S-dimensional vector c̄j (l) and

the real number cj (l) are transmitted to reconstruct the S × S matrix Dj (l)

and the S-dimensional vector zj (l) at other nodes instead of the transmission of

Dj (l) and zj (l). Besides, the inversion operation of ∆nn,j (l) is only required

at the beginning. The communication cost and computational load are greatly

reduced compared to the naive solution mentioned above.

3.2. DNBD-LCMV with Unknown ATF Matrix

In general, the ATF matrix H is unknown and needs to be estimated online.

Some subspace estimation algorithms can be used to estimate the column space
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of H [19, 20]. Define Q = [q1, · · · ,qS ] to be any basis that spans the column

space of H,

H = QΘ, (23)

where Θ is an S × S matrix comprised of the projection coefficients of the

original ATFs on the basis vectors.

When the speakers only change their positions slowly with respect to their

initial positions, such as teleconferencing, we can estimate the column space

Q at the initial stage (e.g., in a centralized way) [22]. This may cause some

estimation error of Q if the speakers have some slight movements and therefore

robust beamformer is preferred.

The goal for node j is to estimate the target signal from the signal vector s

as observed by one of node j’s microphones, referred to as the reference micro-

phone. Without loss of generality, the first microphone of each node is chosen

as the reference microphone. For node j, the index of its reference microphone

is equal to m = 1 +
∑(j−1)

q=1 Mq. Accordingly, the weight vector in (5) can be

rewritten as

w̄j = R−1nnQ
(
QHR−1nnQ

)−1
ḡj ,

ḡj (k) = gj (k)Q∗ (m, k) , (24)

where Q (m, k) is the entry in the mth row and kth column of Q. ḡj (k) and

gj (k) are the kth entry of ḡj and that of gj , respectively. The node-specific

output in (6) is modified by the following equation [14]

d̄j = w̄H
j y

= ḡH
j

(
QHR−1nnQ

)−1
QHR−1nn (QΘs + n)

=

S∑
k=1

g∗j (k)H (m, k) s (k) + w̄H
j n,

(25)

where H (m, k) is the entry in the mth row and kth column of H.

It is obvious that different nodes have different desired response vectors due

to different reference microphones, i.e., ḡj 6= ḡq with j 6= q. Therefore, each

node can extract a node-specific target signal based on node-specific reference
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microphone to preserve the spatial information of the target source, such as

time difference cues, which are very important in target source localization.

3.3. Extension of DNBD-LCMV

When the noise covariance matrix ∆nn,j in (8) is replaced by the noisy co-

variance matrix ∆yy,j , that is to say,

Ryy = Blockdiag (∆yy,1, · · · ,∆yy,j , · · · ,∆yy,J) , (26)

one can obtain the distributed node-specific block-diagonal linearly constrained

minimum power (DNBD-LCMP) beamformer, which can be given by

w̄
′

j = R−1yy Q
(
QHR−1yy Q

)−1
ḡj . (27)

where this beamformer does not require an estimate of the noise covariance

matrix.

Particularly, when ∆nn,j is an identity matrix Ij , the DNBD-LCMV becomes

the distributed node-specific delay and sum (DNDS) beamformer

w̄
′′

j = Q
(
QHQ

)−1
ḡj . (28)

where this beamformer only needs to be calculated once at the beginning. How-

ever, it cannot control the sound sources that are not included in ḡj .

Similar to [22], the proposed beamformers including DNBD-LCMV/DNBD-

LCMP, and DNDS can be implemented in the WASNs with arbitrary topologies.

This can be achieved by a slight modification to the data transmission process

of each node, where each node aggregates its transmitted data including zj (l)

and Dj (l) with the transmitted data from its neighbors. This will allow for the

transmitted data to disperse through the WASNs by means of an in-network

summation, and is demonstrated for the tree topology, as shown in Fig. 3.

We denote Nj as the set of neighbors of node j in the topology with node j

excluded. After the tree is formed with any tree formation algorithm [38, 39],

one arbitrary node is assigned as the root node and the nodes only communicate

with their neighbors (for example, N6 = {5, 7, 8, 9} and node 1 is the root node
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Figure 3: The tree topology with two sub-topologies: chain and star.

in Fig. 3). The following data-driven signal flow is executed for each block of

microphone signals (non-recursive smoothing method is considered below):

1) Any leaf node, i.e., a non-root node q having only a single neighbor, can

immediately fire and transmits zq (l) and Dq (l) to its single neighbor (to-

ward the root node). Any non-root node j with more than a single neighbor

waits until it has received the transmitted data from all its neighbors except

for a single neighbor that has yet to fire, say node j
′
, and then computes

the following sum

žj (l) = zj (l) +
∑

q∈Nj\j′
zq (l) ,

Ďj (l) = Dj (l) +
∑

q∈Nj\j′
Dq (l) .

(29)

Next, žj (l) and Ďj (l) are transmitted to node j
′

(toward the root node).

This process is repeated at every non-root node in the tree until the root

node is reached.

2) Once the data-driven signal flow has reached the root node, say node j
′′
,

the vector z̃ (l) is obtained by

z̃ (l) = Ď−1
j′′

(l) žj′′ (l) ,

Ďj′′ (l) = D (l) , žj′′ (l) = z (l) .
(30)
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The vector z̃ (l) is now flooded through the WASNs (away from the root

node) so that it reaches every node, where the nodes simple act as relays

to pass z̃ (l) further through the tree. Finally, the output dj (l) = gH
j z̃ (l)

is obtained.

Based on the data-driven signal flow above, we see that any leaf node will

transmit only a single block of compressed signals zq (l). Any non-leaf node

will transmit a maximum of two blocks of signals including žj (l) and z̃ (l), first

toward the root node and then away from the root node. It is worth noting that

Dq (l) and Ďj (l) only need to be transmitted once for each block of microphone

signals and can be ignored.

When the first-order recursive smoothing method is applied, for any leaf node

q, c̄q (l) and cq (l) are transmitted to reconstruct Dq (l) and zq (l) with (20)

and (21) at the non-root node j. The rest is the same as the non-recursive

smoothing method. In particularly, Ďj (l) needs to be transmitted for each

noise-only frame.

4. Analysis of Complexity and Bandwidth

This section analyzes the complexity and the bandwith of the proposed beam-

former, and those of state-of-the-art beamformers are also presented. For the

centralized LCMV/LCMP beamformer, each node needs to have access to the

microphone signals from other nodes and therefore all microphone signals in

the WASNs are transmitted. In general, we hope to get the estimation of the

S speech sources separately, where the constraint vector ḡj should be modified

to an S × S matrix Ḡj with only one non-zero entry per column. Without loss

of generality, we assume that each node has Mj = N microphones. We need

to note that the cost discussed below does not include the overhead associated

with those algorithms exploiting a VAD.

The total number of transmissions related to the communication bandwidth

is dependent not only on the choice of the beamformer but also on the WASNs

topology. As such, it is difficult to analytically bound this transmission cost
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Table 1: complexity and bandwidth of different beamformers

Beamformer Complexity Bandwidth

N = 6, J = 4, S = 2,

|Ly| = 100, tmax = 11

Complexity Bandwidth

Non-recursive

smoothing method

LCMV/LCMP O
(

(JN)
3
)
/|Ly| 2JN O (13824) /100 48

LC-DANSE O
(

(N + (J − 1)S)
3
)
/|Ly| 2JS O (1728) /100 16

BD-LCMV/

BD-LCMP
O
(
N3
)
/|Ly| 2JS O (216) /100 16

DNBD-LCMV/

DNBD-LCMP
O
(
S3
)
/|Ly| 2JS O(8)/100 16

DNDS O(S3) (once)2 2JS O (8)(once)2 16

First-order recursive

smoothing method

LCMV/LCMP O
(

(JN)
3
)

2JN O (13824) 48

BD-LCMV/

BD-LCMP
O
(
N3
)

2JStmax (S + 1) O (216) 48

DNBD-LCMV/

DNBD-LCMP
O
(
S3
)

J (2S + 1) O (8) 20

1 tmax is the maximum number of iterations for the BD-LCMV/BD-LCMP.

2 the weight vector w̄
′′

j in (28) only needs to be calculated once at the beginning.

for any network topology. The comparison of the communication bandwidth

and the computational complexity of different beamformers is performed in a

fully connected network, where the centralized LCMV/LCMP, LC-DANSE [14],

BD-LCMV/BD-LCMP [22], and the beamformers proposed in this paper have

the same update rate.

We denote the transmission of one real number as one transmission. For the

DNBD-LCMV/DNBD-LCMP with the first-order recursive smoothing method,

each node needs to transmit a S-dimensional complex vector c̄j (l) and a real

number cj (l), where the total number of transmissions is J (2S + 1). Besides,

an inversion of an S×S matrix D (l) in (13) is performed, yielding a complexity

of O
(
S3
)
. For the DNDS, each node needs to transmit a S-dimensional com-

pressed signals zj (l) and the total number of transmissions is 2JS. The compu-

tational complexity and the communication bandwidth of different beamformers

are shown in Table 1.

From Table 1, first, for the beamformers with the first-order recursive smooth-

ing method, the DNBD-LCMV/DNBD-LCMP has the lowest complexity and

bandwidth. For the beamformers with the non-recursive smoothing method,
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the DNBD-LCMV/DNBD-LCMP has the lowest complexity, and has the same

bandwidth as the LC-DANSE and the BD-LCMV/BD-LCMP. Second, the band-

width of the DNDS is not higher than other beamformers. In particular, its

complexity is negligible because w̄
′′

j in (28) only needs to be calculated once at

the beginning. Finally, the complexity of the proposed beamformers and the

BD-LCMV/BD-LCMP is independent of the number of nodes J and they are

completely scalable, where there is no increase in the per-node complexity when

new nodes are added to the networks.

5. Experimental Results

This section evaluates the performance of the proposed beamformers including

DNBD-LCMV/DNBD-LCMP and DNDS and compares them with three state-

of-the-art beamformers including centralized LCMV/LCMP and LC-DANSE

[14]) by using three objective measures, which are SNR, short-time objective

intelligibility (STOI) [40], and average TDOA error (ATE) of the speaker in a

simulated room when the column space Q and VAD have errors for reverberation

times T60 = 0.3 s and T60 = 0.5 s. The room impulse responses (RIRs) are

generated by the image method [41, 42].

5.1. Experimental Setup

The dimensions of the simulated room is 5 m× 5 m× 3 m with reverberation

times T60 = 0.3 s and T60 = 0.5 s. The WASNs consist of J = 4 nodes,

each having Mj = 6 microphones forming a uniform linear array with an inter-

microphone distance of 3 cm. Four point sound sources including S = 2 speech

sources and two babble noise sources are presented. The configuration of the

nodes and sound sources are depicted in Fig. 4. The two speakers that produce

speech sentences taken from the NOIZEUS corpus [43] have the same power.

The two babble directional noise sources are mutually uncorrelated with power

that is 10% of the power of any speaker, i.e., 10 dB SNR. Besides the two babble

directional noise sources, all microphone signals have an uncorrelated white
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Figure 4: The acoustic scenario used in the experiment. There are S = 2 speakers, two babble

directional noise sources, and J = 4 nodes with Mj = 6 microphones each. The nodes are

located at the center of each of the four walls, 30 cm from the walls. All nodes and all sources

are in the same horizontal plane, 1.5 m above ground level.

Gaussian noise component with 30 dB SNR with respect to the superimposed

speech signals in the first microphone of node 1. The sampling frequency is 8

kHz and the sound speed is c = 343 m/s.

In order to approximate the real acoustic scenario, these positions of the

speakers, where the column space Q was estimated, were uniformly distributed

over a sphere centered around the true source positions depicted in Fig. 4. These

positions were referred to as training positions. For Speaker 1 and Speaker 2,

its erroneous training positions had radii r1 and r2 ranging from 0 to 10 cm,

respectively. Therefore, the column space estimation error can be modeled as a

function of positional error between the training positions and the true source

positions [22]. For every value of the positional error, the average performance

of 100 different setups were measured. Each setup used the same source signals

at the true source positions. However, a different set of training positions men-

tioned previously and different realizations of the microphone-self noise were

used in each setup.

In the experiment, the non-recursive smoothing method was adopted to esti-

mate ∆yy,j and ∆nn,j , and the estimation was performed on the entire length
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of signal [24, 44],

∆yy,j =
1

|Ly|
∑
l∈Ly

yj(l)y
H
j (l),

∆nn,j =
1

|Ly|
(
∑

l1∈Ly\L′
y

nj(l1)nH
j (l1) +

∑
l2∈L′

y

yj(l2)yH
j (l2)),

(31)

where Ly is the set of frames of the entire time horizon, and L′

y is the set

of frames of the noisy signals used to estimate ∆nn,j . The set L′

y is used to

simulate the VAD error, where the noisy frames containing speech component

are erroneously detected as noise-only frames. The error can be measured by

the following scalar

R =
|L′

y|
|Ly|

× 100%. (32)

When L′

y is an empty set, i.e., L′

y = {∅} and R = 0, an ideal VAD is considered.

The SNR is the ratio between the powers of the desired speech component

and the noise, and can be defined as

SNR = 10 log
E{d̄2j (t)} − E{n̄2j (t)}

E{n̄2j (t)}
, (33)

where d̄j(t) and n̄j(t) denote the time domain beamformer output and the

time domain noise component (also containing the residual competing speech

component [18]) at the jth node, respectively.

The TDOA error ∆Tj1,s between the jth node and the 1st node for the sth

speaker can expressed by

∆Tj1,s =

Tj1,s − T̂j1,s, if Tj1,s − T̂j1,s ≥ 0;

T̂j1,s − Tj1,s, if Tj1,s − T̂j1,s < 0.

Tj1,s = (‖xj1 − x̄s‖ − ‖x11 − x̄s‖) /c,

(34)

where xj1 is the location of the 1st microphone at the jth node, x̄s is the

location of the sth speaker, and ‖·‖ denotes the two-norm of a vector. Tj1,s is

the theoretical TDOA and T̂j1,s is the estimated TDOA based on the output

signals of different nodes using the generalized cross-correlation phase transform
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(a) (b) (c)

Figure 5: Comparison of SNR, STOI, and ATE for different beamformers (T60 = 0.3 s and

R = 5%). (a)-(b) SNR and STOI of output signal of node 1; (c) ATE of output signals of

different nodes.

(GCC-PHAT) [45]. More details about TDOA can be found in [46]. The ATE

is defined by

ATE =
1

J − 1

J∑
j=2

∆Tj1,s. (35)

For the following performance comparison, the first microphone of each node

is chosen as the reference microphone and the experimental results for Speaker 1

are presented. In particularly, LC-DANSE [14] is time-recursive and converges

to the solution of its centralized algorithm. Therefore, LC-DANSE is replaced

by the centralized LCMV [22].

5.2. Robustness to Column Space Estimation Error

Fig. 5 shows the performance of different beamformers under different posi-

tional errors in terms of reverberation time T60 = 0.3 s and VAD error R = 5%.

The spectrograms of the desired signal received by the first microphone of node

1 and the output signals of node 1 of different beamformers were depicted in

Fig. 6 for T60 = 0.3 s, R = 5%, and r1 = r2 = 5 cm.

From Fig. 5, first, one can get that the performance of the five beamformers

decreases with increasing positional error. When there is no positional error, i.e.,

r1 = r2 = 0 cm, the SNR and the STOI of DNBD-LCMP are higher than LCMP

and DNDS, and are slightly lower than LCMV and DNBD-LCMV. When there

is positional error, the SNR and the STOI of DNBD-LCMP are significantly
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(a) (b) (c)

(d) (e) (f)

Figure 6: The spectrograms of the desired signal received by the 1st microphone of node 1,

and the output signals of node 1 of different beamformers for T60 = 0.3 s, R = 5%, and

r1 = r2 = 5 cm. (a) Desired signal; (b) LCMP; (c) LCMV; (d) DNDS; (e) DNBD-LCMP; (f)

DNBD-LCMV.

reduced, and are much lower than DNDS, LCMV, and DNBD-LCMV. For dif-

ferent positional error values, the SNR and the STOI of LCMP are the lowest.

LCMP and DNBD-LCMP had lower robustness to the positional error than

DNDS, LCMV, and DNBD-LCMV. Second, for DNDS, LCMV, and DNBD-

LCMV, the SNR and the STOI of DNDS are the lowest when the positional

error is zero and then approach LCMV and DNBD-LCMV with increasing po-

sitional error (even higher than LCMV). This is related to the fact that DNDS

cannot well suppress the directional noise sources that are not included in the

desired response vector but has more robust performance to the positional er-

ror [47]. DNBD-LCMV has higher SNR and STOI than LCMV for non-zero

positional error and is less sensitive to the positional error, where ∆nn,j has

lower dimensions than the full-element noise sample covariance matrix used in

the LCMV and is numerically more favorable. Third, the ATEs of different

beamformers do not appear to be a significant difference.
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(a) (b) (c)

Figure 7: Comparison of SNR, STOI, and ATE for different beamformers (T60 = 0.3 s and

r1 = r2 = 5 cm). (a)-(b) SNR and STOI of output signal of node 1; (c) ATE of output signals

of different nodes.

From Fig. 6, the speech component in the output signal of LCMP is almost

completely removed, where the column space estimation error results in removal

of the actual speech component and preservation in the direction of the wrongly

estimated column space. NBD-LCMP has the similar problem to LCMP. How-

ever, the performance degradation was not that great as with LCMP, this is

because DNBD-LCMP has lower degrees of freedom to satisfy the wrong distor-

tionless response and suppresses less speech component than LCMP [22]. Note

that LCMP and DNBD-LCMP will not be further considered in the following

experiments due to their poor performance in signal model mismatch cases.

LCMV causes more speech distortion than DNBD-LCMV. DNDS preserved the

speech component like DNBD-LCMV. However, it also preserves more noise

component around 0.5 kHz.

5.3. Robustness to VAD Error

In this subsection, we compare the performance of DNDS, LCMV, and DNBD-

LCMV under different VAD errors with the reverberation time T60 = 0.3 s and

the positional error r1 = r2 = 5 cm, as shown in Fig. 7. First, for an ideal

VAD, i.e., R = 0, the LCMV has the highest SNR and STOI. However, VAD

error is often inevitable for practical applications. The SNR and the STOI of

LCMV deteriorate significantly and become the lowest with increasing VAD er-

ror, which indicates that LCMV is the most sensitive to the VAD error. Second,
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(a) (b) (c)

(d) (e) (f)

Figure 8: Comparison of SNR, STOI, and ATE for different beamformers (T60 = 0.5 s).

(a)-(c) R = 5%; (d)-(f) r1 = r2 = 5 cm.

when the VAD error becomes larger, the SNR and the STOI of DNBD-LCMV

are reduced and gradually approach the DNDS, which is independent of the

VAD error. Third, for different beamformers, their ATEs are almost identical

and do not become larger with increasing VAD error.

5.4. Robustness to Reverberation Time

In this subsection, we compare the performance of DNDS, LCMV, and DNBD-

LCMV when the reverberation time increases to T60 = 0.5 s, as shown in Fig. 8.

First, one can observe that the SNR and the STOI of LCMV are the lowest

for non-zero positional error and the VAD error. The SNR and the STOI of

DNBD-LCMV are reduced, and gradually approach or even lower than DNDS

with increasing positional error or the VAD error. Second, no significant differ-

ence can be observed in the ATEs of different beamformers, which is similar to

Fig. 5 (c) and Fig. 7 (c).

From Figs. 5, 7, and 8, the performance including SNR, STOI, and ATE of

DNDS, LCMV, and DNBD-LCMV becomes worse for a larger reverberation
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time, and DNDS and DNBD-LCMV are less sensitive to the reverberation time

than LCMV.

6. Conclusion

In this paper, we propose a distributed node-specific block-diagonal linearly

constrained minimum variance (DNBD-LCMV) beamformer, where the block-

diagonal noise covariance matrix is considered to derive its analytical solution

from the centralized LCMV beamformer. By updating the inversion of the noise

sample covariance matrix using the Sherman-Morrison-Woodbury formula, the

exchanged signals can be computed in a more efficient way. The proposed

DNBD-LCMV significantly reduces the number of signals exchanged between

nodes and exactly solves the LCMV beamformer optimally in each frame. Anal-

ysis and experimental results confirm that the proposed DNBD-LCMV has much

lower computational complexity, and is also more robust to column space esti-

mation error and the VAD error than other state-of-the-art distributed node-

specific algorithms.
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