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Abstract—multistatic radar system (MSRS) is considered an
effective scheme to suppress mainlobe jamming, since it has
higher spatial resolution enabling jamming cancellation from
spatial domain. To develop electronic countermeasures against
MSRS, a random array subset selection (RASS) jamming method
is proposed in this paper. In the RASS jammer, elements of the
array antenna are activated randomly, leading to stable mainlobe
and random sidelobes, different from the traditional jammer that
applies the complete antenna array enjoying constant mainlobe
and sidelobes. We study the covariance matrix of jamming
signals received by radars, and derive its rank, revealing that the
covariance matrix is of full rank. We also calculate the output
jamming to signal and noise ratio (JSNR) after the subspace-
based jamming suppression methods used in MSRS under the
proposed jamming method, which demonstrates that the full
rank property invalidates such suppression methods. Numerical
results verify our analytical deduction and exhibit the improved
countermeasure performance of our proposed RASS jamming
method compared to the traditional one.

I. INTRODUCTION

Active electronic countermeasure (ECM) aims at reducing
the performance of hostile radars by transmitting jamming
signals, thus protect targets from detection by the radars. In
this paper, we propose a jamming method to fight against
multistatic radar system (MSRS) [1].

MSRS is considered an effective scheme when encountering
the threat of mainlobe jamming. Here, mainlobe jamming
means that the jamming signals propagate into radar from the
radar’s mainlobe, same as the radar returns from targets, and
is tuned at the same frequency of the radar returns. Therefore,
this kind of jamming signals are difficult for the traditional
monostatic radar to cancel, because the jammer and target
are not distinguishable in the spatial domain. To alleviate the
influence of mainlobe jamming, MSRS is applied, which con-
sists of widely distributed radars and jointly processes signals
received by all the radars, yielding a large virtual antenna
aperture that enables distinguishing targets from jammer.

MSRS relies on jamming suppression methods, as discussed
in some existing literature [2–4]. The basic idea behind these
methods is to use the high spatial resolution of MSRS, resulted
from the large virtual aperture, to identify radar echoes from
the strong jamming signals. As long as the target and jammer
are separable with respect to the virtual aperture of MSRS, the
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covariance matrix of radars’ received signals can be divided
into different subspaces, corresponding to radar returns from
targets and jamming signals, respectively. Since the intensity
of the jamming signal usually dominates those of radar returns
and noises, the subspace of jamming signals can be found
by seeking the largest eigenvalue of the covariance matrix.
For example, eigenprojection algorithm [3] first estimates
the subspace of the jamming signals, and then projects the
received signals onto its orthogonal subspace for jamming
cancellation. Simulations validate the effectiveness of such
method used by MSRS, thus developing new countermeasures
against MSRS becomes a raising demand.

We propose random array subset selection (RASS) for this
purpose. RASS, which drives a random subset of an array
antennas and changes its selection along with time, was used
in physical layer secure communication [5], resulting in a
directional radiation pattern that projects a sharply defined
constellation in the desired direction and expands further
randomized constellation in other directions. In a joint radar
communication system [6], the authors applied RASS to
allocate antenna resources between two functions of radar
and communication, and revealed that RASS generates stable
mainlobe with random sidelobes.

Inspired by these ideas [5, 6], we explore the application of
RASS in the purpose of jamming against MSRS, where one
radar resides in the mainlobe of the jammer and the rest in the
sidelobes. Note that the subspace-based jamming cancellation
methods used in MSRS rely on the low rank structure of the
jamming signals’ covariance matrix. This inherent low rank
property, enabling the orthogonal projection operation [3] to
cancel the jamming signals while to preserve a large part
of energy of the radar returns, stems from the fact that the
phase differences of jamming signals received by all the radars
are fixed with respect to time. Therefore, the use of RASS,
which leads to randomness in its sidelobes, will introduce
randomness in the phase differences, no longer being fixed. As
a result, the low rank property of jamming signal’s covariance
matrix is destroyed, reducing the performance of the subspace-
based jamming cancellation methods.

Particularly, in this paper, we derive the rank of the co-
variance matrix, validating the above intuitive inference. We
also quantify the output jamming to signal and noise ratio
(JSNR) of the eigenprojection method under the proposed
jamming strategy. Both theoretical analyses and numerical
results demonstrate that the RASS-based jamming pattern sig-
nificantly outperforms the traditional counterpart that applies978-1-7281-8942-0/20/$31.00 c© 2020 IEEE
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Fig. 1. System model of MSRS and mainlobe jamming.

a full antenna array.
The rest of this paper is organized as follows: The signal

models of MSRS and RASS-based jammer are introduced in
Section II. Section III analyzes the rank of covariance matrices
and the JSNR under the proposed jamming method. Numerical
results are given in Section IV. Section V concludes the paper.

II. SIGNAL MODEL

In this section, we introduce the geometry of the radars,
jammer and target, followed by the signal models of the tradi-
tional and the proposed RASS jamming pattern in Section II-A
and II-B, respectively.

Consider an MSRS, consisting of K radars that are exactly
synchronized. In these radars, one main radar transmits signals
and receives the echoes, while the rest only receive the target
returns, working in passive mode. There is a stand-off jammer,
such as escort decoy, located closely to the target, jamming
towards the main radar from the radar’s mainlobe to protect
the target echoes from being detected. The geometry of MSRS,
target and jammer is shown in Fig. 1. Here, the jammer
and target are closely spaced, which means that they are not
distinguishable in spatial domain by a traditional monostatic
radar. However, we assume that the MSRS spans a large area,
synthesizing a large equivalent aperture, such that the MSRS
is able to identify the signals from jammer and target in spatial
domain.

In the subsequent Section II-A, we will present the signal
model under traditional jamming pattern, and a typical method
used in radar to eliminate the jamming signal. To avoid being
eliminated by the radar, we propose a new jamming pattern
in Section II-B.

A. Traditional jamming pattern

In this section, we consider the traditional jamming pattern
that applies the full array to transmit jamming signal. We first
present the transmit signal model of the jammer, followed by
the receive signal model of the MSRS and the basic idea of
cancelling the jamming.

Assume that the jammer is equipped with a uniform linear
array (ULA) with N elements uniformly spaced by an interval

d. Denote by λ the wavelength of the signal, and by θ1 the
angle of the main radar with respect to the array. The jamming
signal is pointed towards the main radar, hence the transmit
signal of jammer is written as

v(t) = α(θ1)r(t), (1)

where α(θ) := [1, expj2πd sin θ/λ, ..., expj2π(N−1)d sin θ/λ]T ∈
CN×1 is the steering vector towards θ, and r(t) is the jamming
signal. Here, we do not restrict the jamming mode of r(t),
which can be chosen arbitrarily, such as noise jamming,
deception jamming, interrupted-sampling repeater jamming
and so on [8].

Then, the received jamming signal of k-th radar can be
written as

qk(t− τ jk) = αH(θk)α(θ1)r(t− τ jk), (2)

where θk is the angle of the k-th radar with respect to the
jammer’s array, τ jk denotes the delay from the jammer towards
the k-th radar, and H denotes conjugate transposition.

The signal received by the k-th radar is a superposition
of radar echoes reflected by the target, jamming signals and
noises, given by

xk(t) = sk(t− τ tk) + qk(t− τ jk) + nk(t), (3)

where sk(t− τ tk) is the target echo, nk(t) represents receiving
Gaussian noise with the variance of σ2, and τ tk denotes the
double of the delay from the target to the k-th radar. For
convenience, we denote by s(t) := [s1(t − τ t1), ..., sK(t −
τ tK)]T ∈ CK×1, q(t) := [q1(t−τ j1 ), ..., qK(t−τ jK)]T ∈ CK×1
and n(t) := [n1(t), ..., nK(t)]T ∈ CK×1 the signal, jamming
and noise vectors, respectively.

Based on the received signal model above, we then in-
troduce the eigenprojection method for jamming elimination
[3]. Recall that these distributed receiving radars are fully
synchronized and can be regarded as a virtual large aperture
in receive, thus the MSRS has the potential to separate the
jamming from the target echoes.

To present the eigenprojection method, we denote by
x(t) := [x1(t), ..., xK(t)]T ∈ CK×1 the received signals from
all radars. The covariance matrix of x(t) is expressed as

RXX := E[x(t)xH(t)]. (4)

Assuming that the target echoes, jamming signals and noises
are mutually uncorrelated, we can get

RXX = RSS +RJJ + σ2I, (5)

where RSS ∈ CK×K and RJJ ∈ CK×K are the covariance
matrices of target echoes and jamming signals, respectively,

RSS = E[s(t)s(t)H ],

RJJ = E[q(t)q(t)H ].
(6)

We then apply eigenvalue decomposition to RXX , yielding

RXX =

K∑
i=1

λiuiu
H
i , (7)



where λi ∈ R and ui ∈ CK×1 are the i-th eigenvalue
and eigenvector, respectively. We assume that the energy of
jamming signals dominate the target echoes, and the latter is
more significant than the noise. Consequently, we can sort the
eigenvalues in a descent order such that λ1 ≥ · · · ≥ λJ �
λJ+1 ≥ · · · ≥ λT+J � λT+J+1 ≥ · · · ≥ λK , where J and
T denote the number of jammers and targets. Here, we set
J = T = 1. By exchanging the eigenvectors correspondingly,
we divide RXX into three subspaces, given by

RXX = USΛSU
H
S +UJΛJU

H
J +UNΛNU

H
N , (8)

where ΛJ := diag(λ1, . . . , λJ) ∈ RJ×J ,
ΛS := diag(λJ+1, . . . , λT+J) ∈ RT×T , and
ΛN := diag(λT+J+1, . . . , λK) ∈ R(K−J−T )×(K−J−T )

denote eigenvalues corresponding to jamming, echoes and
noise signals, respectively. The jamming, signal and noise
subspaces are given by UJ := [u1, . . . ,uJ ] ∈ CK×J ,
US := [uJ+1, . . . ,uT+J ] ∈ CK×T and UN :=
[uT+J+1, . . . ,uK ] ∈ CK×(K−J−T ), respectively.

Based on the separated jamming subspace, the eigenpro-
jection method cancels the jamming signals using orthogonal
projection, yielding

y := P⊥x := (I −UJUH
J )x, (9)

where y denotes the residual signal after jamming elimination,
P := UJU

H
J ∈ CK×K denotes the projection matrix with

respective to UJ , and P⊥ := I−P represents the orthogonal
projection matrix.

From the jamming elimination procedure above, we find
that the identification of jamming subspace plays a key role.
The identification task is possible for MSRS, because of two
features of the jammer: One feature is that the amplitude
of the jamming signal is most significant in comparison
with radar echoes and noises; The other stems from the fact
that the received jamming signals by different radars are
‘coherent’, which means that the phase differences between
theses received signals are fixed. In order to fight against such
distributed radars, we need to propose new jamming strategies
by changing these features. While maintaining the dominance
of the jamming signal over radar echoes are generally nec-
essary, we use RASS to destroy the ‘coherence’, resulting
in difficulties for the MSRS to find the jamming subspace
correctly, as will be introduced in the sequel.

B. Proposed jamming pattern

In this subsection, we introduce the RASS jamming pattern
that randomly selects a subset of array antenna to transmit
jamming signal. As RASS is an effective method that forms
the mainlobe in the desired direction and keeps the randomness
in undesired directions, the RASS method is used in secure
communication to achieve security and directional transmis-
sion [5]. Inspired by the above idea, we apply the RASS into
jammer’s array antenna to enable efficient mainlobe jamming
and to achieve random sidelobe which benefits fighting against
MSRS. The randomness in the sidelobe destroy the ‘coher-
ence’ of the received signals between different static radars in

(a) (b)

Fig. 2. The diagram of RASS method. (a)High speed RF switch is used to
realize RASS. (b)The diagram of RASS jamming method in time domain.

MSRS, thus reducing the jamming cancellation performance
of MSRS. To see this, we first present the RASS transmit
signal model with the random switch vector. Then we analyze
the receive signal of MSRS to show that the jammer achieves
random beam pattern by RASS method.

In RASS jamming method, M out of N antenna elements
are selected to transmit jamming signal, N > M . And the
selection is changed from a time slot to another. To realize the
random selection, a high speed RF switch is usually required,
as shown in Fig. 2(a). The resultant diagram of RASS method
in time domain is given in Fig. 2(b).

We use p(t) ∈ {0, 1}N×1 to denote the random switch
vector, and pn(t) to denote its nth element. When the nth
antenna is active pn(t) = 1, and 0 otherwise. The transmitted
signal of jammer array can be written as

v̄(t) = p(t) ◦α(θ1)r(t), (10)

where the notation ·̄ is used to differentiate from the coun-
terpart of regular jamming pattern, and ◦ represents the
Hadamard product. Compared with (1), the transmitted signal
(10) of RASS jammer contains modulation by the random
switch vector p(t).

We assume that pn(t) follows a Bernoulli distribution with
probability p, whose probability density function (PDF) is
given by

f(pn(t)|p) =

{
ppn(t)(1− p)1−pn(t), pn(t) = 0, 1,
0, else.

(11)

We also assume that pn(t) is independent with respect to the
element index n and time t.

Then, the jamming signal received by the kth radar is
written as

q̄k(t− τ jk) := αH(θk)(p(t− τ jk) ◦α(θ1))r(t− τ jk). (12)

Here, we define q̄ := [q̄(t − τ j1 ), ..., q̄(t − τ jK)]T ∈ CK×1.
Substituting the steering vector, given below (1), into (12)
yields

q̄k(t− τ jk) =

N∑
n=1

pn(t− τ jk)r(t− τ jk)

· expj2π(n−1)d(sin θk−sin θ1)/λ .

(13)



Similar with (3), the received signal of the k-th radar under
RASS jamming method is

x̄k(t) = sk(t− τ tk) + q̄k(t− τ jk) + nk(t). (14)

We stack signals from all the radars, which yields the vector
x̄(t) := [x̄1(t), ..., x̄K(t)]T ∈ CK×1. Here, we also assume
that echoes from target sk(t − τ tk), noises nk(t) and the
proposed jamming signals x̄k(t) are mutually independent.

To interpret (13), we consider two cases: k = 1 and k 6= 1.
The former represents the main radar, where the jamming
beam is directed, while the latter represents the rest radars,
located in the sidelobe of the jammer’s beam pattern. When
k = 1, the coefficient αH(θk)(p(t − τ jk) ◦ α(θ1)) reduces to
αH(θ1)(p(t − τ j1 ) ◦ α(θ1)), which equals to 1Tp(t − τ j1 ),
yielding the number of selected antenna units at instance
t − τ j1 . This is a consequence of the fact that the jammer
steers the beam towards the main radar, and also indicates
that the phase of the coefficient stays unchanged even if
pn(t) is randomly changed with respect to t. As a result, the
antenna gain of the RASS jammer against the main radar is
guaranteed as long as enough antenna units are utilized. In
the case of k 6= 1, the coefficient αH(θk)(p(t− τ jk) ◦α(θ1))
changes randomly with respect to t, which means that the
K − 1 passive radars will receive a randomized jamming
signal. Therefore, the phase differences between jamming
signals received by different radars change with respect to
t, destroying the ‘coherence’ between radars. This property
degrades the jamming elimination method used by MSRS, thus
better protects the target from being detected by radars.

In the next section, we will discuss the anti-suppression per-
formance of the proposed RASS jamming method in the term
of jamming cancellation method presented in Section II-A.

III. PERFORMANCE ANALYSIS OF THE PROPOSED
JAMMING STRATEGY

In this section, we analyze the performance of the RASS-
based jamming strategy against MSRS equipped with the
eigenprojection method for jamming cancellation, as discussed
in Section II-A. To this aim, we first derive the covariance
matrix associated with RASS method in Section III-A.

A. Covariance matrix

We derive the covariance matrix of the received signals, i.e.,
R̄XX := E[x̄(t)x̄H(t)], as

R̄XX = RSS + R̄JJ + σ2I, (15)

following the assumption that target, jamming and noise sig-
nals are uncorrelated. Here, similarly with (6), we use R̄JJ to
denote the covariance matrix of the received jamming signals
q̄(t), given by

R̄JJ := E[q̄(t)q̄H(t)]. (16)

Comparing (15) with (8), we find that only the covari-
ance matrix of jamming signals R̄JJ is changed due to
the introduction of RASS. Under the assumption that p(t)

obeys Bernoulli distribution, we derive R̄JJ as stated in the
following proposition:

Proposition 1. The covariance matrix of jamming signal R̄JJ

can be written as

R̄JJ = p2RJJ +Np(1− p)RrrI, (17)

where Rrr is the autocorrelation of stationary jamming signal
r(t), given by

Rrr := E[r(t)r∗(t)]. (18)

Proof. Due to the length limit of this paper, we leave the proof
details in the journal version of this paper.

From (17), we find that R̄JJ is of full rank as long as
Np(1 − p)RrrI 6= 0. Since Rrr > 0, the term equals 0
if and only if p = 0 or 1, which means that no antenna
or all the antennas are operating, respectively. In contrast to
the traditional jamming pattern, i.e., when p = 1, where the
rank of RJJ is typically 1 under the assumption that there
exists only 1 jammer operating, the proposed RASS jamming
method increases the rank of covariance matrix. As a result, the
typical eigenprojection method used for jamming cancellation
in MSRS, which relies on identifying the dominant eigenvalues
corresponding to jamming signals, will be affected severely.

To see this, we further discuss the eigenvalues and eigen-
vectors of R̄XX in Section III-B.

B. Eigenvalues and eigenvectors of the covariance matrix

In this subsection, we apply matrix perturbation method [7]
to study eigenvalues and eigenvectors of R̄XX in light of the
counterparts of RXX .

We substitute (17) into (15), and compare the result with
(5), implying

R̄XX = RXX + (p2 − 1)RJJ +Np(1− p)RrrI. (19)

Here, we regard R̄XX as a matrix generated from RXX

by adding a perturbation matrix, defined as ∆RXX :=
(p2 − 1)RJJ +Np(1− p)RrrI . This facilitates revealing the
relationship between eigenvalues and eigenvectors of these two
matrices.

Let λ̄k and ūk denote the k-th eigenvalue and the corre-
sponding eigenvector of R̄XX , respectively. Here, we define
∆λk and ∆uk such that λ̄k = λk+∆λk and ūk = uk+∆uk.
Through the definitions of eigenvalues, we have

R̄XX ūk = λ̄kūk, (20)

or equivalently,

(RXX + ∆RXX)(uk + ∆uk) = (λk + ∆λk)(uk + ∆uk).
(21)

When the second order terms, i.e., ∆RXX∆uk and ∆λk∆uk,
are negligible, the perturbations in eigenvalues and eigenvec-
tors can be approximated as [7]

∆λk ≈ uHk ∆RXXuk,

∆uk ≈ Ubk,
(22)



where U := [u1, ...,uK ] ∈ CK×K is the eigen matrix
of RXX and bk ∈ CK×1 has the i-the entry given by

1
λi−λk

uHi ∆RXXuk, i 6= k, and the k-th entry being zero.
Due to the length limit of this paper, we leave the proof for
(22) in the journal version of this paper.

Then, the k-th eigenvector of R̄XX is given by

ūk = uk +Ubk, (23)

benefitting the analysis on JSNR, which we show in the sequel.

C. Improvement of JSNR

Under the proposed jamming pattern, we assume that MSRS
applies the same jamming cancellation strategy: Use the eigen-
vector ū1 corresponding to the largest eigenvalue λ̄1 to realize
eigenprojection.

Analogy to (9), the output signal is given by

ȳ(t) = P̄⊥x̄(t) =
(
I − ū1ū

H
1

)
x̄(t). (24)

We are now ready to evaluate the performance of the
eigenprojection method. Here, we use the output JSNR as the
metric, and we compare the output JSNRs under the traditional
and RASS jamming patterns. Particularly, we define the output
JSNR under RASS jamming as the following:

ΩR =
E[||P̄⊥q̄||22]

E[||P̄⊥(s+ n)||22]
, (25)

where in the numerator, the expectation is taken over q̄,
since it is randomly changed along with time slots, while
the expectation in the denominator is taken over the noise.
We use subscript R to denote the RASS jamming pattern.
To differentiate, we denote by ΩF the counterpart under the
traditional jamming pattern where the full antenna array is
used. As the MSRS can effectively eliminate jamming signal
by eigenprojection method, the ΩF = 0, which will be
discussed later. Thus ΩR represents the improvement of the
proposed RASS method over the traditional counterpart in the
term of JSNR.

Under assumptions on the jamming pattern, we derive its
JSNR in the following proposition.

Proposition 2. The output JSNR is given by

ΩR =
KRrr

E[||s||22 + ||n||22]
Np(1− p). (26)

Proof. Due to the length limit of this paper, we leave the proof
in the journal version of this paper.

The JSNR ΩR > 0 unless p = 0 or 1, where the random
antenna array reduces to an empty or a full array, indicating
ΩF = 0. Comparing between ΩR and ΩF indicates that
RASS jamming pattern leads to residual jamming energy
after the jamming cancellation step via eigenprojection. This
happens because the covariance matrix R̄JJ is of full rank, as
given in Proposition 1. Therefore, the eigenprojection method,
which selects a rank-one matrix for jamming cancellation,
eliminate only a portion of the jamming energy, leading to
dominant residual of jamming signals that could still mask

the target echoes. This property demonstrates the improvement
of proposed jamming strategy over the traditional one: The
residual jamming energy after the eigenprojection procedure
is significantly larger than that of the latter, although the power
of transmitted jamming signal in RASS jammer is lower due to
the use of only a subset of antennas, verifying the importance
of spatial agility as introduced in RASS in the case of jamming
against MSRS.

From (26), we observe that the JSNR takes its maximum
when p = 0.5, suggesting the optimal jamming strategy of
JSNR under Bernoulli distribution. It is also found that the
JSNR increases with respect to the number of jammer’s array
elements, N . The relationship between JSNR and the number
of radars, K, in the numerator, is not distinct, because the
energy of target echoes and noise expressed in the denominator
also increase as K becomes larger.

Numerical results are given in Section IV to validate the
above analysis.

IV. NUMERICAL RESULTS

In this section, the performance of the traditional and
the proposed RASS jamming methods is demonstrated by
numerical experiments. We use range profiles obtained by
MSRS and the output JNSR to evaluate the effectiveness of
the jamming methods.

We consider an MSRS with K = 4 radars. Their three-
dimensional coordinates are setting as follows: (x1, y1, z1) =
(0, 0, 0), (x2, y2, z2) = (10, 0, 0) km, (x3, y3, z3) = (0, 10, 0)
km and (x4, y4, z4) = (10, 10, 0) km. The target and jam-
mer are closely located at (2, 3, 15.3) km and (2, 3, 15) km,
respectively. The jammer implements a linear uniform array
antenna with N = 16 elements and the interval d = 0.03
m. We regard the first radar as the main radar, transmitting
linear frequency modulation (LFM) signal with the bandwidth
of 10MHz, the duration of 10µs and the center frequency of
5GHz. We uniformly divide the duration of LFM into L = 128
time slots. The signal-to-noise ratio (SNR) of echoes from
target, defined as ||s||22

E[||n||22]
, is set as 20dB. The σ2 = 10−2 is

the noise variance. The jammer use Gaussian noise of the same
bandwidth as its baseband signal r(t), continuously jamming
towards the main radar. In RASS jamming pattern, the jammer
randomly selects a subarray antenna in each time slot. Recall
that each antenna element has the probability p to be used. The
input JSNR with respect to each element of jammer’s array
antenna is set as KRrr

E[||s||22+||n||22]
= 31 dB.

In the first experiment, we evaluate the obtained range pro-
files of targets after jamming suppression under the traditional
and RASS jamming methods. We set p = 0.5 in RASS.
Amplitudes of range profiles are shown in Fig. 3. In Fig. 3,
the blue curve, representing the result by the jammer with
full array antenna, gives a focused range profile. The peak of
range profile indicates the target location, which means the
jamming signals are cancelled successfully by MSRS. How-
ever, the red dotted curves, obtained by the proposed jamming
method, provides a noise-like range profile masking the target,
indicating the success of the jammer against MSRS. This is
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Fig. 3. Range profiles after eigenprojection suppression method.

because RASS introduces randomness in its sidelobe which
is directed towards the auxiliary passive radars, destroying
the coherence between radars. As a result, the MSRS fails
to identify the eigenvalue corresponding to jamming signals,
and the jamming residual of eigenprojection method is strong
enough to mask the returns from target.

The second experiment is designed to calculate the out-
put JSNR ΩR versus p. We compare the theoretical result
(26), denoted ‘Expectation of JSNR’, with simulated ones
obtained from (25), where the expectation operation is dis-
carded and the resulting ΩR are averaged over 1000 Monte
Carlo trials. In particular, to validate the correctness of (23),
which approximates the eigenvector with matrix perturbation
method, we use two methods to construct the projection
matrices in (25). One is obtained from (23), denoted by ‘JSNR
by matrix perturbation method’. The other is achieved by
performing eigendecomposition over the sampled covariance
matrix 1

L

∑L−1
0 x̄[l]x̄H [l], where x̄[l] is x̄(t) sampled at the

l-th time slot. This result is denoted by ‘JSNR by simulated
signal’. All these results are shown in Fig. 4, where the y-
axis ranges from 10 dB to 33 dB to clearly show the curves.
Therefore, the results of p = 0 and 1, which take much lower
values, are not included. From the figure, we find that all these
curves are close, validating the correctness of both (23) and
(26). As expected, the JSNR takes its maximum at p = 0.5
and minimum at p = 0 and 1. When p = 1, representing the
traditional jamming method that uses the full array antenna,
the JSNR becomes ΩF = −24.19 dB, calculated by simulated
methods. Compared with the traditional jamming pattern, the
RASS jamming pattern reaches much higher JSNR with lower
transmitting power, validating the importance of spatial agility
to jam against MSRS.

We then discuss the JSNR with respect to N , the number of
jammer’ antenna elements. We set N = 16, 32 and 64, with an
interval of 3 dB (10 log10 2) between successive values, and
the other settings are the same with the previous experiments.
Similar to the previous experiment, we use (23) (with 1000
Monte Carlo trials) and (26) to calculate the JSNR, shown in
Fig. 4. From this figure, we observe 3 dB difference in JSNRs
between the successive N under test, coinciding with (26).
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Fig. 4. The JSNR results vary with probability p and jammer array elements
N .

V. CONCLUSION

In this paper, the RASS jamming method, which randomly
chooses different subset of array antenna to transmit jamming
signal at different time instances, was proposed against MSRS
equipped with eigenprojection for jamming cancellation. The
RASS method introduces agile beam patterns in the sidelobe,
leading to a full rank covariance matrix of jamming signals,
which significantly reduces the performance of the jamming
suppression method. Particularly, we used perturbation matrix
method to analyze the eigenvalues of the signals received
by radar, and quantified the output JSNR under this jam-
ming method. Simulation results validates our analyses and
demonstrate that the proposed method significantly improves
the jamming performance over the traditional counterpart that
uses the complete antenna array.
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