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Coordinated versus Uncoordinated Channel

Tracking for High-Rate Internet of Things
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Abstract

Incorporation of high-rate internet of things (IoT) service into a massive MIMO framework is

investigated. It is revealed that massive MIMO possess the inherent potential to offer such service

provided it knows the channels for all devices. Our proposed method is to jointly estimate and track

the channels of all devices irrespective of their current activity. Using the dynamical model for devices’

channels evolution over time, optimal and sub-optimal trackers are developed for coordinated scenario.

Furthermore, we introduce a new paradigm where the BS need not know the pilot access patterns

of devices in advance which we refer to as uncoordinated setup. After motivating this scenario, we

derive the optimal tracker which is intractable. Then, target tracking approaches are applied to address

uncertainties in the measurements and derive sub-optimal trackers. Our proposed approaches explicitly

address the channel aging problem and will not require downlink paging and uplink access request

control channels which can become bottlenecks in crowded scenarios. The fundamental minimum mean

square error (MMSE) gap between optimal coordinated and uncoordinated trackers which is defined

as price of anarchy is evaluated and upper-bounded. Stability of optimal trackers is also investigated.

Finally, performance of various proposed trackers are numerically compared.

I. INTRODUCTION

Mobile broadband (MBB) and massive machine-type communication (mMTC) constitute two

main application areas in future generations of cellular networks. mMTC is also referred to as

the crowded or overloaded scenario and is mainly driven by internet of things (IoT) applications.
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To accommodate these two type of services in future networks, promising cellular concepts such

as massive MIMO should be adapted to their particular characteristics. Recent efforts on fusion

of these concepts are divided into three categories: i) MBB, ii) low-rate IoT, iii) high-rate IoT.

Benefiting from channel hardening property, massive MIMO decouples individual users chan-

nels into deterministic ones free from interference, small-scale fading, and noise [20], while

applying low-complexity linear beamforming/combining techniques [19], [22]. As its major

challenge, all users channels should be known at the BS. Orthogonal pilots have been utilized

to enable channel estimation [20]. They were proven to be optimal for peer-to-peer ordinary

MIMO as well [4]. Each orthogonal pilot should be assigned to one user only to avoid pilot

contamination. This is possible for MBB as there are only a few active users. A well-known

initial random access procedure for dynamic pilot assignment in MBB is random access to

pilots (RAP) which is reminiscent of slotted ALOHA with the difference that collision domain

is no longer time but pilot sequences [25]. RAP has been further modified to permit collision

resolution [5], [23].

The proposed grant-based approaches are not suitable for low-rate IoT. Firstly, crowded

scenarios lead to excessive collisions in a slotted ALOHA system greatly reducing its success

rate. Secondly, every device has only a few bits and the overall access request/grant procedure

incurs too much overhead. Thirdly, there might not be even enough orthogonal pilots for all

simultaneously active devices. The proposed remedy is to transmit a pilot pattern followed

immediately by the few data bits without any previous handshake with the BS. These schemes

are referred to as grant-free and are divided into two broad categories depending on the pilot

structure. First category advocates non-orthogonal pilot sequences that are assigned uniquely and

permanently to every device. The corresponding decoders mostly rely on compressed sensing

[3], [10], [11], [8], [27]. Second category recommends sharing orthogonal pilots among several

users. Ergodic random access to pilots including data (E-RAPiD) and coded RAPiD (C-RAPiD)

are two examples [6]. In addition to the original C-RAPiD [26] which borrowed ideas from

collision resolution in slotted ALOHA [7], MBB methods such as [5] has also been modified to

incorporate similar collision resolution procedures [13].

Proposed approaches for low-rate IoT pose certain limitations in high-rate IoT. Firstly, neither

of the proposed methods can handle large data rates. When using non-orthogonal random

access, either payload length following a pilot transmission should be greatly enlarged or many

successive access slots should be used. Payload enlargement is limited by the channel coherence
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time, while many successive access attempts will destroy the sparseness of activity patterns,

severely limiting the decoder performance. E-RAPiD will incur excessive large decoding delays

as long data packets should be communicated over many coherence times. Thus, real-time

applications such as voice, video, robotics surgery, and interactive IoT can not be supported.

C-RAPiD will suffer from a lower delay, given that it uses one coherence time, but will have to

deal with many active users in every coherence time. This translates to decoding coded messages

with many loops and active nodes which will adversely affect message-passing techniques. Two

other issues were not addressed by any of the above methods. In crowded scenarios, too many

devices need to be paged at every coherence time which jams the downlink control channel. It

would be desirable to remove this bottleneck. Secondly, all aforementioned methods assume a

block fading model which overlooks channel aging.

To the best of our knowledge, the only two available channel tracking methods for massive

MIMO are presented in [9] and [24]. To be specific, [9] does not transmit pilots and only

data is transmitted. In fact, [9] iterates between turbo decoding and channel estimation using

previously decoded data as pilots. The proposed approach is limited by the fact that it does not

use dynamical models on the channel and does not benefit from optimal sequential estimation

procedures such as Kalman filter (KF). Furthermore, error propagation occurs if turbo codes fail

to correct all errors. On the other hand, [24] uses pilot-hopping in combination with a KF to

track the channel parameters variations. It treats interfering devices as noise and can not benefit

from the extra information that their channel estimates will provide. Furthermore, it will not

perform satisfactorily if PH pattern and/or pilot transmission times are unknown.

Using a resolvable multipath channel model in the angular domain, an alternative approach

to enable pilot sharing was offered in [29]. The angular spread of each device can be further

tracked in time [12]. Two major limitations of this approach are: i) must have no local scatterers

near BS, ii) does not exploit the resolution capability of small-scale fading, also known as fast

fading, which is a consequence of lack of enough scatterers.

A. Main Contributions

Massive MIMO offers an inherent potential to address all the aforementioned concerns for

high-rate IoT. The challenge is to learn all the devices channels. By explicitly considering a

dynamic model for channel evolution, we propose joint trackers that simultaneously follow all

devices irrespective of their current activity status. To enable high-quality tracking, we decouple

February 4, 2020 DRAFT



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (SUBMITTED) 4

pilot transmission from data communication. Thus, in each access slot, one device may transmit

pilot only to help improve its available channel estimate, may transmit data only when BS

already maintains a good channel estimate for that user, may transmit both pilot and data, or

remain completely silent. We also advocate orthogonal pilot sharing, similar to low-rate IoT, but

use the different spatial features of various devices to resolve collisions. Our proposed spatial

feature for every user is its best available channel estimate from previous access slots. Unlike

large-scale path loss [5] or distance to BS [23] which can be the same for many devices in

crowded scenarios, the whole channel vector will be different for various users with very high

probability. Subsequently, we will propose several low-complexity sub-optimal trackers as well.

Our proposed approaches will i) resolve pilot collisions and exploit their information ii) omit

the need for separate downlink paging and uplink control channels, iii) explicitly account for

channel aging, iv) offer minimum decoding delays compared to E-RAPiD/C-RAPiD, v) decouple

pilot transmission and data communication patterns allowing for more flexibility. Our next major

contribution, which has not been considered in prior art, is to address the problem of unknown

pilot transmission patterns by various devices at the BS. In Section IV we motivate this scenario

and offer the corresponding optimal and sub-optimal trackers. Our cheif contributions are:

1. When BS knows pilot transmission patterns, which we refer to as coordinated scenario,

optimum joint tracker and two low-complexity sub-optimal trackers are introduced.

2. When BS does not know pilot transmission patterns of devices, which we refer to as

uncoordinated scenario, optimal but intractable tracker is derived. Borrowing ideas from

target tracking community, low-complexity sub-optimal trackers are also introduced. To

further reduce complexity, three novel heuristic trackers are also derived.

3. The performance gap between the two optimal trackers, which offers a fundamental per-

formance limit and is referred to as price of anarchy, is evaluated and an upper bound for

it is derived. Stability of optimal trackers is also investigated.

4. Performance of the proposed trackers are investigated through extensive simulations.

B. Organization

Section II formulates the problem. Section III presents coordinated channel trackers. Section

IV offers the optimal and three sub-optimal uncoordinated trackers. Section V presents the three

heuristic low-complexity trackers for the uncoordinated setup. Section VI provides performance

analysis. Section VII provides numerical results and Section VIII concludes the paper.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

Let us consider a single cell where a MIMO base station (BS) equipped with M antennas is

serving a total of N single-antenna IoT devices. The system operates in a time-division duplex

(TDD) mode, where each access slot is divided into 3 segments. In the first segment, a pilot of

length τ is transmitted by some of the IoT devices and BS exploits the received signal to track

devices channel gains. In the second segment, uplink data are transmitted followed by downlink

data in the third segment. As N � τ , there exist more devices than orthogonal pilots. Thus, BS

associates the same pilot to a group of K devices where K := N/τ is an integer. For Section

V.A, we have K := N/(τ − 1) as (21) asks for one pilot sequence to be unused. To enable

channel tracking, each device transmits the pilot irregularly once in a while according to a random

pattern. Different devices may transmit pilots at different rates. In a single random access slot,

some devices may transmit data only, some may transmit pilot only, and some transmit both pilot

and data while the rest remain totally silent. The objective is to track all IoT devices channels

at successive random access slots. Once this challenge is addressed, BS can utilize the obtained

channel estimates to perform various beamforming methods at uplink/downlink. It should be

noted that BS tracks all devices channels irrespective of whether they have data to transmit or

are silent for now. Subsequently, downlink beamforming will be applied whenever downlink data

for a particular device is available. On the other hand, uplink beamforming is exploited at every

access slot to find those users which have data to transmit to the BS. As the channel tracking

process for devices belonging to distinct groups can be decoupled by the orthogonality of their

pilots, we focus on channel tracking for users within group one corresponding to pilot sequence

one or φ1 ∈ Rτ×1 without loss of generality.

We aim to track the flat fading channel gains between the kth device and the BS in the tth time

slot, which is represented by h
(k)
t = [h

(k)
t (1), h

(k)
t (2) · · ·h(k)

t (M)]
T

for k = 1 . . . K. Note that h(k)
t

includes large-scale path-loss, shadowing and small-scale fading. Furthermore, we assume power

allocation is also absorbed into h
(k)
t . Note that we implicitly assume a MIMO-OFDM system

but focus on one coherence bandwidth. Equivalently, we can assume a narrowband single-carrier

system. Instead of adopting a typical block-fading model, we deal with channel aging directly

and treat the channels as time-varying dynamical systems. Hence, user k channel gains change

from access slot t− 1 to access slot t according to the given state model:

h
(k)
t = A

(k)
t h

(k)
t−1 + u

(k)
t (1)
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where A
(k)
t s represent known model matrices that determines how fast or slow the channel

changes over time slots and u
(k)
t denotes Gaussian process noise with zero mean and covariance

matrix Q
(k)
t . Process noise is independent across t, k. To simplify matters and without loss of

generality, we consider a real system with real channel gains. Extension to the complex case will

be straightforward. As for initialization, we assume h
(k)
t ∼ N (0, IM). The model in (1) is fairly

general and very flexible. One can check [24] for certain structures that fit into this model and

those that do not. Different users channels evolve independent of one another. This is ensured by

the independence of initial channels assignment and independence of process noise for various

devices.

Each device at a particular access slot decides whether or not to send the pilot with the

probability λk independently from other devices. Thus, only a subset of devices are active and

send pilots within each access slot. We define a binary variable q(k)
t that takes one if the k’th

device transmits its pilot at time slot t. Let Dt denote the subset of all active devices in time

slot t who transmit φ1 with cardinality |Dt| = Na. Then, the received signal at the BS at time

slot t is given by Yt ∈ RM×τ :

Yt =
K∑
k=1

q
(k)
t h

(k)
t φT

1 + Wt (2)

where Wt ∈ RM×τ indicates the additive white Gaussian noise (AWGN) matrix whose entries

are independent with zero mean and variance equal σ2
w. Given Y1:t, our objective is to estimate

h
(1:K)
t which amounts to the channels of all users who are allocated to group one. If q(k)

t ’s are

known to the BS, the tracking scheme is coordinated. However, when q(k)
t ’s are not known at BS,

we refer to the scheme as uncoordinated. Our performance criterion is minimum mean square

error (MMSE). All of our proposed trackers assume an accurate initial acquisition of all devices

channels at access slot one. This can be achieved by separating devices in different groups via

orthogonal pilots and devices within a group by TDMA to perform an initial training. While

extensive, acquisition is performed only once, hence it does not have a significant effect on

the overall performance of the trackers. Trackers update all users channel estimates at the pilot

transmission phase of each access slot. At the uplink/downlink stages, BS uses the latest channel

estimates to perform beamforming towards various devices. Next section deals with coordinated

channel tracking where three algorithms with varying degrees of complexity-performance trade-

off are presented.
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III. TRACKING WITH COORDINATED PILOT ACCESS

First, we provide the optimum tracker which is a Kalman filter that tracks an aggregated

state containing the joint state of all the K devices. Then, two sub-optimal alternatives with

lower complexity are offered. We refer to all three as coordinated because BS knows the pilot

transmission pattern q(k)
t s.

A. Joint Coordinated Kalman Filter (JC-KF)

While (1) suggests that channels for different devices evolve independently and thus inde-

pendent individual trackers might be optimal, the optimum tracker can not be decoupled across

devices. This comes naturally as measurements in (2) do include collisions which introduce

coupling between various devices. First, we remove the effect of the devices in other groups by

multiplying measurements with the orthonormal pilot of group 1:

yt := Ytφ1 =
K∑
k=1

q
(k)
t h

(k)
t + wt. (3)

Here, yt ∈ RM×1 represents the measurement vector corresponding to group one received at

the M antennas at time t and wt := Wtφ1 denotes the corresponding noise vector which is

still Gaussian and independent across entries with variance σ2
w. We use the general covariance

Rt in place of σ2
wI to allow for correlated measurement noise also. Note that measurement

noises should be independent over time. Upon introducing the aggregate state vector ht :=

[h
(1)T

t ,h
(2)T

t , . . . ,h
(K)T

t ]T of size MK, yt can be written as

yt =
[
q

(1)
t IM q

(2)
t IM · · · q

(K)
t IM

]
ht + wt := Btht + wt. (4)

Furthermore, (1) can be written in a joint state format as

ht = Atht−1 + ut, (5)

where At of size KM × KM is block diagonal with A
(k)
t s on the diagonals and ut :=

[u
(1)T

t ,u
(2)T

t , . . . ,u
(K)T

t ]T is zero-mean with a block diagonal covariance matrix Qt with Q
(k)
t s

on the diagonal. Note that state equation in (5) is linear with all variables being jointly Gaussian.

When Bts are known, measurement model is also linear with all variables being jointly Gaussian.

Therefore, the optimum MMSE tracker is a Kalman filter run on the aggregate state. As in a

typical KF, JC-KF begins with an initial estimate obtained from acquisition stage and then
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iteratively performs prediction and correction steps [17].

Prediction:

ĥt|t−1 = Atĥt−1|t−1, Pt|t−1 = AtPt−1|t−1A
T
t + Qt. (6)

Correction: First define Kt = Pt|t−1B
T
t

(
BtPt|t−1B

T
t + Rt

)−1. Then,

ĥt|t = ĥt|t−1 + Kt(yt −Btĥt|t−1), Pt|t = (I−KtBt)Pt|t−1. (7)

The JC-KF serves as a benchmark to compare all other tracking algorithms that will be introduced

later on, including coordinated and uncoordinated methods, as it offers the smallest possible

MMSE. Before proceeding two remarks are in order.

Remark 1. The covariance matrix Pt|t is of size KM×KM and contains the covariance matrix

for channel estimate of device k on its k’th diagonal block. Furthermore, it contains the cross-

covariance between users k and j channel estimates on the (k, j)’th block.

Remark 2. Depending on the various devices activity patterns that forms Bt in (4), the MMSE

for user k can be different from user j. Note that MMSE for user k is given by the trace of

Pk,k which is the k’th M ×M block on the diagonal of Pt|t. This MMSE is independent of

the measurements, and only a function of Bt. It provides the fundamental MMSE limit that is

achievable by the joint activity pattern encoded in Bt.

B. Coordinated Kalman Filter with Collisions Discarded

The chief limitation of JC-KF lies in its high complexity as its aggregated state is of size

MK and the corresponding covariance matrix is if size (MK)2. For large K, JC-KF can become

prohibitively complex. To address this challenge we introduce two sub-optimal alternatives which

utilize independent Kalman filters for various devices. Note that if we discard the yt whenever

it suffers a collision, coupling is removed. Therefore, we introduce coordinated independent KF

(CI-KF) as follows. For each device k, run the following iterations independently.

Prediction:

ĥ
(k)
t|t−1 = A

(k)
t ĥ

(k)
t−1|t−1, P

(k)
t|t−1 = A

(k)
t P

(k)
t−1|t−1A

(k)T

t + Q
(k)
t . (8)

Correction: If only user k transmitted φ1 perform correction as below. Otherwise, skip to the

prediction for next access slot. For correction, define Kt = P
(k)
t|t−1

(
P

(k)
t|t−1 + Rt

)−1

. Then,

ĥ
(k)
t|t = ĥ

(k)
t|t−1 + Kt(yt − ĥ

(k)
t|t−1), P

(k)
t|t = (I−Kt)P

(k)
t|t−1. (9)
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If there is a collision, the corresponding yt is discarded and only prediction is performed for all

devices. If only a single device accessed the pilot, the channel estimate corresponding to that

user is both predicted and corrected, while other devices channel estimates are only predicted.

CI-KF operates satisfactorily particularly when number of collisions are a few. This occurs either

if K is small or if K is large but BS schedules users so that collisions are minimized. However,

CI-KF MMSE is lower bounded by that of JC-KF since CI-KF can not exploit the information

contained in the collisions. CI-KF needs O(KM3) arithmetic operations per access slot while

JC-KF needs O(K3M3). Complexity gap is considerable when K is large.

C. Coordinated Kalman Filter via Belief Propagation

CI-KF will skip many measurements when collisions are abound and will perform poorly.

To overcome this limitation, we introduce a second sub-optimal KF that is derived using belief

propagation (BP) on a factor graph. This BP-based KF (BP-KF), exploits collisions while its

complexity is of the same order as CI-KF. BP-KF algorithm is concisely presented here, however

its derivation is relegated to the Appendix A.

1) Fix h
(k)
0 ∼ N (ĥ

(k)
0 ,P

(k)
0|0) for all k = 1, . . . , K which are obtained from the initial

acquisition stage. Set t = 0.

2) At time instant t > 1 perform the following steps:

3) Perform prediction step independently for all devices. This amounts to calculating ĥ
(k)
t|t−1 =

A
(k)
t ĥ

(k)
t−1|t−1 and P

(k)
t|t−1 = A

(k)
t P

(k)
t|t−1A

(k)T

t + Q
(k)
t .

4) For those users k who are present in the current collision form the fictitious measurement

ŷ
(k)
t and its covariance matrix R̂

(k)
t given as

ŷ
(k)
t := yt −

∑
j 6=k

q
(j)
t ĥ

(j)
t|t−1, R̂

(k)
t := Rt +

∑
j 6=k

q
(j)
t P̂

(j)
t|t−1 (10)

5) Correct the channel estimate for the users that participate in the collision as follows. For

user k assume the measurement model ŷ
(k)
t := h

(k)
t + ŵ

(k)
t where ŵ

(k)
t is the fictitious

noise with zero-mean and covariance R̂
(k)
t , then run the correction step. Define K

(k)
t =

P
(k)
t|t−1

(
P

(k)
t|t−1 + R̂

(k)
t

)−1

. Then, perform

ĥ
(k)
t|t = ĥ

(k)
t|t−1 + K

(k)
t (ŷt − ĥ

(k)
t|t−1), Pt|t =

(
I−K

(k)
t

)
P

(k)
t|t−1. (11)

6) Set t← t+ 1 and go to step 2.
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It is interesting to observe how BP-KF deals with collisions. Firstly, BP-KF amounts to applying

JC-KF but after each iteration it discards the cross-correlation terms which are the off diagonal

blocks in the joint covariance matrix. This renders the covariance matrix block diagonal leading to

independent Kalman filters across users. Second observation is that the aforementioned fictitious

measurement compensates for other users presence in the collision by subtracting the best

available estimate of their channels but enlarges the covariance of the fictitious measurement noise

to account for errors in other users channel estimates which results in (10). BP-KF complexity

per access slot is O(KM3).

D. Comparison with Prior Art

Comparing [24] against our methods, several conclusions should be drawn. First, [24] treats the

desired user channel as an FIR filter in time and tracks all the channel coefficients allowing for

tracking the complete channel response in the frequency domain, while we track one coherence

bandwidth only. Secondly, [24] allows for A(k)
t s to be unknown, while we treat them as known.

On the other hand, [24] fails to utilize the information obtained from tracking other devices as

JC-KF does. Indeed, if there are no collisions at all, our CI-KF and tracker in [24] will be the

same. It should be noted that [24] knows the pilot access pattern of the desired device, hence it

amounts to a coordinated approach according to our notation in spite of the term uncoordinated

in their title. Comparisons will be performed in the simulations.

IV. TRACKING WITH UNCOORDINATED PILOT ACCESS

As its main advantage, coordination allows for a simple tracker with polynomial complexity

such as JC-KF to become the MMSE estimate. On the negative side, it diminishes system

flexibility. To enable coordination, devices should either use a fixed random pilot access pattern,

or periodically notify the BS of changes in access pattern. Changing, or adaptive, access pattern

can be necessary from several perspectives. For devices that run on a battery or harvest energy,

a fixed pilot access pattern is not justified as they should adapt pilot access rate to their

available energy levels. Furthermore, a single device might transmit data with various reliability

requirements over time. To increase reliability, the device may decide to increase its pilot access

rate, while decreasing it when data is tolerant to errors. However, periodic notifications on new

access policies from all IoT devices can jam the control channel and lead to a control bottleneck.

To ensure flexibility in pilot access while avoiding excessive control signaling, we offer a novel

February 4, 2020 DRAFT



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (SUBMITTED) 11

viewpoint not considered before. The main idea is to allow all devices to individually choose

their pilot access slots at will without any coordination with the BS. However, BS will be tasked

with the additional burden of detecting pilot access patterns. Therefore, we assume q(k)
t s are not

known to the BS.

As BS does not know in advance which devices are present in a collision, the tracking

task becomes significantly more complicated. This challenge has existed for a long time in

target tracking community and is referred to as the measurement origin uncertainty problem,

the data association problem, or data assignment problem. While the MMSE optimal tracker

is prohibitively complex, many sub-optimal trackers have been developed. Unfortunately, tar-

get tracking solutions can not be readily applied to our framework as tracking community

always dealt with measurement origin uncertainty, but they always assumed that every single

measurement is at most generated by one target. This assumption is no longer valid in our

scenario as a combination of devices are present in a collision. We correspondingly modify

the available target tracking algorithms to accommodate this new assumption. In this Section,

we first present the optimal uncoordinated tracker. Then, we present three sub-optimal trackers

which are global nearest neighbor (GNN) [2], probabilistic data association filter (PDAF) [2],

and multiple hypotheses tracker (MHT) [21].

A. Optimal Tracker

The optimal, in the MMSE sense, joint tracker is given by

ĥt := E [ht|y1:t] = E [E [ht|y1:t,q1:t] |y1:t] =
∑
q1:t

p(q1:t|y1:t) E [ht|y1:t,q1:t] (12)

Conditioned on q1:t, the inner expected value is simply evaluated by a joint KF that assumes

B1:ts are given according to that specific q1:t pattern. To compute the outer expectation, we

should enumerate over all possible instances of q1:t. Note that each qt can assume 2K values

and q1:t assumes 2tK different values. Thus, to evaluate optimal MMSE tracker, 2Kt joint KFs

should be run in parallel and then combined by the weights p(q1:t|y1:t). Indeed, the optimal

MMSE tracker is distributed as a Gaussian mixture with exponentially increasing number of

mixtures over time. The weights p(q1:t|y1:t) are evaluated as follows:

p(q1:t|y1:t) =
p(y1:t|q1:t)p(q1:t)

p(y1:t)
, p(q1:t) =

t∏
i=1

p(qi) =
t∏
i=1

K∏
k=1

λ
q
(k)
i
k (1− λk)1−q(k)i

p(y1:t|q1:t) = p(yt|y1:t−1,q1:t)p(y1:t−1|q1:t) = p(yt|y1:t−1,q1:t)p(y1:t−1|q1:t−1)
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=
t∏
i=1

p(yi|y1:i−1,q1:i) =
t∏
i=1

N
(
yi;Bi(qi)ĥi|i−1,Bi(qi)Pi|i−1B

T
i (qi) + Ri

)
. (13)

Note that in (13), we run a joint KF assuming a given q1:t and evaluate how good the given

measurements are predicted by this choice of q1:t. This process is repeated for all possible

choices of q1:t. Once weights are obtained from (13), they are normalized to one to account for

the unknown p(y1:t) in the denominator in (13) and then plugged into (12) to compute the mean

and covariance matrix for ĥt. The overall complexity of optimal tracker is O(K3M32Kt).

B. Global Nearest Neighbor

Optimal tracker enumerates all possible hypotheses on the origin of measurements and then

assigns a corresponding weight to each hypothesis. The weight is assigned according to how well

that particular hypothesis is predicted by the measurements. Unfortunately, number of hypotheses

grow exponentially in t preventing the applicability of the optimal tracker. One simple remedy

is to greedily pick the hypothesis that predicts the data best at the current time and fix it for

future access slots. This algorithm is referred to as GNN.

GNN operates as follows. At time t, it is assumed that q1:t−1 are selected correctly. Thus, one

only needs to select the best possible qt which assumes 2K values. Unlike the optimal tracker,

GNN performs hard assignment meaning that it discards all hypotheses except the best greedy

one. GNN algorithm is briefly described below.

1) Fix h0 ∼ N (ĥ0,P0|0) which are obtained from the initial acquisition stage. Set t = 0.

2) At time instant t > 1 perform the following steps:

3) Perform prediction step on the joint state. This amounts to calculating ĥt|t−1 = Atĥt−1|t−1

and Pt|t−1 = AtPt|t−1A
T
t + Qt.

4) Consider all possible hypotheses on qt. Then find the one that maximizes p(qt|q∗1:t−1,y1:t)

and denote it by q∗t . This is done as follows:

p(qt|q∗1:t−1,y1:t) =
p(yt|y1:t−1,q

∗
1:t−1,qt)p(qt|y1:t−1,q

∗
1:t−1)

p(yt|y1:t−1,q∗1:t−1)

∝ p(yt|y1:t−1,q
∗
1:t−1,qt)p(qt)

∝ N
(
yt;Bt(qt)ĥt|t−1,Bt(qt)Pt|t−1B

T
t (qt) + Rt

) K∏
k=1

λ
q
(k)
t
k (1− λk)q

(k)
t .

Note that ĥt|t−1,Pt|t−1 are computed from the previous iterations of the single KF that

assumes q∗1:t−1.
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5) Set B∗t := Bt(q
∗
t ), then run the correction step assuming B∗t was the true model. First,

define Kt = Pt|t−1B
∗T
t

(
B∗tPt|t−1B

∗T
t + Rt

)−1

. Then, perform

ĥt|t = ĥt|t−1 + Kt(yt −B∗t ĥt|t−1), Pt|t = (I−KtB
∗
t )Pt|t−1. (14)

6) Set t← t+ 1 and go to step 2.

GNN tracker assumes a Gaussian distribution for ĥt|t to simplify calculations in contrast to the

optimal tracker which is distributed as GMM. Furthermore, it uses a single-step greedy approach

to select the best possible qt. Once the greedy optimum is chosen it becomes fixed for future

random access slots and its optimality is never re-evaluated again.

C. Multiple Hypothesis Tracker

GNN keeps track of only one hypothesis over time, while the optimal tracker keeps account

of all possible hypotheses. To fill the gap between these two, one might suggest to keep track

of a fixed Nh hypotheses instead of one. This idea will give rise to MHT. To elaborate, assume

Ωi
t−1 := {q1(i),q2(i), . . . ,qt−1(i)} denotes the i’th hypothesis that is kept by MHT at time t−1.

The MHT is briefly described below.

1) Fix h0 ∼ N (ĥ0,P0|0) which are obtained from the initial acquisition stage. Set t = 0.

Set Ωi
0 = ∅ for all i = 1, 2, . . . , Nh. Set p(Ωi

0) = 1/Nh for all i.

2) At time instant t > 1 perform the following steps:

3) Perform prediction step on the joint state for all hypotheses. This amounts to calculating

ĥ
(Ωi

t−1)

t|t−1 = Atĥ
(Ωi

t−1)

t−1|t−1 and P
(Ωi

t−1)

t|t−1 = AtP
(Ωi

t−1)

t|t−1 AT
t + Qt for the i’th hypothesis Ωi

t−1.

4) For every i, augment Ωi
t−1 with all possible choices on qt. Since qt can take 2K different

values, each Ωi
t−1 is expanded into 2K hypotheses. Mathematically, Ω̃

(i,j)
t :=

{
Ωi
t−1,qt(j)

}
where j = 1, 2, . . . , 2K and i = 1, 2, . . . , Nh.

5) Next, evaluate the probability of each hypotheses as follows.

p(Ω̃
(i,j)
t |y1:t) =

p(yt|Ω̃(i,j)
t ,y1:t−1) p(Ω̃

(i,j)
t |y1:t−1)

p(yt|y1:t−1)
(15)

∝ N
(
yt;Atĥ

(Ωi
t−1)

t|t−1 ,Bt(qt(j))P
(Ωi

t−1)

t|t−1 BT
t (qt(j)) + Rt

)
p(Ωi

t−1|y1:t−1)

6) Select the Nh largest values in (15) among Nh2
K hypotheses and discard the rest. Then,

assign these Nh hypotheses to Ω1
t ,Ω

2
t , . . . ,Ω

Nh
t .

7) Normalize the weights as

p(Ωî
t|y1:t) =

p(Ω̃
(i,j)
t |y1:t)∑Nh

i=1 p(Ω̃
(i,j)
t |y1:t)
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where right hand side probabilities are given by (15) when Ωî
t = Ω̃

(i,j)
t is the î’th largest

probable hypothesis.

8) For î = 1, 2, . . . , Nh run the correction step as follows

K
(Ωî

t)
t := P

(Ωi
t−1)

t|t−1 BT
t (qt(j))

(
Bt(qt(j))P

(Ωi
t−1)

t|t−1 BT
t (qt(j)) + Rt

)−1

ĥ
(Ωî

t)

t|t = ĥ
(Ωi

t−1)

t|t−1 +K
(Ωî

t)
t

(
yt −Bt(qt(j))ĥ

(Ωi
t−1)

t|t−1

)
, P

(Ωî
t)

t|t =
(
I−K

(Ωî
t)

t Bt(qt(j))
)
P

(Ωi
t−1)

t|t−1 .

9) As the estimate at time t, select the hypothesis with the largest weight and assign the

corresponding ĥ
(Ωî

t)

t|t as MHT tracker output.

10) Set t← t+ 1 and go to step 2.

When Nh = 1, MHT reduces to GNN. Choice of Nh provides a trade-off between complexity

and performance. Like GNN, MHT relies on hard assignments as it discards all the unfavorable

hypotheses.

D. Probabilistic Data Association Filter

A characteristic of optimal tracker which is missing in GNN and MHT is its soft (probabilistic)

assignment of hypotheses. Therefore, all hypotheses do have an impact on the final estimate but

unfavorable ones have a smaller effect than favorable ones. The impact of each hypotheses is

determined by its corresponding weight. PDAF utilizes the same idea of soft assignment but

does so only for the current measurement. To elaborate further, remember that MMSE is given

by ĥt|t = E[ht|y1:t] and the corresponding probability density function is evaluated as follow:

p(ht|y1:t) =
∑
qt

p(ht,qt|y1:t) =
∑
qt

p(qt|y1:t) p(ht|qt,y1:t) (16)

Note that we have conditioned on qt only as opposed to the optimal tracker which conditioned

on q1:t. The summation is over all 2K possible hypotheses on qt. The weights on the right hand

side of (16) can be written as

p(qt|y1:t) =
p(yt|qt,y1:t−1) p(qt|y1:t−1)

p(yt|y1:t−1)
∝ p(yt|qt,y1:t−1) λ

q
(k)
t
k (1− λk)(1−q(k)t ) (17)

The first term on the right hand side of (17) is further expanded as

p(yt|qt,y1:t−1) =

∫
p(yt|ht,qt,y1:t−1) p(ht|qt,y1:t−1) dht (18)

=

∫
p(yt|ht,qt) p(ht|y1:t−1) dht ≈ N

(
yt;Bt(qt)ĥt|t−1,Bt(qt)Pt|t−1B

T
t (qt) + Rt

)

February 4, 2020 DRAFT



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (SUBMITTED) 15

The first equality in (18) is valid because given ht,qt, measurement yt is independent of past

measurements y1:t−1. In addition, given only past measurements y1:t−1, qt is independent of

ht. The approximation occurs because p(ht|y1:t−1) is given by the optimal tracker which is

too complex and thus we approximate it using the predictions on the previous step of PDAF.

Upon setting p(ht|y1:t−1) ≈ N (ht; ĥt|t−1,Pt|t−1) and p(yt|ht,qt) = N (yt;Bt(qt)ht,Rt) and

integrating over ht the approximation ensues. Same approximation is utilized in evaluating the

second term in (16). Specifically,

p(ht|qt,y1:t) =
p(yt|ht,qt,y1:t−1) p(ht|qt,y1:t−1)

p(yt|qt,y1:t−1)
∝ p(yt|ht,qt) p(ht|y1:t−1) (19)

≈ N (yt;Bt(qt)ht,Rt) N (ht; ĥt|t−1,Pt|t−1) ∝ N
(
ht; ĥt|t(qt),Pt|t(qt))

)
where

Kt(qt) = Pt|t−1B
T
t (qt)

(
Bt(qt)Pt|t−1B

T
t (qt) + Rt

)−1

ĥt|t(qt) = ĥt|t−1 + Kt(qt)(yt −Bt(qt)ĥt|t−1), Pt|t(qt) = (I−Kt(qt)Bt(qt))Pt|t−1

Kt(qt) denotes the Kalman gain assuming the hypothesis qt is true. Similarly, ĥt|t(qt),Pt|t(qt)

are the corresponding mean and covariance after correction step conditioned on qt. Note that (19)

illustrates an alternative derivation of the correction step for the Kalman filter. To summarize,

the weights in (16) are evaluated via (17) and (18) for all possible 2K hypotheses over qt and

normalized to one. We also plug the approximation in (19) into (16) and will arrive at a Gaussian

mixture. PDAF estimate of mean and covariance is given by the Gaussian mixture in (16). It is

straightforward to show that this mean and covariance are given by

ĥt|t =
∑
qt

p(qt|y1:t)ĥt|t(qt), Pt|t =
∑
qt

p(qt|y1:t)
(
Pt|t(qt) + ĥt|t(qt)ĥ

T
t|t(qt)

)
− ĥt|tĥ

T
t|t (20)

PDAF is briefly described as follows.

1) Fix h0 ∼ N (ĥ0,P0|0) which are obtained from the initial acquisition stage. Set t = 0.

2) At time instant t > 1 perform the following steps:

3) Perform prediction step on the joint state. This amounts to calculating ĥt|t−1 = Atĥt−1|t−1

and Pt|t−1 = AtPt|t−1A
T
t + Qt.

4) Consider all possible 2K hypotheses on qt. Compute the weights as in (16) using (17),(18).

Then, compute the 2K correction steps for different qt according to (19).

5) Compute the mean and covariance of PDAF according to (20).

6) Set t← t+ 1 and go to step 2.
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V. LOW-COMPLEXITY CHANNEL TRACKING WITH UNCOORDINATED PILOT ACCESS

While linear in t, GNN, MHT, and PDAF complexities are exponential in K limiting the values

of K for which these algorithms are tractable. This section offers three heuristic remedies. The

first two maintain polynomial complexity while the third has a random complexity whose worst

case can be exponential, however its average performance was similar to the first two methods

as verified by numerical comparisons.

A. Discarding Collisions

The first solution is to discard collisions as we had done in the coordinated access case.

According to [14], the number of colliding users can be estimated in massive MIMO via

N̂a :=
‖Ytφ1‖2

2 − ‖Ytφe‖2
2

M
, (21)

where φe is an unused orthonormal pilot. For large M , law of large numbers ensures convergence

of (21) to the number of colliding users. This is the case only if E[(h
(k)
t (m))2] = 1 for all t, k,m

values, that is power control is applied. Upon discarding collisions when N̂a > 2, we are left

with a possible choice of K + 1 hypotheses which amounts to only one element of qt being

equal to one or all being equal to zero. We can apply any of the three methods of GNN, MHT,

and PDAF with qt assuming K+1 hypotheses instead of the original 2K . This remedy performs

satisfactorily only when collisions are a few. Therefore, either K should be small to avoid many

collisions or there should be some sort of orthogonality in access patterns which requires extra

coordination. Still for small K = 2, 3, 4 this scheme can serve four times as many devices as

that of dedicated orthogonal pilot assignment.

B. Soft and Hard Least Squares

We can rewrite (3) as follows:

yt = Htqt + wt (22)

where Ht := [h
(1)
t |h

(2)
t | · · · | h

(K)
t ]. If Ht was known, we could have estimated qt via an integer

constrained least-squares (LS). Subsequently, two difficulties arise. First, integer constraints on qt

make the problem significantly harder to solve. Secondly, we do not know Ht. To address these

challenges, we apply two approximation. First, we relax the integer constraint qt ∈ {0, 1}K into

a convex hypercube qt ∈ [0, 1]K . Furthermore, we replace the unknown Ht with its best available
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estimate Ĥt := [ĥ
(1)
t|t−1 |ĥ

(2)
t|t−1 | · · · | ĥ

(K)
t|t−1]. Upon utilizing these approximations, unconstrained

LS is immediately obtained as

q̂t =
(
ĤT
t Ĥt

)−1

ĤT
t yt (23)

For soft LS, we project the obtained q̂t into the hypercube [0, 1]K which simply amounts to

rounding values of q̂t out of the [0, 1] interval to either 0 or 1 whichever is closer and keeping

the values inside the interval intact. Given the convex quadratic cost for LS, this optimization

then projection approach is equivalent to solving the constrained LS with a hypercube constraint.

For hard LS, we project the obtained q̂t into the set {0, 1}K which amounts to rounding each

value to either 0 or 1. Note that hard LS makes hard decisions on if a particular user is present

or absent in a collision while soft LS weighs each user corresponding to its unconstrained LS

estimate.

C. Locally Optimum Maximum Likelihood

While very simple complexity-wise, the soft/hard LS algorithms in the previous section might

perform poorly due to their underlying approximations. One can improve their performance by

evaluating the maximum-likelihood estimate (MLE) instead of LS. The joint density of y1:t

parameterized by qt is written as

p (y1:t;qt) = p (yt|y1:t−1;qt) p (y1:t−1;qt) = p (yt|y1:t−1;qt) p (y1:t−1) (24)

The second equality follows because y1:t−1 does not depend on qt. To maximize the joint

density over qt, we should maximize p (yt|y1:t−1;qt) which is distributed as GMM (remember

the optimum uncoordinated filter). To ensure tractability, we assume that the MLE filter has

correctly found q1:t−1. This assumption has been made by all the other sub-optimal filters of

Sections IV and V as well. Then, one can write (22) as

yt = Htqt + wt = Ĥtqt + (Ht − Ĥt)qt + wt︸ ︷︷ ︸
et

(25)

where given y1:t−1, the first term yields the mean and the second term, which is et, yields the

zero-mean Gaussian noise with its covariance given by

Cee = E
[
ete

T
t |y1:t−1

]
= E

{[
(Ht − Ĥt)qt + wt

] [
(Ht − Ĥt)qt + wt

]T}

= E


[

K∑
k=1

q
(k)
t (h

(k)
t − ĥ

(k)
t|t−1) + wt

][
K∑
`=1

q
(`)
t (h

(`)
t − ĥ

(`)
t|t−1) + wt

]T
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=
K∑
k=1

K∑
`=1

q
(k)
t q

(`)
t

(
Pt|t−1

)
k,`

+ Rt

where
(
Pt|t−1

)
k,`

corresponds to the k, ` block of the joint covariance. MLE maximizes the

log-likelihood given by

q̂t = arg max
qt∈{0,1}K

− 1

2
log |Cee| −

1

2
(yt − Ĥtqt)

TC−1
ee (yt − Ĥtqt) (26)

Due to the integer constraints, MLE is difficult to compute. We apply coordinate ascent (CA).

Given that each CA step improves ML objective, which is bounded above, its convergence to a

local optimum is guaranteed. We begin with qt = 0 and each time vary a coordinate k, which is

q
(k)
t , between zero and one with all the other coordinates fixed. Then, select the choice that yields

a higher objective. Then, we move on to the next coordinate. In the worst-case the algorithm

converges in 2K steps. Finally, we should note that, if we added a prior on qt in (24) we arrived

at an sub-optimal maximum a-posteriori (MAP) estimate which yields the same computational

complexity as MLE.

VI. PERFORMANCE ANALYSIS

We will examine the MMSE difference between the optimal coordinated versus uncoordinated

filters which offers the fundamental performance limit. This gap is referred to as price of anarchy

(PoA) because it determines the increased MMSE when users change pilot access patterns at will

and do not notify the BS. For an ordinary KF, covariance update is independent of measurements

and can be carried offline. Proceeding with the JC-KF, we have

MMSEc = E
[
‖ht − ĥ

(c)
t|t ‖

2
]

= E
[
E
[
E
[
‖ht − ĥ

(c)
t|t ‖

2|q1:t,y1:t

]
|q1:t

]]
= E

[
E
[
trace(Pt|t(q1:t))|q1:t

]]
=
∑
q1:t

p(q1:t) trace(Pt|t(q1:t)) (27)

The inner most expectation, which is conditioned on q1:t,y1:t amounts to JC-KF and its MMSE

is easily obtained by the trace of the KF covariance matrix tailored to that particular pattern

of q1:t and is independent of yt. Each measurement pattern q1:t yields a corresponding MMSE

given by trace(Pt|t(q1:t)). The overall MMSE, averaged over q1:t is given by the last equation.

Let us focus on the uncoordinated optimum tracker and its MMSE:

MMSEu = E
[
‖ht − ĥ

(u)
t|t ‖

2
]

= E
[
E
[
‖ht − ĥ

(u)
t|t ‖

2|y1:t

]]
(28)
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Given y1:t, ĥ
(u)
t|t is only a function of measurements and hence non-random. Only ht is random

in the inner expectation and distributed as the Gaussian mixture in (12). One can write

E
[
‖ht − ĥ

(u)
t|t ‖

2|y1:t

]
=

∫
‖ht − ĥ

(u)
t|t ‖

2
∑
q1:t

p(q1:t|y1:t)N (ht; ĥt|t(q1:t),Pt|t(q1:t)) dht

=
∑
q1:t

p(q1:t|y1:t)

∫
‖ht − ĥt|t(q1:t) + ĥt|t(q1:t)− ĥ

(u)
t|t ‖

2N (ht; ĥt|t(q1:t),Pt|t(q1:t)) dht

=
∑
q1:t

p(q1:t|y1:t)
[
trace(Pt|t(q1:t)) + ‖ĥt|t(q1:t)− ĥ

(u)
t|t ‖

2
]

(29)

In going from the second to third line, we have expanded the ‖.‖2 and used the fact that we are

integrating with respect to N (ht; ĥt|t(q1:t),Pt|t(q1:t)) and hence the term ‖ht− ĥt|t(q1:t)‖2 will

be given by the trace of the corresponding covariance matrix. The term ‖ĥt|t(q1:t) − ĥ
(u)
t|t ‖2 is

constant and the cross-term is zero. Next, we plug (29) into (28) to obtain the final MMSE

MMSEu = Ey1:t

[∑
q1:t

p(q1:t|y1:t)
[
trace(Pt|t(q1:t)) + ‖ĥt|t(q1:t)− ĥ

(u)
t|t ‖

2
]]

=
∑
q1:t

p(q1:t) trace(Pt|t(q1:t)) + Ey1:t

[∑
q1:t

p(q1:t|y1:t)‖ĥt|t(q1:t)− ĥ
(u)
t|t ‖

2

]
(30)

The first term in (30) equals (27). The second term yields MMSE difference between the optimal

coordinated and uncoordinated trackers. It is the price of anarchy (PoA). It is desirable to

characterize PoA analytically such as proving its boundedness and obtaining an upper bound

that tells us how much performance we lose due to lack of coordination. These questions are

difficult to address generally. However, for some special cases, they can be answered. First, we

derive a single step upper bound on PoA. That is we assume both filters used the same initial

estimate ĥ0, P̂0,0 and check the negative effect of anarchy at time-step t = 1. The following

theorem ensues whose proof is relegated to the Appendix B.

Theorem 1. Assuming the same initial estimate ĥ0, P̂0,0 for both the coordinated and uncoor-

dinated optimum trackers, the single-step PoA is upper bounded by

PoA 6
∑
q1

p(q1)

[
ĥT1|0B(q1)TK(q1)TK(q1)B(q1)ĥ1|0 + trace

(
R + B(q1)P1|0B(q1)T

)
−
∑
q̃1

P (q̃1)ĥT1|0B(q1)TK(q1)TK(q̃1)B(q̃1)ĥ1|0

]
. (31)
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A. Mean Square (MS) sense Stability of Optimal Trackers

Unfortunately, Theorem 1 can not determine if PoA is bounded for large t because the

presented upperbound grows unbounded as t increases. First, we consider a dynamical system

which is stable. In the time-invariant parameters case, this means that all eigenvalues of At := A

have absolute value less than one. The following theorem ensues. The proofs are trivial [1].

Theorem 2. When the aggregate (or joint) dynamical system in (5) is time-invariant and stable

in the MS sense, following conclusions can be drawn:

1. Covariance matrix for the state remains bounded and converges to the unique positive

semi-definite solution of Lyapunov equation P = APAT + Q.

2. JC-KF is MS sense stable meaning that its covariance matrix remain bounded.

3. Optimal uncoordinated tracker is MS sense stable meaning that its covariance matrix remain

bounded.

4. PoA remains bounded.

When the dynamical system of the state is stable, optimal filters are guaranteed to be stable

without the need for any observability condition. Stability is guaranteed by the fact that optimal

MMSE tracker will have a smaller trace of covariance than the unobserved dynamical system

as exploiting measurements optimally can only improve MMSE. As the original covariance for

the unobserved system is bounded so does the MMSE for the optimal tracker [1]. Subsequently,

PoA which is the difference between MSE of optimal trackers will be bounded as well.

It is well-known that if a time-varying dynamical system is MS sense unstable but uniformly

completely observable and controllable, the corresponding Kalman filter is guaranteed to be

stable [1], [15], [16]. This is a sufficient condition but not necessary as weaker detectability

condition can be used instead. Our final theorem yields sufficient conditions for the stability of

JC-KF.

Theorem 3. If the dynamical system in (5) is MS sense unstable but uniformly completely

controllable, then JC-KF is MS sense stable if the prior p(q1:t) is non-zero only for those q1:t

combinations which maintain uniform complete observability.

Proof: Results trivially from (27).

Given the condition in Thm. 3, the optimal coordinated tracker is stable. It is of interest to

determine the stability or lack of it for the optimal uncoordinated tracker under the same

conditions. This will lead to boundedness / unboundedness conclusion for PoA when observ-
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ability/controllability conditions hold. However, this is a challenging task and demands further

investigation on its own. We leave it as an open problem to be addressed in future works.

VII. NUMERICAL RESULTS

We pursue four distinct goals in our simulations. First, we draw a comparison between

coordinated and uncoordinated schemes to determine PoA numerically. Secondly, we check

the effect of number of antennas on performance to decide how an ordinary MIMO fairs against

massive MIMO. Third, we check the data rates that can be achieved via the proposed tracking

schemes. Finally, we compare against existing alternatives. Certain parameters are fixed for all

simulations. They include τ = 16, T = 200, ρ = 0.95, Q(k)
t = (1 − ρ2)IM , and A

(k)
t = ρIM

for all t, k. Furthermore, we set Rt = IM , λk = (K − 1)/K for all k = 1, 2, . . . , K. While we

consider setups with K = 2, 6 devices, we only plot the results pertaining to first device as all

parameters are selected symmetrically and at random for all devices. We normalize the channel

mean-square error (MSE) for all the trackers by the trace of the covariance matrix (Pt|t)1,1 which

corresponds to the optimal coordinated tracker given by JC-KF.

A. Performance of Coordinated Methods

We consider K = 6 and plot the normalized MSE versus time-slot in Figure 1, and Figure 2

for M = 16 and M = 256 antennas respectively. These figures depict a comparison of the JC-KF,

CI-KF, and BP-KF. As expected, JC-KF performs best with a normalized MSE of one. For this

setup, BP-KF performs slightly better than CI-KF as CI-KF discards too many collisions and

thus keeps only predicting all the time. However, the pattern reverses for K = 2 where collisions

are fewer and CI-KF outperforms BP-KF. Due to space limitation, we have omitted the relevant

figures for K = 2. Ergodic tracker which is the algorithm proposed by [24] performs poorly in

both ordinary and massive MIMO scenarios.

B. Performance of Uncoordinated Methods

For K = 6 devices and M = 16, M = 256 antennas, Normalized MSE (NMSE) for all

uncoordinated trackers are plotted in Figure 3 and Figure 4 respectively. Note that the optimal

uncoordinated tracker is too complex to be practical and thus overlooked. As for PoA, it is

definitely lower than the best performing uncoordinated algorithm which is suggested to be

PDAF by the figures. A major difference emerges between M = 16 and M = 256. For M = 16,
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Fig. 1: Normalized MSE of coordinated track-

ers with K = 6, M = 16.
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Fig. 2: Normalized MSE of coordinated track-

ers with K = 6, M = 256.

ordinary MIMO, NMSE is about 1.5 for PDAF which means that worst case PoA equals half the

coordinated MMSE. The PDAF NMSE for M = 256 is about 1.1 which means that worst case

PoA is about one tenth of the coordinated MMSE. This result is remarkable in the sense that

if we go into the massive MIMO regime, a practical uncoordinated algorithm like PDAF gets

very close to the performance of optimum coordinated tracker. However, the gap is considerably

larger for ordinary MIMO. Same conclusion is valid for all other uncoordinated trackers as their

NMSE is considerably smaller in the massive MIMO regime. Figure 3 suggests that MHT (4

best hypotheses), GNN, and ML perform slightly better than Soft/Hard LS. For the massive

MIMO setup in Figure 4, same pattern is observed with the exception of ML which performs

the poorest. Note the y-axis scale difference in Figure 3 versus Figure 4.

For the uncoordinated algorithms, if we discard collisions when K is not small, we practically

discard all measurements and will keep only predicting the channels for all the users. However,

when K = 2, we obtain reasonable performance with collisions discarded. Figure 5 illustrates

that CI-KF NMSE levels off at 1.2 which means that performance is reduced by 20 percent while

we get a complexity improvement by the factor of 4. As for uncoordinated trackers which discard

collisions, they are limited by the fact that the estimate (21) is not accurate in low antenna regime

and overestimates the number of active devices predicting many nonexistent collisions. Thus,

PDAF, MHT, and GNN only predict most of the time. For massive MIMO, this limitation is no

longer a burden as the estimate in (21) becomes very accurate. Subsequently, PDAF, MHT, and

GNN perform similar to the coordinated CI-KF suffering an NMSE of about 1.2 as witnessed by
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Fig. 3: Normalized MSE of uncoordinated

trackers with K = 6, M = 16.
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Fig. 4: Normalized MSE of uncoordinated

trackers with K = 6, M = 256.

Figure 6. Therefore, if we compare optimum coordinated versus uncoordinated trackers which

discard collisions, PoA equals zero, which is again a remarkable merit for massive MIMO.

C. Achievable Data Rates

The final aim in any communication system is to endow each individual user with the highest

possible data-rate that can be secured with the available CSI. We characterize capacity for user

k at time t as

Ck
t = log2 (1 + SINR) = log2

1 +
|h(k)
t

T
z

(k)
t |2∑

` 6=k |h
(k)
t

T
z

(`)
t |2 + σ2

v

 (32)

where z
(k)
t is the linear beamforming weight for user k at time t and σ2

v is the receiver noise

variance. First, we use a simple MRT beamformer. Figure 7 and Figure 8 show a comparison

of the JC-KF, CI-KF, and BP-KF with respect to the capacity for user one for the cases of

K = 6 , M = 16 and K = 6, M = 256, respectively. It can be observed that joint tracking

of all K users does indeed greatly improve the data rate compared to decoupled sub-optimal

individual trackers. With K = 6, which means too many collisions, CI-KF basically predicts

all devices channels most of the time and measurements are not exploited at all. Indeed, CI-KF

performs dead reckoning whose error increases in the long run. BP-KF performs better than

CI-KF but the extra gain is hardly noteworthy. We conclude that more advanced sub-optimal

trackers might be needed here to fill the performance gap between JC-KF and BP-KF. In spite
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Fig. 5: Normalized MSE of uncoordinated

trackers when discarding collisions with K =

2, M = 16.
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Fig. 6: Normalized MSE of uncoordinated

trackers when discarding collisions with K =

2, M = 256.

of its poor MSE, Ergodic tracker performs similar to CI-KF and BP-KF in terms of data-rate

for ordinary MIMO and outperforms them in massive MIMO.

MRT beamformer data rates for uncoordinated trackers are plotted in Figure 9 and Figure 10

for K = 6, M = 16 and K = 6, M = 256 respectively. It is observed that for ordinary MIMO

there is no significant gap between data rates of various algorithms and they all perform poorly.

However, in the massive MIMO setting, performance gap is considerable with PDAF performing

best and locally optimal ML performing worst. Finally, a robust beamformer that exploits both

channel estimates and its covariance matrix was considered [28]. This beamformer proved too

complex to design for large K,M . When K = 2, M = 16, capacity of this robust beamformer

for various algorithms that discard collisions are plotted in Figure 11.

VIII. CONCLUSION

High-rate IoT setup in massive MIMO was considered and a novel method to track all devices

channels simultaneously was advocated. Utilizing a dynamical model for IoT devices channel
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Fig. 7: MRT data rate of coordinated trackers

with K = 6, M = 16.
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Fig. 8: MRT data rate of coordinated trackers

with K = 6, M = 256.
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Fig. 9: MRT data rate of uncoordinated track-

ers with K = 6, M = 16.

0 50 100 150 200 250
Time

0

1

2

3

4

5

6

R
at

e

PDAF
GNN
MHT
Soft LS
Hard LS
ML

Fig. 10: MRT data rate of uncoordinated track-

ers with K = 6, M = 256.

evolution over time, optimal and various sub-optimal trackers were proposed for coordinated and

uncoordinated scenarios. Fundamental performance gap between coordinated and uncoordinated

trackers was evaluated analytically. Finally, the performance of various trackers were investigated

through extensive simulations.

APPENDICES

APPENDIX A. DERIVATION OF BP-KF

To derive BP-KF, we use the factor graph notion as provided in [18]. In their seminal paper,

it was shown that KF can alternatively be viewed as belief propagation, or more generally a
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Fig. 12: Factor graph for our filtering scenario

and belief schedules.

message passing algorithm on a factor graph. Following the same procedure, in the coordinated

setup, factor graph for our scheme is depicted in Fig. 12. To proceed, we derive the four messages,

or beliefs, denoted as µ(1)
1 , µ

(1)
2 , µ

(1)
3 , µ

(1)
4 in Fig. 12. Then, we generalize these messages to other

users and future time slots. Note that given the joint Gaussianity of the overall model, belief

messages are Gaussian themselves. Therefore, we only need to include the mean and covariance

in the beliefs.

µ
(1)
1 (h

(1)
0 ) = p(h

(1)
0 ) = N (h

(1)
0 ; ĥ

(1)
0 ,P

(1)
00 )

µ
(1)
2 (h

(1)
1 ) =

∫
p(h

(1)
1 |h

(1)
0 )µ

(1)
1 (h

(1)
0 ) dh

(1)
0 =

∫
p(h

(1)
1 |h

(1)
0 )p(h

(1)
0 ) dh

(1)
0

=

∫
N (h

(1)
1 ;A

(1)
1 h

(1)
0 ,Q

(1)
1 ) N (h

(1)
0 ; ĥ

(1)
0 ,P

(1)
00 ) dh

(1)
0

= N
(
h

(1)
1 ;A

(1)
1 ĥ

(1)
0 ,A

(1)
1 P

(1)
00 A

(1)T

1 + Q
(1)
1

)
:= N

(
h

(1)
1 ; ĥ

(1)
1|0,P

(1)
10

)
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These beliefs are exactly same as those for ordinary KF. In evaluating µ
(1)
3 , µ

(1)
4 differences

appear:

µ
(1)
3 (h

(1)
1 ) =

∫
p(y1|h1,q1)

∏
j:q

(j)
1 =1, j 6=1,

µ
(j)
2 (h

(j)
1 ) dh

(j)
1

=

∫
N

(
y1;

K∑
k=1

q
(k)
1 h

(k)
1 ,R1

) ∏
j:q

(j)
1 =1, j 6=1,

N
(
h

(j)
1 ; ĥ

(j)
1|0,P

(j)
10

)
dh

(j)
1

= N

(
y1 −

K∑
j=2

q
(j)
1 ĥ

(j)
1|0;h

(1)
1 ,R1 +

K∑
j=2

q
(j)
1 P̂

(j)
1|0

)
:= N

(
ŷ

(1)
1 ;h

(1)
1 , R̂

(1)
1

)
The above expression is valid only if q(1)

1 = 1, that is user 1 participates in the collision.

Otherwise, there is no connection between variable node h
(1)
1 and factor node p(y1|h1,q1) and

there will be no µ
(1)
3 and we will have µ(1)

4 = µ
(1)
2 . Finally, µ(1)

4 is computed as in an ordinary

KF.

µ
(1)
4 (h

(1)
1 ) = µ

(1)
2 (h

(1)
1 )µ

(1)
3 (h

(1)
1 ) = N

(
h

(1)
1 ; ĥ

(1)
1|0,P

(1)
10

)
N
(
ŷ

(1)
1 ;h

(1)
1 , R̂

(1)
1

)
= N

(
h

(1)
1 ; ĥ

(1)
1|1,P

(1)
1|1

)
where the parameters on the last line are given by (11). Same derivation can be extended in a

straightforward manner to other users and future time slots which completes the proof.

APPENDIX B. PROOF OF THEOREM 1

PoA = Ey1

[∑
q1

p(q1|y1)‖ĥ1|1(q1)− ĥ
(u)
1|1‖

2

]

= E

[∑
q1

p(q1|y1)
(
‖ĥ1|1(q1)‖2 + ‖ĥ1|1‖2 − 2ĥ1|1(q1)ĥ1|1

)]

= E

[∑
q1

p(q1|y1)
(
‖ĥ1|1(q1)‖2 + ‖ĥ1|1‖2

)]
(33)

Note that ĥ1|1(q1) amounts to a correction step assuming q1 is the true model, while ĥ1|1 is the

soft combination of all possible q1 as derived for the optimal uncoordinated tracker. They can

further be written as

ĥ1|1(qt) = ĥ1|0 + K(q1)
(
y1 −B(q1)ĥ1|0

)
(34)

ĥ1|1 =
∑
q1

p(q1|y1)
[
ĥ1|0 + K(q1)

(
y1:t −B(q1)ĥ1|0

)]
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= ĥ1|0 +
∑
q1

p(q1|y1)K(q1)
(
y1 −B(q1)ĥ1|0

)
Plugging into PoA in (33), we get

PoA = E

[∑
q1

p(qt|y1)
(
ĥT1|0K(q1)

(
y1 −B(q1)ĥ1|0

))]

+ E

[∑
qt

p(q1|y1)
∥∥∥K(q1)

(
y1 −B(q1)ĥ1|0

)∥∥∥2
]

− E

[∑
q1

p(q1|y1)ĥT1|0K(q1)
(
y1 −B(q1)ĥ1|0

)]

− E

∥∥∥∥∥∑
q1

p(q1|y1)K(q1)
(
y1 −B(q1)ĥ1|0

)∥∥∥∥∥
2


= E

[∑
q1

p(q1|y1)
∥∥∥K(q1)

(
y1 −B(q1)ĥ1|0

)∥∥∥2
]

− E

∥∥∥∥∥∑
q1

p(q1|y1)K(q1)
(
y1 −B(q1)ĥ1|0

)∥∥∥∥∥
2
 (35)

Note that ‖.‖2 is convex, (∂‖X‖
2

∂X2 = 2I). Hence, jensen inequality ensure that (35) is positive

since it is equal to the expectation of positive entity (‖
∑

i λiXi‖2 6
∑

i λi‖Xi‖2).

First term in (35) yields

E

[∑
q1

p(q1|y1)
∥∥∥K(q1)

(
y1 −B(q1)ĥ1|0

)∥∥∥2
]

=

E
[∑

q1

p(q1|y1)

(
yT1 K

T (q1)K(q1)y1 + ĥT1|0B(q1
T )K(q1

T )K(q1)ĥ1|0B(q1)

− 2ĥ1|0B(q1
T )K(q1)TK(q1)

)]
(36)

Now, let us evaluate each term independently.

E [p(q1|y1)] =

∫
p(q1|y1) p(y1)dy1 = P (q1) (37)

E [p(q1|y1)y1] =

∫
y1 p(y1|q1) p(q1) dy1

=

∫ ∫
y1 p(y1|h1,q1) p(h1|q1) p(q1) dy1 dh1

= p(q1)

∫
p(h1)

∫
y1 N (y1;B(q1)h1,R1) dy1 dh1
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= p(q1)

∫
B(q1)h1p(h1) dh1 = p(q1) B(q1) E [h1] = 0

The last line is zero because E [h1] = E [Ah0 + u1] = 0. Let us focus on the second moment

now.

E
[
p(q1|y1)y1y

T
1

]
= p(q1)

∫
p(h1)

∫
y1 yT1 N (y1;B(q1)h1,R1) dy1 dh1 (38)

= p(q1)

∫
p(h1)

[
B(q1) h1h

T
1 B(q1)T + R

]
dh1

= p(q1)
[
R + B(q1) E

[
h1h

T
1

]
B(q1)T

]
E
[
h1h

T
1

]
= E

[
(Ah0 + u1)(Ah0 + u1)T

]
= AP0A

T + Q

Combining these results, the first term in (35) can be written as follows

E

[∑
q1

p(q1|y1)
∥∥∥K(q1)

(
y1 −B(q1)ĥ1|0

)∥∥∥2
]

=
∑
q1

p(q1)ĥ0A
TB(q1

T )K(q1
T )×K(q1)B(q1)Aĥ0

+
∑
q1

p(q1)trace
[
R + B(qt)

(
APt−1A

T + Q
)
B(q1)T

]
Second term in (35) can be simplified as follows

E

∥∥∥∥∥∑
qt

p(q1|y1)K(q1)
(
y1 −B(q1)ĥ1|0

)∥∥∥∥∥
2
 >

∥∥∥∥∥E
[∑

q1

p(q1|y1)K(q1)
(
y1 −B(q1)ĥ1|0

)]∥∥∥∥∥
2

=

∥∥∥∥∥∑
q1

p(q1)K(q1)B(q1)ĥ1|0

∥∥∥∥∥
2

=
∑
q1

∑
q̃1

p(q1)p(q̃1)ĥT1|0B(q1)TK(q1)TK(q̃1)B(q̃1)ĥ1|0

=
∑
q1

∑
q̃1

p(q1)p(q̃1)ĥT0 A
TB(q1)TK(q1)TK(q̃1)B(q̃1)Aĥ0

We used Jensen inequality on the first line. Plugging back into (35) completes the proof.
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