
1

Super-resolution Method for Coherent DOA
Estimation of Multiple Wideband Sources

Milad Javadzadeh Jirhandeh, Mohammad Hossein Kahaei

Abstract

We focus on coherent direction of arrival estimation of wideband sources based on spatial sparsity. This area of research
is encountered in many applications such as passive radar, sonar, mining, and communication problems, in which an increasing
attention has been devoted to improving the estimation accuracy and robustness to noise. By the development of super-resolution
algorithms, narrowband direction of arrival estimation based on gridless sparse algorithms and atomic norm minimization has
already been addressed. In this paper, a superresolution based method is proposed for coherent direction of arrival estimation of
multiple wideband sources. We introduce an atomic norm problem by defining a new set of atoms and exploiting the signal joint
sparsity of different frequency subbands in a continuous spatial domain. This problem is then cast as a semidefinite program,
which leads to implementing a new coherent direction of arrival estimation method with higher resolution and more robustness
to noise. Numerical simulations show the outperformance of the proposed method compared to the conventional ones.

Index Terms

Atomic norm, gridless sparse, super-resolution, direction of arrival, coherent estimation, wideband sources.

I. INTRODUCTION

W IDEBAND Direction of Arrival (DOA) estimation is popular due to its application in many fields like sonar, radar,
and wireless communications. In these cases, the direction information is repeated in different frequency bands, which

can be exploited to improve the estimation precision. A conventional approach is to decompose widebands into narrowbands
using specific filter banks or the Discrete Fourier Transformation (DFT) and use the joint information of narrowband signals
for DOA estimation. These techniques can be classified into Incoherent Signal Subspace Methods (ISSM) and Coherent Signal
Subspace Methods (CSSM).

In the ISSM, widebands are first divided into narrowbands and a DOA estimation method is applied to each band. The
final DOA estimate is then calculated by incoherently averaging the respective results [1], [2]. This approach, however, suffers
from a weak robustness concerning the noise and also loses its final precision when high-magnitude errors take place in
narrowband DOA estimates. In the CSSM, on the other hand, using a focusing matrix all the center frequencies of narrowband
signals are mapped into a reference frequency to which a narrowband DOA estimator is applied [3], [4]. For instance, the
Rotational Signal Subspace (RSS) [4] may be mentioned. However, a major drawback to these methods is the need for an
initial DOA estimate, which is required for designing the focusing matrix. Motivated by this deficiency, a coherent subspace
method has been addressed based on interpolation in [5]. Moreover, to fill the gap between coherent and incoherent methods,
some methods have been developed by using the signal and noise subspaces in different narrowband signals. For example, the
Test of Orthogonality of Projected Subspaces (TOPS) [6], and Weighted Squared TOPS (WS-TOPS) [7] have been introduced.
The main shortage of the aforementioned methods is the need for a large number of snapshots for each narrowband signal.
Also, the number of DOAs should be known, a priori.

In contrast, sparse DOA estimation methods are more practical thanks to their acceptable accuracy despite using a smaller
number of snapshots. In [8], [9], some sparse DOA estimation methods are developed for wideband sources based on
compressive sensing, in which the DOA space is discretized by a grid for the likely values of DOAs. Then, the joint sparsity
of the narrowband signals is utilized for DOA estimation by only incorporating one snapshot of the signals. However, the main
difficulty with these methods occurs for the grid mismatch where the actual position of DOAs does not exactly lie on the grid
steps. This, as a result, leads to effectively reducing the resolution of DOA estimates.

To overcome such a difficulty in Compressed Sensing (CS), Candès and Fernandez-Granda extended the discrete CS to the
continuous case by introducing the super-resolution concept, which directly incorporates the sparsity property in continuous
domain [10]. Tang et al. [11] used the super-resolution notion as a gridless sparse method for line spectral estimation by
atomic norm minimization. Afterwards, gridless DOA estimation has been developed based on super-resolution for narrowband
sources [12], [13], which can also be applied for incoherent DOA estimation of wideband sources. However, such approaches
exhibit inherent disadvantages of conventional incoherent DOA estimation techniques.

In this paper, by defining a new atomic norm, we propose a coherent gridless sparse method for wideband DOA estimation
based on super-resolution. The use of coherency in this method guarantees more robustness to the noise. In addition, by using
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only one snapshot of narrowband signals, a higher accuracy is achieved compared to the classical methods. Also, no information
is required about the number of sources.

The paper is organized as follows. In Section II, the signal model is defined. In Section III, we introduce a new atomic norm
and propose the respective gridless sparse recovery problem. The performance of our method is compared to some well-known
methods in Section IV and Section V concludes the results.

The following notations are respectively used in this work. Matrices and vectors are represented by uppercase and lowercase
bold letters, (·)T and (·)H denote transpose and conjugate transpose operators, ‖·‖F , ‖·‖A, and ‖·‖∗A show the Frobenius
norm, atomic norm, and dual norm of atomic norm for a matrix, ‖·‖2 is the `2 norm of a vector. conv(·) and Tr(·) represent
the convex hull and trace operator, respectively, and Im is an identity matrix of size m.

II. DATA MODEL

We consider a Uniform Linear Array (ULA) composed of M omnidirectional sensors with inter-spacing d. The number of
sources is K with the angles θk, k = 1, . . . ,K, which are constant during the observation time. By applying the DFT, the
array signal output is divided into J narrowband signals from ωL to ωH . Mathematically, we can show the array output vector
in ωj as

y (ωj) = Φ (ωj ,θ) s (ωj) + n (ωj) , j = 1, . . . , J, (1)

where y (ωj) = [y1 (ωj) , . . . , yM (ωj)]
T ∈ CM×1 with ym (ωj), m = 1, . . . ,M , representing the DFT of the mth sensor

output in ωL ≤ ωj ≤ ωH , s (ωj) = [s1 (ωj) . . . , sK (ωj)]
T ∈ CK×1 with sk (ωj) denoting the DFT of the kth source,

n (ωj) ∈ CM×1 is the corresponding noise, and Φ (ωj ,θ) = [φ (ωj , θ1) , . . . ,φ (ωj , θK)] ∈ CM×K shows the steering matrix
for the DOA vector θ = [θ1, . . . , θK ]

T in ωj whose columns are given by

φ (ωj , θk) = [exp (−iωjτ1,k) , . . . , exp (−iωjτM,k) ]
T
, (2)

where τm,k is the delay of the kth source with the arrival angle θk in the mth sensor defined as

τm,k = (m−1)d sin(θk)
c , (3)

with c showing the wave propagation speed. We assume that ω1 > ω2 > . . . > ωJ and in order to avoid ambiguity, d is equal
to the half of the minimum wavelength corresponding to the maximum frequency ω1 [14], that is,

d =
πc

ω1
. (4)

Using (3) and (4) in (2), we obtain

φ (ωj , θk) =


1

exp
(
−iωj

ω1
π sin (θk)

)
...

exp
(
−i (M − 1)

ωj

ω1
π sin (θk)

)

 . (5)

Next, by defining
αj ,

ωj

ω1
,

fk , 1
2 cos (θk) ,

(6)

where αj ≤ 1, α1 = 1 and f = [f1, . . . , fK ]
T ∈

[
− 1

2 ,
1
2

]
as the spatial frequencies of the DOAs, we can show

φ (ωj , θk) = a (f) , (7)

where

a (f) = [1, exp (−i2πf) , . . . , exp (−i (M − 1) 2πf) ]
T (8)

and f = αjfk. According to (8), we can reformulate (1) as

y (ωj) = [a (αjf1) , . . . ,a (αjfK)]s (ωj) + n (ωj) , (9)

from which our gridless sparse method for estimating f and subsequently the DOAs of wideband sources can be derived.
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III. PROPOSED GRIDLESS SPARSE METHOD FOR WIDEBAND DOA ESTIMATION

We assume that the focusing matrices Tj ∈ CM×M , j = 1, . . . , J , satisfy the following properties,

a (αjf) = Tja (α1f) + ej (f)
= Tja (f) + ej (f) ,

(10)

in which ej (f) is the focusing error vector in ωj for the DOA spatial frequency f ∈
[
− 1

2 ,
1
2

]
. This model shows that a (αjf)

can linearly be approximated by a (f) and Tj , in the sense that a (f) with the spatial frequency f can be focused on the
lower frequencies, αjf . This lets us to design a more accurate and efficient focusing matrix as follows.
To generate the focusing matrices Tj , we use the method developed in [5] to get

Tj =

 Tj (1, 1) . . . Tj (1,M)
...

. . .
...

Tj (M, 1) . . . Tj (M,M)

 , (11)

where Tj (m,m′) = sinc (αj (m− 1)− (m′ − 1)), and m,m′ = 1, . . . ,M. Note that for α1 = 1, we get T1 = IM .
Using the output vectors of adjacent sensors given by (9) and using (10), the array output matrix Y = [y (ω1) , . . . ,y (ωJ)] ∈

CM×J is obtained as

Y =

K∑
k=1

βkA (fk, ck) +N +E, (12)

where A (fk, ck) = [T1a (fk) , . . . ,TJa (fk)]× diag (ck), βk and ck are defined according to (9) as

βk =

∥∥∥∥∥∥∥
 sk (ω1)

...
sk (ωJ)


∥∥∥∥∥∥∥
2

, ck =

 sk (ω1)
...

sk (ωJ)

/βk,
and the noise and focusing error matrices N and E are respectively given by

N = [n (ω1) , . . . ,n (ωJ)] ∈ CM×J ,
E = [é1, . . . , éJ ] ∈ CM×J ,
éj = [ej (f1) , . . . , ej (fK)]× s (ωj) .

In this way, the noiseless array output matrix is X? =
∑K
k=1 βkA (fk, ck) , which can be recovered from the array output

matrix in order to estimate the DOA spatial frequencies vector f . For this purpose, we define the set of atoms as

A = {A (f, c) = [T1a (f) , . . . ,TJa (f)]× diag (c) |
f ∈

[
− 1

2 ,
1
2

]
, c ∈ CJ×1, ‖c‖2 = 1},

by which the atomic norm is defined for X as

‖X‖A = inf{t > 0 : X ∈ t conv (A)}
= inf
fk,βk,ck

{
∑
k βk : X =

∑
k βkA (fk, ck) ,

fk ∈
[
− 1

2 ,
1
2

]
, ‖ck‖2 = 1, βk > 0}.

(13)

Assuming that the sum of the noise power and focusing error power is equal to ‖N‖2F + ‖E‖2F = γ and that the number of
sources is small, we propose the following sparse problem for coherent estimation of wideband DOAs,

min
X
‖X‖A

subject to ‖X − Y ‖F ≤
√
γ.

(14)

The optimum matrix Xopt resulted from (14); which is an estimate of the noiseless data matrix X?, can be described by its
atoms as

Xopt =

K̂∑
k=1

β̂kA
(
f̂k, ĉk

)
, (15)

where β̂k ,f̂k, and ĉk are the estimates of true βk,fk, and ck, respectively, and K̂ is an estimate of real source numbers K.
To solve the primal problem in (14) and estimate the DOAs from the atoms of Xopt, we present its Lagrangian dual problem

as
max
H

Re
{
Tr
(
Y HH

)}
−√γ‖H‖F

subject to ‖H‖∗A ≤ 1
, (16)

where ‖·‖∗A shows the dual atomic norm. Since X = Y is a feasible solution for (14), strong duality holds according to
Slater’s condition [15].
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With the assumption of H = [h1, . . . ,hJ ] ∈ CM×J , the dual atomic norm ‖H‖∗A in (16) is defined as

‖H‖∗A = sup
‖X‖A≤1

Re
{
Tr
(
HHX

)}
= sup
f∈[− 1

2 ,
1
2 ] , ‖ck‖2=1

Re
{
Tr
(
HHA (f, c)

)}

= sup
f∈[− 1

2 ,
1
2 ] , ‖ck‖2=1

Re

cT


(TH1 h1)
H
a (f)

...
(THJ hJ)

H
a (f)




= max
f∈[− 1

2 ,
1
2 ]

∥∥∥∥∥∥∥∥


(TH1 h1)
H
a (f)

...
(THJ hJ)

H
a (f)


∥∥∥∥∥∥∥∥
2

,

(17)

where for the last expression, we have used the Cauchy-Schwarz inequality Re
{
pHq

}
≤ ‖p‖2‖q‖2, which is held for any

vectors p and q of the same size. Next, we describe the primal in (16) in the form of a Semidefinite Programming (SDP).
For this purpose, the condition ‖H‖∗A ≤ 1 should be expressed in the form of an SDP condition, for which we present the
following proposition.

Proposition 1. For matrices H = [h1, . . . ,hJ ] ∈ CM×J , H =
[
TH1 h1, . . . ,T

H
J hJ

]
∈ CM×J , and Tj ∈ CM×M , j =

1, . . . , J , if there exists a Hermitian matrix Q ∈ CM×M with the condition

[
Q H

H
H

IJ

]
� 0 (18)

and

M−m∑
n=1

Qn,n+m =

{
1, m = 0

0, m = 1, ...,M − 1,
(19)

the inequality

‖H‖∗A = max
f∈[− 1

2 ,
1
2 ]

∥∥∥HH
a(f)

∥∥∥
2
≤ 1 (20)

is satisfied. Reciprocally, the relationship (20) implies (18) and (19).

Proof. With the Schur complement, (18) holds, if and only if,

Q � 0

and

Q−H H
H � 0.

Thus, for any a(f) and f ∈
[
− 1

2 ,
1
2

]
, we get

∥∥∥HH
a(f)

∥∥∥2
2
≤ a(f)HQa(f).

But from (19), we have a(f)HQa(f) = 1 and subsequently (20) is proved. The reciprocal proof is derived by backward
reasoning.

�
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Now, using Proposition 1, the optimisation problem in (16) can be represented by the following SDP problem,

max
H,Q

Re
{
Tr
(
Y HH

)}
−√γ‖H‖F

subject to

 Q H

H
H

IJ

 � 0,

H =
[
TH1 h1, . . . ,T

H
J hJ

]
,

M−m∑
n=1

Qn,n+m =

{
1, m = 0,

0, m = 1, ...,M − 1,

Q is Hermitian.

(21)

From (21), the optimum solutions Hopt =
[
h1opt , . . . ,hJopt

]
and Hopt =

[
TH1 h1opt , . . . ,T

H
J hJopt

]
are obtained and DOAs

are subsequently estimated based on Theorem 1.

Theorem 1. If Xopt and Hopt are the solutions of the primal and dual problems in (14) and (21), respectively, then the
estimates of DOA frequencies in (15), f̂k, and k = 1, . . . , K̂ will satisfy,∥∥∥∥[hH1 opt a

(
f̂k

)
, . . . ,h

H

J opt a
(
f̂k

)]T∥∥∥∥
2

= 1, (22)

and

ĉk =
[
hH1 opta

(
f̂k

)
, . . . ,hHJ opta

(
f̂k

)]H
. (23)

The proof of Theorem 1 is given in Appendix A.
In this way, by estimating Xopt, its atoms are used to compute f̂k, as the estimates of fk, and afterwards the DOAs of

wideband sources are found.

IV. NUMERICAL SIMULATIONS

We consider an underwater scenario with a ULA composed of M = 16 hydrophones and c = 1500m/s. Source signals are
random waves with 512 samples, whose bandwidths in discrete frequency domain lie in [π/3, 2π/3]. Also, a 60-point DFT is
applied to the received signals, where the number of the selected frequency bins is J = 10, and the measuring noise in (6) is
zero mean white Gaussian with variance σ2

noise.
The performance of the WGS algorithm is compared to that of the RSS and WS-TOPS methods.
The initial values for the RSS are the true DOAs added up with some errors within ± 2◦ randomly chosen from a uniform

distribution. Moreover, as a required information, we provide the true number of sources for both RSS and WS-TOPS methods.
Simulation results are presented by averaging 100 independent trials of each experiment.

In the first experiment, we consider three sources located at θ = [−5◦, 15◦, 40◦]T . The results are compared in Fig. 1
in RootMean-Squared Error (RMSE) sense at different SNRs. As seen, the RSS generates the largest RMSE, mainly due to
the impact of error on the initial values which could dominate the noise effect. Furthermore, WS-TOPS achieves a better
performance and WGS offers the least RMSE. In the next experiment, we investigate the resolution of the estimators for
different DOA angles at 10 dB SNR. The first DOA is fixed at θ1 = 40◦ and the second DOA varies between θ2 = [28◦, 37◦].
The RMSEs are shown for ∆θ = θ1 − θ2 in Table I. One can see that the WS-TOPS is unable to estimate the DOAs for
∆θ < 11◦, which is due to needing more snapshots for a better performance. These values are less than 6◦ and 3◦ for the
RSS and WGS, respectively.

V. CONCLUSION

We proposed a coherent gridless sparse method for wideband DOA estimation by defining a new atomic norm and solving
the corresponding SDP. Simulations results demonstrate that this method is more robustness to noise with a better resolution
compared to the RSS and WS-TOPS methods. Moreover, this super-resolution based method needs no knowledge about the
number of sources.
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Fig. 1. RMSEs for WGS, RSS, and WS-TOPS methods for three sources at θ = [−5◦, 15◦, 40◦]T and different SNRs.

TABLE I
RMSES FOR WGS, RSS, AND WS-TOPS METHODS FOR DIFFERENT RESOLUTIONS.

∆θ (Degree) 12 11 10 9 8
WGS (Proposed) 0.5662 0.5460 0.6209 0.7315 0.7490

WS-TOPS [7] 0.6768 0.6256 Failed Failed Failed
RSS [4] 1.0631 1.0838 1.1266 1.1666 1.1066

∆θ (Degree) 7 6 5 4 3
WGS (Proposed) 0.7510 0.8984 1.1119 1.1117 1.2242

WS-TOPS [7] Failed Failed Failed Failed Failed
RSS [4] 1.0526 1.0728 Failed Failed Failed

APPENDIX

A. Proof of Theorem 1
From the strong duality theorem for the optimal solutions of primal and dual problems, Xopt and Hopt in (14) and (21),

respectively, we get
‖Xopt‖A = Re

{
Tr
(
Y HHopt

)}
−√γ‖Hopt‖F

= Re
{
Tr
(
XH
optHopt

)}
+Re

{
Tr
(

(Y −Xopt)
H
Hopt

)}
−√γ‖Hopt‖F

≤ Re
{
Tr
(
XH
optHopt

)}
.

(A.1)

The last inequality has been written using the constraint in (14), where we have ‖(Y −Xopt)‖F ≤
√
γ, and incorporating the

following Cauchy-–Schwarz inequality,

Re
{
Tr
(

(Y −Xopt)
H
Hopt

)}
≤ ‖(Y −Xopt)‖F ‖Hopt‖F .

On the other hand, from the dual norm definition, we can write,

Re
{
Tr
(
XH
optHopt

)}
≤ ‖Xopt‖A ‖Hopt‖∗A
≤ ‖Xopt‖A,

(A.2)

and thus from (A.1) and (A.2), the relationship

‖Xopt‖A = Re
{
Tr
(
X
H
optHopt

)}
,

holds. Using (15) and the Cauchy—Schwarz inequality, the latter expression leads to

‖Xopt‖A

= Re

{
Tr

(
HH
opt

K̂∑
k=1

β̂k[ĉ1 T1 a(f̂k), ..., ĉJ TJ a(f̂k)]

)}

=
K̂∑
k=1

β̂kRe

ĉ
T
k


(TH1 h1opt)

H
a
(
f̂k

)
...

(THJ hJopt)
H
a
(
f̂k

)

 ≤

K̂∑
k=1

β̂k,

(A.3)
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in which we incorporated (16 and (17) to show that,∥∥∥∥[(TH1 h1opt)
H
a
(
f̂k

)
, . . . , (THJ hJopt)

H
a
(
f̂k

)]T∥∥∥∥
2

≤ 1.

Since from (15), we obtain ‖Xopt‖A =
K̂∑
k=1

β̂k, (A.3) is only satisfied for the equalities (22, and (23, which complete the

proof.
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