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Abstract

Elliptically-contoured distributions (ECD) play a significant role, in com-

puter vision, image processing, radar, and biomedical signal processing. Max-

imum likelihood estimation (MLE) of ECD leads to a system of non-linear

equations, most-often addressed using fixed-point (FP) methods. Unfortu-

nately, the computation time required for these methods is unacceptably

long, for large-scale or high-dimensional datasets. To overcome this difficulty,

the present work introduces a Riemannian optimisation method, the infor-

mation stochastic gradient (ISG). The ISG is an online (recursive) method,

which achieves the same performance as MLE, for large-scale datasets, while

requiring modest memory and time resources. To develop the ISG method,

the Riemannian information gradient is derived taking into account the prod-

uct manifold associated to the underlying parameter space of the ECD. From

this information gradient definition, we define also, the information determin-

istic gradient (IDG), an offline (batch) method, which is an alternative, for

moderate-sized datasets. The present work formulates these two methods,

and demonstrates their performance through numerical simulations. Two
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applications, to image re-colorization, and to texture classification, are also

worked out.

Keywords: elliptically-contoured distribution, Riemannian information

gradient, large-scale dataset, image re-colorization, texture classification.

1. Introduction

The family of Elliptically-contoured distributions (ECD) was originally

introduced in [1], and investigated in [2, 3]. It contains many widely-used sta-

tistical distributions, such as elliptical Gamma, Pearson type II, and elliptical

multivariate logistic distributions. In terms of applications, the most popular

classes of ECD are multivariate generalized Gaussian distributions (MGGD),

and multivariate Student-T distributions [4, 5, 6]. These are location-scale

distributions, and are further parameterised by a shape parameter, or a de-

grees of freedom parameter.

MGGD are used in image processing, as models for wavelet and curvelet

coefficients, and as models for three-channel color vectors, in image denoising,

context-based image retrieval, image thresholding, texture classification, and

image quality assessment [7, 8, 9, 10, 11, 12]. MGGD are also used in

video coding and denoising, radar signal processing, and biomedical signal

processing [13, 14].

Some applications of Student-T distributions are presented in [15], involv-

ing image denoising. In radar imaging, the Student-T distribution, so-called

G0 model within the family of spherically invariant random vectors (SIRVs),

is largely exploited in the context of SAR or PolSAR imaging, for tasks such

as despeckling, classification, segmentation or detection [16, 17, 18].
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Because ECD have been successful in real-world image and signal pro-

cessing applications, much attention has been devoted to developing efficient

methods for estimating their parameters. The vast majority of works, dedi-

cated to this estimation problem, are focused on estimating the scatter ma-

trix, considering the other parameters, i.e. location and shape parameters,

as known.

In terms of maximum-likelihood estimation, two main classes of algo-

rithms have been studied. Fixed-point (FP) algorithms, and gradient de-

scent algorithms have been proposed, based on the geometric properties of

the manifold of positive definite matrices [19, 20, 21, 22, 23]. For MGGD,

when the location parameter is equal to zero and the shape parameter is

given, the uniqueness of the maximum-likelihood estimator has been shown,

under a restriction on the value of the shape parameter [24]. In this case, a

method of moments has also been developed [25]. For Student-T distribu-

tions, with a known degrees of freedom parameter, a fixed-point method for

parameter estimation is given in [15], where the existence and uniqueness,

of location and scatter maximum-likelihood estimates, is shown for a fixed

degrees of freedom parameter, superior to 1.

There is a shared drawback, in all of the maximum-likelihood estimation

methods, just mentioned [21, 22, 15, 25, 24]. Specifically, these methods

work well for datasets of moderate size and dimension, but require excessive

resources in memory and time, for large-scale datasets, e.g. with a few mil-

lions of samples, an order of magnitude commonly encountered in optical or

SAR image processing. This issue can be so severe as to make any of these

methods inapplicable.
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Mainly, this is due to the fact that all of these methods are off-line, or

batch, estimation methods. They require access to the whole dataset, at

once, for each iteration, and therefore consume increasing time and memory

resources, in order to converge to a useful estimate, as the dataset grows

large.

In order to overcome this drawback, the present work builds on the ideas

from Riemannian stochastic optimisation, proposed in [26, 27]. The problem

of estimating the parameters of an ECD is viewed as the problem of min-

imising the Kullback-Leibler divergence, between the true (unknown) and

estimate distributions. When this problem is addressed using Riemannian

stochastic optimisation, each iteration of a stochastic optimisation method

requires access to only one datapoint (one sample), instead of the whole

dataset. In this way, the present work proposes a recursive method, for es-

timating the parameters of ECD (each time a new sample is processed, this

sample is used to update the current estimate).

The proposed method will be called the information stochastic gradient

(ISG). In its simplest form, it is an improvement of a previous method, used

to estimate the scatter matrix, when the location and shape parameters are

known [28]. In this paper, we consider also the general case where the scatter

matrix, the location and shape parameters are unknown. The ISG method

relies on two main ideas :

• The greatest difficulty, in using recursive methods, is that they may re-

quire a careful choice of step-sizes. The standard Riemannian stochastic

gradient method (as in [26]), is very sensitive to the choice of step-sizes.

However, using the information gradient (also called the natural gradi-
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ent [29, 30]) leads to an automatic choice of step-sizes, which guarantees

optimal performance. The ISG method implements the information

gradient, relying on the Fisher information metric (or matrix), of the

ECD model.

• The parameter space of an ECD model does not only contain the scatter

matrix, but also location and shape parameters. In the case of MGGD

or Student-T models, this parameter space is a product space, made

up of triplets: (scatter matrix, location parameter, shape/degrees of

freedom parameter). Since the geodesic curves of this space do not

have a tractable expression [31], an intuitive idea is to update each one

of the three parameters, in its own turn, in an alternating fashion.

To understand the benefit of combining these two ideas, consider the special

case of MGGD. In this case, a method of moments (MM) was used for the

joint estimation of all three parameters [25], while their maximum-likelihood

esitmation (MLE) was studied in [24]. It is well known that MLE performs

better than MM in most scenarios [32]. However, as mentioned above, MLE

cannot be applied to large scale datasets, due to its computational require-

ments. The ISG method strikes a balance between the low complexity of

MM, and the stronger performance of MLE. For example, in the case where

the scatter matrix and the location parameter are unknown, the complexity

of ISG is comparable to that of the MM, while its performance is similar to

that of the MLE, when the number of available samples is sufficiently large.

In other words, the size of the dataset is leveraged as a source of information,

rather than as a computational burden.

The two ideas which underly the ISG method (discussed above), are also
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implemented in an offline (batch) method, called the information determinis-

tic gradient (IDG) method. While its complexity (and therefore computation

time) is much higher than the ISG method, the IDG method consistently

outperforms other methods, even in the case where all three parameters are

unknown.

The main results of the present work are given in Section 4. A detailed

comparison of various estimation methods (MM, FP, ISG, IDG), based on

computer experiments, is carried out in Section 5. Two image processing

applications with real datasets are presented in Section 6.

First, Sections 2 and 3 define the general estimation problem for ECD

models, and introduce some necessary geometric concepts.

2. The estimation problem

2.1. The ECD family

ECD is a general family of probability distributions that contains many

important sub-families. The name ECD comes from the fact that when an

ECD has a probability density function, the contours (level surfaces) of this

function are ellipsoids.

The location, or expectation, parameter µ of an ECD determines the

centre of these ellipsoids, while the axes of these ellipsoids are proportional

to the eigenvalues of the inverse of the scatter matrix Σ. The shape parameter

β determines the factor for this proportionality (β is the degrees of freedom

parameter, for Student-T distributions).

Let X be a m-dimensional random vector that follows a ECD model.

Denote θ = (µ,Σ, β) the parameters of this ECD, and Θ = Rm × Pm × R+
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its parametric space, where Pm is the set of all symmetric positive definite

matrices of size m × m. If X has a probability density function, then this

takes on the following form

p(x; θ) = c(β) |Σ|−1/2 g [δx(µ,Σ), β] (1)

where c(β) is a normalizing factor which depends only on β, and δx(µ,Σ) =

(x − µ)†Σ−1(x − µ). The density generator g depends on the specific sub-

family of ECD distributions, for example

g [δx(µ,Σ), β] = exp

(
−1

2
δβx

)
for MGGD

g [δx(µ,Σ), β] =

(
1 +

1

β
δx

)−β+m
2

for Student-T

2.2. Problem formulation

Parameter estimation will be formulated as the problem of minimising the

Kullback-Leibler divergence D(θ∗||θ), denoted D(θ) for short. That is to say,

the estimator θ̂ is sought which is the solution of the following minimisation

problem

θ̂ = arg min
θ∈Θ

D(θ) (2)

Recall the definition of the KL divergence

D(θ) =

∫
Rp
p(x; θ∗) ln

(
p(x; θ∗)

p(x; θ)

)
dx

= Eθ∗ [`(θ∗;x)]− Eθ∗ [`(θ;x)]

(3)

Where `(θ;x) = log p(x; θ) is the log-likelihood,

`(θ;x) = α(β)− 1

2
log det(Σ) + h(δx, β) (4)
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with α(β) = log c(β) and h = log g. In the following, the KL divergence

(3) will be minimised using Riemannian information gradient descent. Some

Riemannian Information geometry concepts are recalled in the following sec-

tion.

3. Necessary geometric concepts

The gradient descent method on Riemannian manifolds is based on the

following update rule [33]

θn+1 = Rθn(αn+1u(θn)) (5)

Here, the smooth mapping Rθ from the tangent space TθΘ to Θ is required

to be a retraction, in the sense that it verifies

Rθ(0θ) = θ (6a)

DRθ(0θ) = IdTθΘ (6b)

where 0θ denotes the zero element in TθΘ, and IdTθΘ denotes the identity

mapping on TθΘ. Each vector u(θn) belongs to the tangent space TθnΘ, and

provides the direction of descent. In the present work, −u(θn) is the Rie-

mannian information gradient, derived using the Fisher information metric.

The positive scalar αn is the step-size. The aim of equation (5) is to generate

a sequence (θn)n≥0 ∈ Θ that converges to a stationary point θ∗ of the cost

function (under some restrictions on u and α).

For our estimation problem, the model has three different parameters,

which belong to three different Riemannian manifolds. Precisely, the param-

eter space is the product manifold Θ = Rm×Pm×R+. Therefore, tractable
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expressions of the Fisher information metric, and of the intrinsic geodesic

map, on this product manifold, are needed. However, Θ does not support

any such expressions [31]. As the global Fisher information metric has not a

closed form, we propose to use the product metric

〈u, v〉θ = 〈uµ, vµ〉µ + 〈uΣ, vΣ〉Σ + 〈uβ, vβ〉β (7)

where u = (uµ, uΣ, uβ) and v = (vµ, vΣ, vβ) are tangent vectors at the point

θ = (µ,Σ, β). The metrics 〈·, ·〉
µ
, 〈·, ·〉

Σ
and 〈·, ·〉

β
are respectively the in-

trinsic Fisher information metrics of their corresponding sub-spaces. For the

location parameter µ in Rm, its information metric is expressed in terms of

the usual Euclidean metric,

〈uµ, vµ〉µ = Iµ u
†
µ Σ−1 vµ (8)

where 〈·, ·〉 denotes the scalar product in Euclidean space. The information

constant Iµ is

Iµ = − 4

m
E
[
∂2h(δx, β)

∂δ2
x

δx

]
− 2E

[
∂h(δx, β)

∂δx

]
(9)

with h = log g. As for Σ ∈ Pm, the Fisher information metric 〈·, ·〉Σ for the

ECD model is defined by the Riemannian geometry of Pm [34].

〈UΣ, VΣ〉Σ = I1tr(Σ−1UΣΣ−1VΣ) + I2tr(Σ−1UΣ)tr(Σ−1VΣ) (10)

Here the constants I1 > 0 and I2 > 0 depend on the particular model under

consideration, as follows

I1 =
2A

m(m+ 2)
I2 =

A
m(m+ 2)

− 1

4

A = E

[(
∂h(δx, β)

∂δx
δx

)2
] (11)
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The shape factor β belongs to R+, so the Fisher information metric is given

by

〈uβ, vβ〉β = Iβuβvβ (12)

with the information constant

Iβ = −E
[
∂2α(β)

∂β2
+
∂2h(δx, β)

∂β2

]
(13)

Now, the information gradient∇θD(θ) with respect to the product metric

(7) is obtained by solving the following equation,

dD(θ) v = 〈∇θD(θ), v〉θ (14)

where the scalar product on the right-hand side is given by (7), and d is the

differential form of D. Precisely, this product information gradient has the

following form

∇θD(θ) = (∇µD(θ),∇ΣD(θ),∇βD(θ)) (15)

The first component ∇µD(θ) is expressed as

∇µD(θ) = −I−1
µ Σ E [Gµ(θ;x)] (16)

where Iµ is given in equation (9), and vector Gµ(θ;x) is actually the gradient

in the classic Euclidean sense

Gµ(θ;x) = 2
∂h(δx, β)

∂δx
Σ−1(x− µ) (17)

The second component ∇ΣD(θ) is a bit more complicated (see Figure 3, for

an illustration of the following computations)

∇ΣD(θ) = −J−1
1 E

{
[GΣ(Σ;x)]⊥

}
− J−1

2 E
{

[GΣ(θ;x)]‖
}

(18)
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where J1 = I1 and J2 = I1 + mI2, in terms of I1 and I2 given in (11), and

where ⊥ and ‖ denote the following decomposition of GΣ(θ;x),

[GΣ(θ;x)]‖ =
1

m
tr
[
Σ−1GΣ(θ;x)

]
Σ (19)

[GΣ(θ;x)]⊥ = GΣ(θ;x)− [GΣ(θ;x)]‖ (20)

in terms of

GΣ(θ;x) = −1

2
Σ− ∂h(δx, β)

∂δx
Sx with Sx = (x− µ)(x− µ)† (21)

Finally, for the third component,

∇βD(θ) = −I−1
β E [Gβ(β;x)] (22)

where Iβ was given in (13), and

Gβ(θ;x) =
∂α(β)

∂β
− ∂h(δx, β)

∂β
(23)

With regard to the retraction Rθ, it will be defined as the product Rieman-

nian exponential map,

Rθ : TθΘ −→ Θ

u =


uµ

uΣ

uβ

 7−→


Expµ(uµ)

ExpΣ(uΣ)

Expβ(uβ)

 (24)
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where u is the direction of descent. The exponential map on Rp (a Euclidean

space) reduces to vector addition

Expµ(uµ) = µ+ uµ (25)

The exponential map on Pm is defined as follows [35]:

ExpΣ(uΣ) = Σ exp
(
Σ−1uΣ

)
(26)

As for β, since it belongs to R+, the corresponding exponential map is a

1−dimensional version of (26)

Expβ(vβ) = β exp(β−1vβ) (27)

All these three exponential map Exp verify the properties (6), therefore the

their direct product (24) also verifies these properties, and is a well-defined

retraction. Finally, the Riemannian distance associated to the metric (7) is

given by

d2(θ1, θ2) = d2
Rm(µ1, µ2) + d2

Pm(Σ1,Σ2) + d2
R+

(β1, β2) (28)

For µ, the information distance is proportional to the Euclidean distance in

Rp

d2
Rm(µ1, µ2) = Iµ (µ1 − µ2)†(µ1 − µ2) (29a)

for µ1, µ2 ∈ Rm, with the constant Iµ given by (9). For Σ, the information

distance is defined as in [36]

d2
Pm(Σ1,Σ2) = I1 tr

[
log(Σ−1

1 Σ2)
]2

+ I2 tr2
[
log(Σ−1

1 Σ2)
]

(29b)

for Σ1,Σ2 ∈ Pm, where the constants I1 and I2 are given by (11), and the

function log denotes the symmetric matrix logarithm. Finally, for β, the
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information distance is given by

d2
R+

(β1, β2) = Iβ log2
(
β−1

1 β2

)
(29c)

for β1, β2 ∈ R+, where Iβ is given in (13). With the necessary geometric con-

cepts now in place, the next section will introduce our estimation algorithms.

4. The IDG and ISG methods

This section will describe the IDG and ISG methods, and discuss their

main properties. The IDG method (information deterministic gradient) is a

deterministic gradient method, and the ISG method (information stochastic

gradient) is a stochastic gradient method.

When the direction of descent is chosen according to (15), the updated es-

timates θk+1 = (µk+1,Σk+1, βk+1) rely on the current estimates θk = (µk,Σk, βk),

through the following alternating optimisation scheme

step 1 : µk+1 ← (µk,Σk, βk)

step 2 : Σk+1 ← (µk+1,Σk, βk)

step 3 : βk+1 ← (µk+1,Σk+1, βk)

(30)

4.1. Deterministic gradient

The IDG method is a second-order offline method, somewhat similar to

a Newton method. In the Newton method, the direction of descent is found

by solving the Newton equation [33]. In the IDG method, the Hessian in

the Newton equation is approximated by the Fisher information metric (or

matrix) I(θ).

Since IDG is an offline method, it choses a direction of descent which

depends on the complete dataset. The cost function (2) is reformulated, by
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replacing the KL divergence, with the empirical average of −`(θ, xn). This

empirical average is denoted by D̂(θ),

D̂(θ) = − 1

N

N∑
n=1

`(θn;xn) (31)

If the current estimate is θk, the direction of descent is given by its three

components

∇µD̂(θk) = −I−1
µ Σ

1

N

N∑
n=1

Gµ(θk;xn) (32a)

∇ΣD̂(θk) = −J−1
1

1

N

N∑
n=1

[GΣ(θk;xn)]⊥ − J−1
2

1

N

N∑
n=1

[GΣ(θk;xn)]‖ (32b)

∇βD̂(θk) = −I−1
β

1

N

N∑
n=1

Gβ(θk;xn) (32c)

which are the same as (16), (18), (22), but with expectations replaced by

empirical averages. Using the expressions (32a), (32b), (32c), the IDG algo-

rithm can now be stated as follows.

Algorithm 1 Information Deterministic Gradient (IDG) algorithm

Input: A dataset X = (x1, · · · , xN), an initialization θ0 ∈ S0 ⊂ Θ;

Output: The estimate θ̂;

1: for k = 0, 1, 2 · · · , K do

2: µk+1 ← µk − αµ∇µD̂(µk,Σk, βk);

3: Σk+1 ← Σk exp
(
−Σ−1

k αΣ∇ΣD̂(µk+1,Σk, βk)
)

;

4: βk+1 ← βk exp
(
−β−1

k αβ∇βD̂(µk+1,Σk+1, βk)
)

;

5: end for

6: θ̂ ← (µK+1,ΣK+1, βK+1)

In this algorithm, α denotes the step-size, which is selected according to the

Armijo-Goldstein rule, and S0 denotes a neighborhood of the true parameter

value θ∗. The following Proposition 1 states the convergence of Algorithm 1.
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Proposition 1. Assume the cost function (31) has an isolated stationary

point θ = θ∗ in some neighborhood S0 ⊂ Θ, and that the estimates (θk)k≥0

remain within S0. Then, for the sequence (θk)k≥0 generated by Algorithm 1,

lim
k→∞

θk = θ∗

Appendix A sketches a proof of this convergence. For the case θ = (Σ)

or θ = (µ,Σ), near the true value θ∗, the Hessian of the function D̂(θ)

is approximated by the Fisher information metric. Therefore, one should

expect the θk converge to θ∗ with a superlinear rate of convergence, just

like the Newton method dose. Precisely, if θ = (Σ) or θ = (µ,Σ), with

a fixed shape parameter β∗, then, under the assumptions of Proposition 1,

one should expect Algorithm 1 to generate a sequence (θk)k≥0 converging

superlinearly to θ∗. This is essentially due to Theorem 6.3.2 in [33], and will

be observed experimentally in Section 5 (see Figure 1).

4.2. Stochastic gradient

The ISG method is an online quasi-Newton method. For each update,

only one sample or one mini-batch is used. Here, the cost function remains

the same as in equation (3). For the current estimate θk = (µk,Σk, βk) the

stochastic information gradients are

∇µ`(θ;xn) = I−1
µ Σ Gµ(xn; θ) (33a)

∇Σ`(θ;xn) =J−1
1 [GΣ(xn; θ)]⊥

+ J−1
2 [GΣ(xn; θ)]‖

(33b)

∇β`(θ;xn) = I−1
β Gβ(xn; θ) (33c)
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Accordingly, the expected direction of descent is Eθ∗ [∇θ`(θ;x)], which is equal

to 0 at the global minimum θ∗. As in the classic stochastic gradient descent

method, the step-size αn = a
n

is strictly positive, decreasing, and verifies the

usual conditions ∑
αn =∞

∑
α2
n <∞

Using the expressions (33a), (33b), (33c), the ISG algorithm can now be

stated as follows.

Algorithm 2 ISG algorithm

Input: A dataset X = (x1, · · · , xN), an initialization θ0 ∈ S0 ⊂ Θ, the

coefficient a > 0;

Output: The estimate θ̂;

1: for n = 0, 1, 2 · · · , N do

2: αn+1 ← a
n+1

;

3: µn+1 ← µk + αn+1∇µ`(µn,Σn, βn, xn);

4: Σn+1 ← Σn exp (Σ−1
n αn+1∇Σ`(µn+1,Σn, βn, xn));

5: βn+1 ← βn exp (β−1
n αn+1∇β`(µn+1,Σn+1, βn, xn));

6: end for

7: θ̂ ← (µN+1,ΣN+1, βN+1);

Remark that, the descending direction is −∇θ`(θ;x), and the double negative

sign is simplified as positive in the algorithm. The compact and convex set

S0 is a neighborhood of θ∗, in which the cost function D(θ) has an isolated

stationary point θ = θ∗. The following proposition 2 states the convergence

of Algorithm 2.

Proposition 2. Assume the function D(θ) has an isolated stationary point

at θ = θ∗ in S0, and that the estimates (θn)n≥0 remain within S0. Then,
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lim θn = θ∗ almost surely.

The proof of this convergence is discussed in Appendix B. Note that S0

admits a system of normal coordinates (θi; i = 1, · · · , d) with origin at θ∗,

where d is the dimension of the parameter space Θ, d = m(m+1)
2

+ m + 1.

Since D(θ) has an isolated stationary point at θ = θ∗, the Hessian at point

θ = θ∗ can be expressed in normal coordinates

Hij =
∂2D

∂θi∂θj

∣∣∣∣
θi=0

(34)

The matrix H = (Hij) is positive definite [33]. With these notations, the

rate of convergence is given by the following proposition.

Proposition 3. Under the assumptions of Proposition 2, if a > 1
2λ

, where

λ > 0 is the smallest eigenvalue of H,

E[d2(θ∗, θn)] = O(n−1) (35)

Here, d(·, ·) stands for the product distance in (28), and the ”big O” notation

means that there exist K > 0 and n0 > 0 such that

∀n > n0 E[d2(θ∗, θn)] 6
K

n

In terms of the normal coordinates (θi), let the direction of descent∇θ`(θ
∗;x)

at the point θ = θ∗ have components (ui(θ∗)). Let G∗ = (G∗ij), be the matrix

G∗ij = Eθ∗
[
ui(θ∗)uj(θ∗)

]
(36)

Then, the following proposition gives the asymptotic normality of the ISG

algorithm.
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Proposition 4 (asymptotic normality). Under the assumptions of Propo-

sitions 2 and 3, the distribution of the re-scaled coordinates (n
1
2 θi)i∈{1,··· ,d}

converges to a centred d−variate normal distribution, where d is the dimen-

sion of Θ, with covariance matrix G given by the following Lyabunov equation

AG + GA = −a2G∗ (37)

Here, A = (Aij) with Aij = 1
2
δij − aHij (δ denotes Kronecker’s delta).

The proofs of Propositions 4 and 3 are discussed in Appendix C. For the case

θ = (Σ) or θ = (µ,Σ), the product metric (7) coincides with the information

metric of the ECD model. Then, the assumptions of Proposition 5 in [28]

are satisfied, and the following corollary may be obtained.

Corollary 1. For the ECD model, parameterised by θ = (Σ) or θ = (µ,Σ),

with a fixed β∗, the product metric (7) coincides with the information metric.

1. the rate in equation (35) holds, whenever a > 1/2.

2. if a = 1 the distribution of the re-scaled coordinates (n1/2θi) converges

to a centred d-variate normal distribution, with covariance matrix equal

to the identity G∗ = Id, and the recursive estimates θn are asymptoti-

cally efficient.

Note that, Item 2) of Corollary 1 implies that the distribution of nd2(θ∗, θn)

converges to a χ2-distribution with d degrees of freedom.

nd2(θ∗, θn)⇒ χ2

(
m(m+ 1)

2

)
for θ = (Σ) (38a)

nd2(θ∗, θn)⇒ χ2

(
m(m+ 1)

2
+m

)
for θ = (µ,Σ) (38b)
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This provides a practical means of confirming the asymptotic normality of the

estimators θn. The function d2(·, ·) denotes the square information distance,

here the same as (28).

4.3. Global convergence analysis

This section studies the global convergence of the IDG and ISG algo-

rithms, for two specific families of distributions, MGGD and Student-T. The

main results are stated in the following two tables. For the cases indicated

Table 1: Convergence analysis: MGGD

MGGD

θ = (Σ) Globally for β > 0

θ = (µ,Σ) Globally for β > 0

Table 2: Convergence analysis: Student-T

Student

θ = (Σ) Globally for β > −m

θ = (µ,Σ) Globally for β > 0

in Tables 1 and 2, the cost function D(θ) (or D̂(θ)) has a unique stationary

point, at θ∗, which is the global minimizer. This will be obtained from the

following development.

First, for the case of θ = (Σ) with known µ∗ and β∗, let

f(δx, β) =
1

g(δx, β)
(39)
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then, for the MGGD model

f(δx, β) = exp

(
1

2
δβx

)
β > 0 (40a)

and for the Student-T model,

f(δx, β) =

(
1 +

δx
β

)β+m
2

β > −m (40b)

The following proposition introduces a sufficient condition for the KL diver-

gence D(Σ) and its empirical approximation D̂(Σ) to be geodesically strictly

convex.

Proposition 5. assume that the function f : R+ → R+ in (39) verifies the

following condition : for any ϕ : R→ R+

ϕ strictly log-convex ⇒ f ◦ ϕ strictly log-convex (41)

Then, the KL divergence D(Σ) (and its approximation D̂) is geodesically

strictly convex.

In particular, the unique global minimum, and the unique stationary point,

of D(Σ) is at the true Σ∗. This proposition 5 directly yields the following

corollary, for the specific MGGD model and Student-T model, by plugging

(40a) and (40b) into (41).

Corollary 2. the KL divergence D(Σ) and its empirical approximation D̂(θ)

are geodesically strictly convex, with unique global minimum (and unique

stationary point), in both of the following cases.

1. X is distributed according to an MGGD model, with scatter matrix Σ∗

and with shape parameter β > 0.

20



2. X is distributed according to a Student-T model, with scatter matrix Σ∗

and degree of freedom β > −m.

Thus, when Σ is unknown and β satisfies the conditions of Corollary 2, this

corollary implies the global convergence of Algorithms 1 and 2. Precisely,

these algorithms will always converge to the true value θ∗ of the parameter

θ.

For the more complicated situation θ = (µ,Σ), global convergence does not

always hold. The cost function D(θ) is not geodesically convex, but may be

reformulated, using a new matrix argument [15]

S =

Σ + µµ† µ

µ† 1

 (42)

If the new random vector y is given by

y =
(
x†, 1

)†
(43)

then the cost function can be reformulated as

D̃(θ) = −1

2
log det(S)− log f̃(δy) (44)

where

δy = y†S−1y = (x− µ)†Σ−1(x− µ) + 1 (45)

and

f̃(δy) = exp

[
1

2
(δy − 1)β

]
for MGGD (46a)

Then for Student-T is

f̃(δy) =

(
1− 1

β
+
δy
β

)β+m
2

for Student-T (46b)
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In [15], the minimization of D̃(θ) was proven to be equivalent to the min-

imization of D(θ). Replacing the new function f̃ into (41), the following

corollary is obtained.

Corollary 3. the KL divergence D(µ,Σ) (and D̂(µ,Σ)) has a unique global

minimum (and unique stationary point) at (µ∗,Σ∗), in both of the following

cases.

1. X is distributed according to an MGGD model, with expectation and

scatter matrix (µ∗,Σ∗) and with fixed shape parameter β > 0.

2. X is distributed according to a Student-T model, with expectation and

scatter matrix (µ∗,Σ∗) and with the fixed degree of freedom β > 0.

For these two cases, global convergence is then guaranteed.

Finally, for the most complicated case, θ = (µ,Σ, β), the cost function is

always non-convex. Moreover, we have verified experimentally that it has

multiple stationary points in Θ = Rm × Pm × R+. Therefore, the correct

estimation can only be guaranteed when the initial value θ0 is close enough

to the global minimum θ∗.

5. Computer experiments

This section presents a set of computer experiments, which confirm the

theoretical results of Section 4, and provide a detailed comparison of the ISG

and IDG estimation methods, with the already existing MM and FP. For

every experiment, 1000 Monte Carlo trials were carried out. For each trial,

the dataset X = {x1, · · · , xN} is independent and identically distributed,
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according to true parameters (µ∗,Σ∗, β∗). The dimension m of xn is taken

equal to 10. The true µ∗ is randomly chosen from a multivariate normal

distribution. The scatter Σ∗ is defined as Σ(i, j) = ρ|i−j| for i, j ∈ {1,m},

and ρ ∼ U(0.2, 0.8). The shape parameter β∗ is uniformly selected from the

intervals [0.2, 5] for MGGD and for Student-T.

The first experiment confirms the super-linear rate of convergence of IDG,

for a dataset, distributed according to the MGGD model, which contains

N = 104 samples. The initial value θ0 is defined as the MM estimate, using

10% of the entire dataset. Figure 1(a) presents the case of θ = (Σ) with

known (µ∗, β∗). The IDG method converges after only two iterations, and if

the same accuracy needs to be achieved, the deterministic gradient method

(not using the information gradient) requires at least 88 iterations. For the

case of θ = (µ,Σ) with known (β∗), things are similar. Figure 1(b) shows

that IDG, after two iterations, achieves the same accuracy as the traditional

gradient method, after 200 iterations.

The second experiment confirms the convergence rate of ISG. In this

experiment, both MGGD and Student-T datasets are used. The initialization

θ0 is randomly chosen. Figures 2(a), 2(b), and 2(c) confirm the rate of

convergence stated in (35), in the neighborhood of θ∗ = (µ∗,Σ∗, β∗). In these

log-log plots, the x-axis and y-axis represent the number of iterations and

E[d2(θ∗, θ̂n)], respectively, and E denotes the Monte Carlo approximation

of the expectation, obtained by averaging over the 1000 trials. The slope

of each curve approaches −1, while θn approaches the true value θ∗. Note

that, for the cases of θ = (Σ) and θ = (µ,Σ), the initialization θ0 can

be chosen far away from θ0 (e.g. d2(θ∗, θ0) > 10). However, when θ =
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(a) The case θ = (Σ) (b) The case θ = (µ,Σ)

Figure 1: The superlinear convergence rate for IDG

(µ,Σ, β), the initialization should be in a neighborhood of θ∗ which satisfies

the conditions in Proposition 3. For the results obtained in Figures 2(a)

and 2(b) (that is to say, when β∗ is fixed), the step-size coefficient a always

equals 1, which satisfies the condition in 1. For the case of unknown β , the

step-size coefficient a is taken much larger, in order to meet the conditions

of proposition 3. In fact, here, a = 100.

For the case of θ = (Σ) and θ = (µ,Σ), Figures 3(a) and 3(b) confirm the

chi-squared limit distribution in corollary (1). The samples xn being matrices

of size m×m with m = 10, the dashed blue curve is the probability density

of a chi- squared distribution with 55 and 65 degrees of freedom, for Figures

3(a) and 3(b) respectively. The solid lines are the smoothed histograms of

Nd2(θ∗, θ̂N) where N = 105. These ”estimated p.d.f.” coincide very closely

with the theoretical chi-squared probability density.

In the third experiment, we compare the efficiency of the IDG and ISG
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(a) The case θ = (Σ) (b) The case θ = (µ,Σ)

(c) The case θ = (µ,Σ, β)

Figure 2: Linearly convergence rate for ISG
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(a) The case θ = (Σ) (b) The case θ = (µ,Σ)

Figure 3: Validation by fitting a Chi-2

methods with other common estimation methods, MM and FP. In each trial,

the dataset is generated from an MGGD model, and contains N = 104 dat-

apoints. For MGGD, the MM was given in [25], and the FP method in [24].

In Figures 4(a), 4(b) and 4(c), the x-axis denotes the size of the dataset,

and the y-axis denotes the expectation of the square distance between θ∗

and the estimated θ̂. This expectation is approximated by the average of

103 Monte Carlo trials. For the cases θ = (Σ) and θ = (µ,Σ), the IDG and

ISG algorithms show a better accuracy. When θ = (µ,Σ, β), the accuracy

of the MLE method is still significantly better than MM, and the accuracies

of IDG and FP coincide. However, the accuracy of ISG is not as good as as

FP or IDG. This phenomenon may be explained theoretically. Indeed, when

θ = (µ,Σ, β), the product metric does not coincide with the information

metric of the ECD model, and this leads to a less efficient estimation. The

fluctuations of the curves in Figure 4(c) are quite significant. This means the

variance of the final estimate θ̂ is significant.
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(a) The case θ = (Σ) (b) The case θ = (µ,Σ)

(c) The case θ = (µ,Σ, β)

Figure 4: Efficiency comparison
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Two additional experiments were done, to explain these fluctuations. The

first additional experiment shows that both IDG and ISG eventually converge

to a stationary point (but not necessarily a global minimum). The variations

of the norms of the gradients appear in Figure 5(a). As the number of

iterations increases, the norm of the gradient approaches 0, for both IDG

and ISG. The second additional experiment proved the existence of stationary

points other than the true value θ∗. For the same dataset, two different initial

values θ0 were used for the ISG method. In Figure 5(b), the initial value θ0

of the red curve is close to the global minimum θ∗, and its θn finally converge

to θ∗. The blue curve has θ0 farther away, and its d2(θ∗, θ̂n) converges to a

non-zero constant. In conclusion, for θ = (µ,Σ, β), the convergence to global

minimum θ∗ can only be guaranteed locally. If the initial value θ0 is chosen

in a neighborhood S0, then FP and IDG can converge to the true point by

virtue of their stability, where S0 should always satisfy the conditions in

proposition 1 and 2. Due to its stochastic nature, ISG may jump out of the

neighborhood S0 during the first few iterations. This leads to convergence

to local minimum, different from θ∗. Then, the final averaged accuracy of

ISG is not as good as the other two MLE methods, and the variance of the

ISG estimator is relatively important. As a possible remedy to this problem,

the mini-batch ISG was also tested, and compared with other methods, in

the Figure 4(c). Two sizes of the mini-batch, 10 and 100, were considered.

However, the experimental results show that the mini-batch has no significant

effect on the accuracy of ISG.

As for computational time, information gradient methods have a signifi-

cant advantage. The computational time of the ISG algorithm is similar to
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(a) Gradient → 0.

(b) Other stationary point

Figure 5: Additional experiments

Table 3: Percentage of ’correct’ estimates

correct estimates incorrect estimates

d2(θ∗, θn)↘ 0 d2(θ∗, θn)→ c� 0

and ∇θD(θn)↘ 0 and ∇θD(θn)↘ 0

θ = (µ,Σ, β) 73% 27%
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(a) The case θ = (Σ) (b) The case θ = (µ,Σ)

(c) The case θ = (µ,Σ, β)

Figure 6: Time consumption
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that of MM, and is significantly less than that of FP. Meanwhile, its accuracy

is significantly better than that of MM. In most experiments, the accuracy of

ISG is similar to, or even better than, FP. Although the computational time

of IDG is greater than that of ISG, it is comparable to that of FP, while, in

most cases, IDG can achieve the best accuracy, among the four estimation

methods considered.

6. Application with real dataset

In addition to experimental simulations, we also applied our methods to

real datasets.

6.1. Color transformation

The first application is to color transformation for image editing with

MGGD models, which was investigated in [37]. Its goal is to replace the

color distribution of the input image by that one of a target image. The

main idea is to fit the input and the target distributions, with two different

MGGD models. Then, the transformation between these two MGGDs is

implemented by a linear Monge-Kantorovich transformation for Σ, and a

stochastic transformation for β. Specifically, this conversion can be three-

dimensional (3D), for RGB images, or five-dimensional (5D), when spatial

gradient-field information is included.

Starting with the 3D rgb case, Figure 7 presents the transformed images

and some of their details. The detail (a1) clearly shows that the cloud ’drawn’

by MM appears too green. Similarly, FP also presents a green appearance,

in detail (a2). On the contrary, the two gradient methods, i.e. IDG and

ISG methods, show pure white cloud color in (a3) and (a4). Note also the
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difference in the amount of blue in the shadows on the grass. Too much blue is

mixed with the shadow, in MM’s output detail (b1). In details (b2),(b3),(b4),

the results of MLE methods lead to a more natural appearance.

From the point of view of the present work, the most interesting aspect

of this application is in term of computational time. The recursive (online)

ISG method takes about 10 seconds for two images (input and output). In

contrast, FP and IDG each require more than two hours. In other words,

ISG has a decisive advantage, in terms of time consumption.

Then, gradient-field information was included, so the transformation came

to involve 5D, which consist in three color components (of CIELAB) and two

components of the image spatial gradient field (dx and dy). For this applica-

tion, the shape parameter of the MGGD model was supposed to fixed. Figure

8 presents the four different implementations. It can be observed that the

output of the three MLE methods is significantly better than that of MM. In

the transformed result of MM, the hue is darker and greener. MLE results

are better, since the frost on the grass is whiter and appears more natural,

and the forest on the mountain in the image also appears darker. The two

images in Figure 8 have more than 1.2× 106 pixels (i.e. 1.2× 106 samples).

The FP and IDG need more than 4 hours to run, on the these two images.

The ISG method needs only 21 seconds.

We also considered an application to full HD images. In this case, as

demonstrated in Figure 9, the advantages of the ISG algorithm were signif-

icant. The result of MM failed to achieve the color of the autumn leaves in

the target image, showing cyan instead of yellow. Since the input image and

the target image have more than 4× 106 pixels (that is 4× 106 samples), it
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Input Target MM
b1

a1

FP
b2

a2

IDG
b3

a3

ISG
b4

a4

a1 a2

a3 a4

b1 b2 b3 b4

Figure 7: 3D transformation

33



Input MM FP

Target IDG ISG

Figure 8: 5D transformation of images that have moderate size

was not feasible to run FP and IDG, with the entire dataset. Rather, the

estimation was done on subsets of the complete dataset. These two subsets

have 4× 105 samples, that are randomly taken from the original images. In

the autumn leaves obtained using FP and IDG, the yellow color has obvi-

ously been smeared. ISG is more natural, in which the yellow color is more

uniform, and it is closer to the style of the target image.

6.2. Classification

MGGD are also used for texture modeling [38, 25]. Without going into

the details of presently existing classification methods, we attempted to use

an MGGD representation, in order to distinguish between different groups of

textures. Three groups of textures are selected from the VisTex database [39],

11 paintings, 18 fabrics, and 11 terrains. Each texture is considered as an

RGB 3-dimensional image, modeled by an MGGD, whose parameters θ =

(µ,Σ, β) are estimated by two MLE methods, i.e. FP and ISG. Then, the

scatter matrices Σ are normalized by their trace, i.e. M = p
tr(Σ)

Σ (in order to
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Input Target MM

c1

FP

c2

IDG

c3

ISG

c4

c1 c2

c3 c4

Figure 9: 5D transformation of images that have large size
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(a) FP

(b) ISG

Figure 10: Texture Classification using MGGD
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avoid the elements of Σ being too small). Afterwards, for each texture, a new

vector is constituted by the eigenvalues of M , µ and β. This 7-dimensional

vector is projected onto a 2D plane, via a PCA operation. A visual (2D)

representation is given in Figure 10. These two figures are obtained using

FP and ISG, respectively. Each texture contains 512× 512 = 262144 pixels,

FP expended 210 seconds for each image. In stark contrast, ISG expended

4.6 seconds in average. And for both these methods, the boundary between

these 3 clouds of points is quite sharp, and the distinction is quite clear.

We have reason to believe that, in this scenario, ISG has achieved the same

performance as FP and simultaneously it used less time.
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Appendix A. Proof of proposition 1

Let (θk)k≥0 be an infinite sequence generated by Algorithm 1. Recall

the retraction Rθ defined in (24). Consider the sequence of tangent vec-

tors (ηk)k≥0 where ηk belongs to TθkΘ, and η0 = −∇µD̂(µ0,Σ0, β0), η1 =

−∇ΣD̂(µ1,Σ0, β0), η2 = −∇βD̂(µ1,Σ1, β0), and so on.

Then, the sequence (θk) is given as in Algorithm 1 of [33], θk+1 = Rθk(tk ηk)

with step-size tk chosen according to Armijo-Goldstein rule (note that t0 =

αµ, t1 = αΣ, and t2 = αβ, etc.).

The sequence (θk) remains within the neighborhood S0 of θ∗. Without loss

of generality, assume this neighborhood is compact. According to Corollary
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4.3.2 in [33], if the sequence (ηk)k≥0 is gradient-related,

lim
k→∞
‖gradD̂(θk)‖ = 0 (A.1)

Then, since θ∗ is the only stationary point of the cost function (31) in S0, it

follows that limk→∞ θk = θ∗, as required. To show that the sequence (ηk)k≥0

is gradient-related, note that〈
η0,∇θD̂(θ0)

〉
= −‖∇µD̂(µ0,Σ0, β0)‖2

〈
η1,∇θD̂(θ1)

〉
= −‖∇ΣD̂(µ1,Σ0, β0)‖2〈

η2,∇θD̂(θ2)
〉

= −‖∇βD̂(µ1,Σ1, β0)‖2

and so on, for k ≥ 3. In other words, the scalar product between ηk

and ∇θD̂(θk) is always strictly negative. Therefore, the sequence (ηk)k≥0

is gradient-related.

Appendix B. Proof of proposition 2

The proof is a direct application of Remark 2, concerning Proposition 1,

in [28]. According to this remark, if u(θn, x) denotes the direction of descent,

and if

E 〈u(θn, x),∇θD(θn)〉 < 0, for n > 0 (B.1)

then lim θn = θ∗ almost surely. Here (compare to the proof of Propo-

sition 1), the direction of descent is given by u(θ0, x) = ∇µ`(µ0,Σ0, β0),

u(θ1, x) = ∇Σ`(µ1,Σ0, β0), u(θ2, x) = ∇β`(µ1,Σ1, β0) and so on. Therefore,

the expectation in (B.1) is equal to

E 〈u(θ0, x),∇θD(θ0)〉 = −‖∇µD(µ0,Σ0, β0)‖2
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E 〈u(θ1, x),∇θD(θ1)〉 = −‖∇ΣD(µ1,Σ0, β0)‖2

E 〈u(θ2, x),∇θD(θ2)〉 = −‖∇βD(µ1,Σ1, β0)‖2

and so on, for k ≥ 3. This shows that (B.1) is verified.

Appendix C. Proof of propositions 3 and 4

As for Proposition 2, this is an application of Remark 2 in [28]. According

to this remark, in order to obtain the mean-square rate and the asymptotic

normality, it is enough to show the mean vector field X(θ) = Eθ∗ [u(θ, x)] has

an attractive stationary point at θ = θ∗. Since u(θ, x) = ∇θ`(θ, x)

Eθ∗ [u(θ;x)] =


∇µD(θ)

∇ΣD(θ)

∇βD(θ)

 (C.1)

The covariant derivative of this vector field at the point θ = θ∗ is equal

to the Hessian H(θ∗), which is positive definite. Therefore, the results of

Propositions 3 and 4 follow by Remark 2 in [28].

Appendix D. Proof of proposition 5

For the case of θ = (Σ), the geodesic convexity of the cost function D(θ)

(or of D̂(θ)) follows by proving −`(θ;x) is geodesically strictly convex in

θ = (Σ) for any x.

To do this, for any fixed x, denote g(θ) = −`(θ;x). Recall that, geodesic

curves on Pm are of the form [35]

γ :R → Pm

t 7→A exp(tr)A†
(D.1)
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where exp denotes the matrix exponential map, A is an invertible matrix,

and r is a diagonal matrix, both of same size as Σ. Then, g(θ) is geodesically

convex if and only if the composition (g ◦ γ)(t) is always a convex function

with respect to t. Moreover, geodesic strict convexity is defined in exactly

the same way. The composition (g ◦ γ)(t) can be expressed

(g ◦ γ)(t) = log det(A) + tr(r)
t

2
+ log [(f ◦ ϕ)(t)] (D.2)

where

ϕ(t) =

p∑
i=1

u2
i exp(−rit) (D.3)

u = A−1x has components ui, and ri are the diagonal elements of r. The

function ϕ : R → R+ is strictly log-convex, because it is the Laplace trans-

form of a positive measure [40]

ϕ(t) =

∫ ∞
0

exp(−tx)µ(dx) (D.4)

where µ =
∑m

i=1 u
2
i δri , and δri is the Dirac measure concentrated at ri.

Assume that the function f verifies Condition (41). Then, since ϕ is

strictly log-convex, f ◦ϕ is strictly log-convex. Thus, the term log [(f ◦ ϕ)(t)]

of (D.2) is a strictly convex function of the real variable t. Since the term

tr(r) t
2

of (D.2) amounts to an affine function of t, it is now clear that (g◦γ)(t)

is a strictly convex function of the real variable t, for any geodesic curve

γ : R → Pm. Finally, since x was chosen arbitrarily, −`(θ;x) is geodesically

strictly convex in θ = (Σ) for each x. Therefore, D(θ) and D̂(θ) are both

geodesically strictly convex.
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Appendix E. Proof of corollary 2 and 3

For the case of θ = (Σ), note that ϕ : R → R+ is strictly log-convex if

and only if ϕ(t) = exp(ψ(t)) where ψ : R→ R is strictly convex.

1) plugging (40a) into (41),

log(f ◦ ϕ)(t) =
1

2
exp (β (ψ(t))) (E.1)

Therefore, condition (41) is verified since β > 0.

2) plugging (40b) into (41),

log (f ◦ ϕ) (t) =
β +m

2
log

(
1 +

exp(ψ(t))

β

)
(E.2)

Therefore, condition (41) is verified since β +m > 0.

For the case of θ = (µ,Σ), as mentioned above, the function f̃ is refor-

mulated. Then, the same strategy is applied for this reformulated f̃ .

1) For MGGD, recall the geodesic curve for reformulated matrix S(t),

S(t) = B exp(st)B† (E.3)

where exp denotes the matrix exponential map, B is an invertible matrix,

and s is a diagonal matrix, both of same size as S.

δy(t) = y†S−1y =

p+1∑
i=1

v2
i e
−sit with v = B−1y (E.4)

According to equation (45), we have δy > 1. Therefore, ∃w ∈ Rp+1 and

∃q ∈ (0,+∞)p+1 (e.g. w = (u, 0) and q = (r, 1) ) such that

p+1∑
i=1

v2
i e
−sit =

p+1∑
i=1

w2
i e
−qit + 1 (E.5)
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Plugging
∑p+1

i=1 w
2
i e
−qit + 1 into the reformulated f̃

f̃ ◦ δy(t) = exp

1

2

(
p+1∑
i=1

w2
i e
−qit

)β
 (E.6)

This function is proved to be log-convex in equation (D.3). Therefore, con-

dition (41) is verified since β > 0 for MGGD model.

2) For Student-T, plugging (46b) into (41),

log
(
f̃ ◦ ϕ

)
(t) =

β +m

2

[
1− 1

β
+

1

β
exp(ψ(t))

]
(E.7)

Therefore, condition (41) is verified since β > 0.
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