
Fast approximation of orthogonal matrices
and application to PCA

Cristian Rusu
Faculty of Automatic Control and Computers, University Politehnica Bucharest

cristian.rusu@upb.ro
Lorenzo Rosasco

LCSL, Universitá di Genova
Massachusetts Institute of Technology and Istituto Italiano di Tecnologia

Abstract

We study the problem of approximating orthogonal matrices so that their appli-
cation is numerically fast and yet accurate. We find an approximation by solving
an optimization problem over a set of structured matrices, that we call extended
orthogonal Givens transformations, including Givens rotations as a special case.
We propose an efficient greedy algorithm to solve such a problem and show that it
strikes a balance between approximation accuracy and speed of computation. The
approach is relevant to spectral methods and we illustrate its application to PCA.

1 Introduction

Orthonormal transformations play a key role in most matrix decomposition techniques and spectral
methods [4]. As such, manipulating them in an efficient manner is essential to many practical
applications. While general matrix-vector multiplications with orthogonal matrices take O(d2)
space and time, it is natural to ask whether faster approximate computations (say O(d log d)) can be
achieved while retaining enough accuracy.
Approximating an orthonormal matrix with just a few building blocks is hard in general. The standard
decomposition technique meant to reduce complexity is a low-rank approximation. Unfortunately,
for an orthonormal matrix, which is perfectly conditioned, this approach is meaningless.
In this work, we are inspired by the fact that several orthonormal/unitary transformations that
exhibit low numerical complexity are known. The typical example is the discrete Fourier transform
with its efficient implementation as the fast Fourier transform [47] together with other Fourier-
related algorithms: fast Walsh-Hadamard transforms [17], fast cosine transforms [33], and fast
Hartley transforms [9]. Other approaches include fast wavelet transforms [5], banded orthonormal
matrices [40, 44] and fast Slepian transforms [27]. Decomposition of orthogonal matrices into O(d)
Householder reflectors or O(d2) Givens rotations [20][Chapter 5.1] are known already. These basic
building blocks have been further extended, for example we have fast Givens rotations [36] and two
generalizations of the Givens rotations [6] and [35]. In theoretical physics, unitary decompositions
parametrize symmetry groups [45], and they are compactly parametrized using σ-matrices [42] or
symmetric positive definite matrices [3]. To the best of our knowledge, none of these factorizations
focus on reducing the computational complexity of using the orthogonal/unitary transformations but
rather they model properties of physical systems.
Our idea is to approximately factor any orthonormal matrix into a product of a fixed number of
sparse matrices such that their application (to a vector) has linearithmic complexity. In this paper, we
derive structured approximations to orthonormal matrices that can be found efficiently and applied
remarkably fast. We pose the search for an efficient approximation as an optimization problem over a
product of structured matrices, the extended orthogonal Givens transformations. These structures
extend Givens rotations to also include reflectors with no computational drawback and suggest a

Preprint. Under review.

ar
X

iv
:1

90
7.

08
69

7v
5

 [
m

at
h.

N
A

]
 2

3
M

ar
 2

02
1

decomposition of the main optimization problem into sub-problems that are easy to understand and
solved via a greedy approach. The theoretical properties of the obtained solution are characterized in
terms of approximation bounds while the empirical properties are studied extensively.
We illustrate our approach considering dimensionality reduction with principal component analysis
(PCA). Here the goal is not to propose a new fast algorithm to compute the principal directions,
plenty of efficient algorithms for this task [15][20][Chapter 10] [22]. Rather, we aim at constructing
fast dimensionality reduction operators. While the calculation of the principal components is a
one-off computation, a numerically efficient projection operation is critical since it is required
multiple times in downstream applications. The problem of deriving fast projections has also been
previously studied. Possible approaches include: fast wavelet transforms [49], sparse PCA [48, 52],
structured transformations such as circulant matrices [24], Kronecker products [21], Givens rotations
[12, 32, 34] or structured random projections [1, 18]. Compared to these works, we propose a new
way to factorize any orthogonal matrix, including PCA directions, into simple orthogonal structures
that we call extended orthogonal Givens transformations and which naturally lead to optimization
problems that have closed-form solutions and are therefore efficiently computed.
We note that our approach provides new perspectives on the structure of the orthogonal group and
how to coarsely approximate it, which might have an impact on other open research questions.
The paper is organized as follows: Section 2 describes the basic building blocks and algorithm that
we propose, Section 3 gives the theoretical guarantees for our contributions, Section 4 details the
application of our method to PCA projections and Section 5 shows the numerical experiments.

2 The proposed algorithm

Given a d× d orthonormal U, the matrix-vector multiplication Ux takes O(d2) operations. We want
to build Ū such that U ≈ Ū and Ūx takes O(d log d) operations. Parametrizations of orthonormal
matrices [2] are known, but to be best of our knowledge, the problem of accurately approximating U
as product of only a few O(d log d) transformations is open. Given a d× p diagonal Σp, in the spirit
of previous work minimizing Frobenius norm approximations [30, 31], we consider the problem

minimize
Ū, Σ̄p

‖UΣp − ŪΣ̄p‖2F subject to Ū ∈ Fg, (1)

where Ū is d × d and Σ̄p is a d × p diagonal matrix. Choosing p = d while Σp and Σ̄p to be the
identity, we simply approximate U. We will also use Up do denote the first p ≤ d columns of U.
The above general formulation allows to also consider cases where different directions might have
different importance. Then, Fg is a set of orthogonal matrices – defined next – that can be applied
fast and allow to efficiently but approximately solve (1).

2.1 The basic building blocks

Classic matrix building blocks that are numerically efficiency include circulant/Toeplitz matrices or
Kronecker products. These choices are inefficient as they depend on O(d) free parameters but their
matrix-vector product cost is O(d log d) or even O(d

√
d), i.e., they do not scale linearly with the

number of parameters they have. Consider the sparse orthogonal matrices

Gij =


Ii−1

∗ ∗
Ij−i−1

∗ ∗
Id−j

 , G̃ij ∈
{[
c −s
s c

]
,

[
c s
s −c

]}
, such that c2+s2 = 1, (2)

where the non-zero part (denoted by ∗ and G̃ij) on rows and columns i and j. The transformation in
(2), with the first option in G̃ij , is a Givens (or Jacobi) rotation. With the second option, we have a
very sparse Householder reflector. These transformations were first used by Rusu and Thompson [37]
to learn numerically efficient sparsifying dictionaries for sparse coding. The Gijs have the following
advantages: i) they are orthogonal; ii) they are sparse and therefore fast to manipulate: matrix-vector
multiplications Gijx take only 6 operations; iii) there are two degrees of freedom to learn: c (or s)
and the binary choice; and iv) allowing both sub-matrices in G̃ij enriches the structure and as we
will see, leads to an easier (closed-form solutions) optimization problem.

2

We propose to consider matrices Ū ∈ Fg that are products of g transformations from (2), that is

Ū =

g∏
k=1

Gikjk = Gi1j1 . . .Gigjg . (3)

Matrix-vector multiplication with Ū takes 6g operations – when g is O(d log d) this is significantly
better thanO(d2), while the coding complexity of each Gij is approximately 2 log2 d+C: 2 log2 d−1
bits to encode the choice of the two indices, a constant factor C for the pair (c, s) and 1 bit for the
choice between the rotation and reflector. The coding complexity of Ū scales linearly with g.
We note that Givens rotations have been used extensively to build numerically efficient transformations
[11, 19, 30–32]. However, 2× 2 reflector was not used before. This may be because in linear algebra
(e.g. in QR factorization) and in optimization [39] considering also the reflector has no additional
benefit: the rotation alone introduces each zero in the QR factorization and the reflector does not have
an exponential mapping on the orthogonal manifold, respectively. As we will show, considering both
the rotation and the reflector has the advantage of providing a closed-form solution to our problem.

2.2 The proposed greedy algorithm

We propose to solve the optimization problem in (1) with a greedy approach: we keep Σ̄p and
all variables fixed except for a single Gikjk from Ū and minimize the objective function. When
optimizing w.r.t. Gikjk it is convenient to write

‖UΣp−ŪΣ̄p‖2F =‖
k−1∏
t=1

GT
itjtUΣp︸ ︷︷ ︸

L(k)

−Gikjk

g∏
t=k+1

GitjtΣ̄p︸ ︷︷ ︸
N(k)

‖2F =‖L(k)−GikjkN(k)‖2F . (4)

The next result characterizes the Givens transformation Gikjk minimizing the above norm. We drop
the dependence on k for ease of notation.
Theorem 1 (Locally optimal Gij). Let L and N be two d× p matrices. Further, let Z = LNT and

Z{i,j} =

[
Zii Zij
Zji Zjj

]
then we have

Cij = ‖Z{i,j}‖∗−tr(Z{i,j}) =

{ √
(Zii + Zjj)2 + (Zij − Zji)2 − Zii − Zjj , if det(Z{i,j}) ≥ 0√
(Zii − Zjj)2 + (Zij + Zji)2 − Zii − Zjj , if det(Z{i,j}) < 0

(5)
Let Z{i?,j?}=V1SVT

2 be the SVD of Z{i?,j?} , with

(i?, j?) = arg max
(i,j), j>i

Cij . (6)

Then, the extended orthogonal Givens transformation that minimizes ‖L −GijN‖2F is given by
G̃?
i?j? = V1V

T
2 .

The above theorem derives a locally optimal way to construct an approximation Ū. We iteratively
apply the result to find, for each component k in (3), the extended orthogonal Givens transformation
that best minimizes the objective function (1). The full procedure is in Algorithm 1 and can be viewed
in two different ways: i) a coordinate minimization algorithm; or ii) a hierarchical decomposition
where each stage is extremely sparse. The proposed algorithm is guaranteed to converge, in the sense
of the objective function (1), to a stationary point. Indeed, no step in the algorithm can increase the
objective function, since the sub-problems are minimized exactly: we choose the best indices and
then perform the best 2× 2 transformation. We note three remarks on the properties of Algorithm 1.
Remark 1 (Complexity of Algorithm 1). The computational complexity of the iterative part of
Algorithm 1 is O(dg) and the initialization is dominated by the computation of all the scores Cij
which takes O(d2). Note that, the Cijs are computed from scratch only once in the initialization
phase. After that, at each step k we need to recompute the Cij (redo the 2 × 2 singular value
decompositions) only for the indices (ik, jk) currently used (the Givens transformations act on two
coordinates at a time). All other scores are update by the same quantity: in (6), the Cij are the same
except when i or j belong to the set (ik, jk). This observation substantially reduces the running time.

3

Algorithm 1 Approximate orthonormal matrix factorization with extended Givens transformations

Input: The p orthogonal components Up and their weights (singular values) Σp, the size g of the
approximation (3), the update rule for Σ̄p in { ‘identity’, ‘original’, ‘update’ } and the stopping
criterion ε (default taken to be ε = 10−2).
Output: The linear transformation ŪΣ̄p, the approximate solution to (1).
Initialize: Gikjk = Id×d, k = 1, . . . , g and compute all scores Cij according to (5) with Z =
UpΣ̄

T
p , where Σ̄p =

[
Ip×p; 0(d−p)×p

]
if the update rule is ‘identity’ and Σ̄p = Σp otherwise.

repeat
Set L(0) = UpΣp and set N(0) = Gi1j1 . . .GigjgΣ̄p.
for k = 1 to g do

Update N(k) = GT
ikjk

N(k−1) and find best score according to (6).
Compute the best kth transformation by Theorem 1.
Update L(k) = GT

ikjk
L(k−1) and then update all scores Cij in (5) but only for indices

i, j ∈ {ik, jk} with Z=L(k)(N(k))T – all other scores are unchanged.
end for
Set Σ̄p =

[
diag(L(g)); 0(d−p)×p

]
if rule is ‘update’, i← i+ 1 and εi = ‖L(g) − Σ̄p‖2F .

until |εi−1 − εi| < ε, if i > 1.

Remark 2 (Complexity of applying ŪΣ̄p). When p < d the computational complexity of 6g
operations is an upper bound. Since we keep only p components, we need be careful not to perform
operations whose result is thrown away by the mask Σ̄p. Consider for example a transformation G1d

applied to a vector of size d projected to a p < d dimensional space. The three operations that take
place on the dth component are unnecessary. Then, after computing Ū, a pass is made through each
of the g transforms to decide which of two coordinates the computations are necessary for the final
result. As we will show, this further improves the numerical efficiency of our method.

Remark 3 (On the choice of indices). Algorithm 1 greedily chooses at each step k the indices
according to (6). Other factors might be considered: i) choosing indices based on previous choices
so that only a select group of indices are used throughout the algorithm, or ii) make multiple choices
at each step in order to speed up the algorithm.

3 Analysis of the proposed algorithm

We consider p = d, i.e., Σ̄p = Id×d and therefore Z = U. We model the U as a random orthonormal
matrix with Haar measure [25] updated so that the diagonal is positive. We perform this update
because multiplication by a diagonal matrix with ±1 entries has no computational cost but it brings
U closer to Id×d. The goal of this section is to establish upper bounds for the distance between U
and Ū, as a function of d and g. We first comment on the inherent difficulty of the problem.

Remark 4 (The approximation gap). Since the orthogonal group has size O(d2), by the pigeonhole
principle a random orthogonal matrix as (3) and only g � d2 degrees of freedom cannot be exactly
approximated with less than O(d2) operations. For our purposes, think g either O(d) or O(d log d).
Our goal is to show that the fast structures we propose can perform well in practice and have
theoretical bounds that guarantee worse case or average accuracy.

Next, we show two approximations bounds depending on the number of Givens transformations (2).

Theorem 2 (A special bound). Given a random d× d orthonormal U, for large d, its approximation
Ū from (1) with g = d/2 transformations from (2) obeys

E[‖U− Ū‖2F] ≤ 2d−
√

2πd. (7)

Theorem 3 (A general bound). Given a random d× d orthonormal U, for large d, its approximation
Ū from (1) with g ≤ d(d− 1)/2 transformations from (2) is bounded by

E
[
‖U− Ū‖2F

]
≤ 2(d− brc)− 2

√
2√
π

√
d− brc, where r = d−

1 +
√

(2d− 1)2 − 8g

2
. (8)

4

Theorem 2 shows that, on average, the performance might degrade with increasing d. As stated in
Remark 4, this is not surprising since the orthonormal group is much larger than the structure we are
trying to approximate it with. The next result provides a bound for other values of g. In Theorem
3, taking g = c1d log d for some positive constant c1 we have that r ≈ c1 log d. This means that
whenever p � d we will roughly need O(d) Givens transformations from (2) to improve the brc
term. Since the proof of the theorem uses only rotations (and furthermore, in a particular order of
indices (ik, jk)) we expect our algorithm to perform much better than the bound indicates as it allows
for a richer structure (2) and uses greedy steps that maximally improve the accuracy at each step.
The previous theorems consider the Frobenius norm. In the Jacobi iterative process for diagonalizing
a symmetric matrix with Givens rotations [20][Chapter 8.4] the progress of the procedure

(convergence) is measured using the off-diagonal “norm” off(U) =
√∑d

t

∑d
q 6=t U

2
tq .

Theorem 4 (Convergence in the off-diagonal norm). Given a d × d orthonormal U and a single
Givens transformation Gij , assuming det(U{i,j}) ≥ 0 we have

off(UGT
ij)

2 ≤ off(U)2+
1

2
((Uii − Ujj)2 − (Uij − Uji)2). (9)

This result shows that, unlike with the Jacobi iterations, monotonic convergence in this quantity is
not guaranteed and depends on the relative differences between the diagonal and the off-diagonal
entries of U{i,j}. Our method convergence monotonically to a stationary point when we measure the
progress in the Frobenius norm.
Remark 5 (The effect of a single Gij). Given a d× d orthonormal U and a Givens transformation
Gij from (2) we have that: i) UGT

ij is closer to the identity matrix in the sense that G̃ij makes
a positive contribution to the diagonal elements, i.e., tr(UGT

ij) = tr(U) + Cij; and ii) E[Cij] ≈
0.6956d−1/2 if U is random with Haar measure and positive diagonal for large d.

The above remark suggests a metric to study the convergence of the proposed method: each Givens
transformation adds the score Cij to the diagonal entries of the current approximation (and therefore
ensures that UŪ

T converges to the identity – the only diagonal orthonormal matrix). By choosing
the maximum Cij we are taking the largest step in this direction.
Remark 6 (Evolution of Cikjk with k). Given a fixed 0 < u < 1, consider the toy construction

U{i,j} =

[
u z2
z1 u

]
, i.e., a 2× 2 sub-matrix of a d× d orthonormal matrix where diagonal elements

are equal and off-diagonals are two independent truncated standard normal random variables in the
interval [−

√
1− u2,

√
1− u2] (since rows and columns of U are `2 normalized). Then, for large d,

by direct calculation we have that the expected score E[Cij(u)], i.e., Cij as a function of u, obeys

E[Cij(u)] ∝ (1− u)2, (10)

i.e., the expected Cij decreases on average quadratically with the increase in the diagonal elements.
The remark is intuitive: as k increases Ū is more accurate and UŪ

T becomes diagonally dominant,
i.e., UŪ

T → Id as k → O(d2), and we do expect to reach lower scores Cikjk , i.e., few Givens
transformations from (2) provide a rough estimation while very good approximations require k ≈ d2.

3.1 Other ways to measure the approximation error

Throughout this paper we use the Frobenius norm to measure and study the approximation error we
propose. In this section we discuss this choice and explore a few alternatives.
In the linear algebra literature, a natural way to measure approximation error is through the operator
norm. This is especially true in the randomized linear algebra field (where matrix concentration
inequalities which bound the operator norm play a central role). Moreover, the review manuscript
[46] deals explicitly with some potential issues that might arise from using the Frobenius, instead of
the operator, norm in matrix approximations: the discussion in Chapter 6 of [46] entitled “Warning:
Frobenius–Norm Bounds”. The text highlights situations where the matrix to be approximated is low
rank and corrupted by noise and/or scaling issues are present. While that discussion holds true, in our
case we deal with a given perfectly conditioned matrix U and its approximation displays the same
scaling (Ū has normalized columns just as U). Consider the following remark.

5

Remark 7. [Simplifying the Frobenius norm objective function] Consider for simplicity p = d

and Σ̄d = Σd in (1) and see that ‖(U−Ū)Σd‖2F = 2
∑d
i=1 σi(1−uTi ūi) = 2

∑d
i=1 σi(1−cos(θi)),

where θi is the angle between column vectors ui and ūi (the columns of U and Ū, respectively), and
σi > 0 are the diagonal elements of Σd. �

Therefore, the proposed optimization objective function minimizes the weighted sum of the cosines
of the angles between the original columns and their approximations. As such, low-rank or scaling
issues cannot arise. The only potential problem is that different columns might have very different
approximation errors (i.e., there could exist i such that cos(θi) ≈ 1 while there could be some j for
which cos(θj) � 1). This issue can be mitigated by increasing g in (3) or choosing carefully the
indices (ik, jk) where the proposed transformations operate.

Assume that we consider the operator norm as the approximation error, i.e., we want to minimize
‖U− Ū‖2 in (1). We have the following two results.

Remark 8. [The spectrum of the error matrix] Consider p = d and Σ̄d = Σd = Id in (1) then
for any orthonormal U and Ū the error matrix U− Ū is normal and has all its eigenvalues on a
circle of radius one centered at (1, 0) in the complex plane. As such, we have that ‖U− Ū‖2 ≤ 2.�

Theorem 5. [A bound on the operator norm of the error matrix] Consider p = d and Σ̄d =
Σd = Id in (1) and that uTi ūi ≥ 0 for all i = 1, . . . , d, then the operator norm of the error matrix
obeys ‖U − Ū‖2 ≤ 1 − εmin +

√
(d− 1)(1− ε2min) where εmin = min

i
uTi ūi = min

i
cos(θi). The

bound in Remark 8 is met when εmin ≥ (d− 2)/d. �

Remark 8 describes the full spectrum of the error matrix. It is interesting to notice that the upper
bound ‖U− Ū‖2 ≤ 2 coincides with the expectation result from [13]: as d→∞ if both U and Ū
are chosen uniformly at random with Haar measure then almost surely ‖U + Ū‖ → 2. Theorem 5
describes an upper bound on the operator norm of the error matrix. The bound is tight only for very
high values of εmin and therefore is meant to give a qualitative measure of the approximation. As
in Remark 7, the key quantity is cos(θi) but now the bound depends on the worst approximation:
while the Frobenius norm objective function minimizes the sum of the pairwise distances between
the columns of U and Ū, when using the operator norm the approximation accuracy depends on
the largest distance between the same pairwise columns. The assumption that uTi ūi ≥ 0 is not
restrictive at all as we expect UT Ū to be diagonally dominant with positive elements on the diagonal
(see Remark 5 and the discussion after Remark 6). We note that in this context the Frobenius norm
approach could be used to minimize a proxy for the operator norm. As in Remark 7 we have the
choice of σi we could update these values with each iteration of the proposed algorithm such that

σ(new)
i ← uT

imax
ūimax

uT
i ūi

where imax = arg max
i

uTi ūi. This choice will encourage the algorithm to

improve upon the worst pairwise column approximation (i.e., the highest uTi ūi). This approach
would be in the spirit of an iteratively reweighted least squares algorithm such as [14].

Finally, the last measure of accuracy we consider is the angle between two subspaces as described by
[7]. This value can be non-zero only when p < d, a case which is interesting for PCA projections
and which we detail in the next section. Following [29], given Up and Ūp, whose columns span two
d-dimensional subspaces of size p, we compute the angles between the two subspaces as

βi = arccos(τi), i = 1, . . . , p, (11)
where 0 ≤ τi ≤ 1 are the singular values of UT

p Ūp and where 0 ≤ β1 ≤ · · · ≤ βp ≤ π/2. We take
the principal angle to be the largest angle above, i.e., β = βp = arccos(τp).

Finally, we would like to note that all the approximation errors we have previously discussed measure
(in different ways) how well UT

p Ūp approaches the identity matrix.

4 Application: fast PCA projections

Consider a training set of d-dimensional points {xi}Ni=1 and the d×N matrix X = [x1 . . . xN].
Given 1 ≤ p < d, PCA provides the optimal p-dimensional projection that minimally distorts, on
average, the data points. The projection is given by the eigenvectors of the p largest eigenvalues of
XXT or, equivalently, the left singular vectors of the p largest singular values of X, that is

XXT ≈ Up(ΣpΣ
T
p)UT

p and X ≈ UpΣpV
T
p . (12)

6

Given the above decompositions we can approximate X by X̄ = ŪΣ̄pV
T
p , i.e., we keep Vp but we

modify the principal components and their singular values, such that we minimize the error given by

‖UpΣpV
T
p − ŪΣ̄pV

T
p ‖2F = ‖UpΣp − ŪΣ̄p‖2F , (13)

where Up is d × p, the diagonal matrix Σp is p × p, Ū is of size d × d, Σ̄p is d × p and is zero
except for its main p× p diagonal. In this paper, we work with X, as opposed to XXT , to keep the
relationship with Up linear, rather than quadratic. In the context of applying our approach to PCA,
we use our decomposition on the principal components Up which we assume are already calculated
together with the associated singular values Σp which we may use as weights in (1).
Note that in (13), Vp, which has sizeN , is not necessary and that the two-step procedure is equivalent
to computing the projections Ū directly from X. Also note that based on (12), we could factor
X ≈ ŪΣV̄T where Ū and V̄T are approximations in FO(d log d) and FO(N logN), respectively. The
difficulty here is the dependency of V̄ on N � d which would require a large running time.
With Ū fixed, for Σ̄p we have several strategies: i) set it to the identity, i.e., flatten the spectrum; ii)
keep it to the original singular values Σp; or iii) continuously update it to minimize the Frobenius
norm, i.e., get the new “singular values” that are optimal with the approximation Ū. The first
approach favors the accurate reconstruction of all components while the other approach favors mostly
the few leading components only (depending on the decay rate of the corresponding singular values).

4.1 Comparison with the symmetric diagonalization by Givens rotations approach

Because of the locally optimal way the Givens transformations are chosen (see Theorem 1), our
proposed factorization algorithm is computationally slower than the Jacobi diagonalization process
which chooses the Givens rotations on indices (i, j) corresponding to the largest off-diagonal entry of
the covariance matrix. Furthermore, the Jacobi decomposition uses each rotation to zero the largest
absolute value off-diagonal entry and because of this sub-optimal choice needs O(d2 log d) Givens
rotations [10] to complete de diagonalization (more than the d(d−1)

2 needed to fully represent the
orthonormal group).
In all other aspects, our approach provides advantages over the Jacobi approach: i) we define a clear
objective function that we locally optimize exactly; ii) it is known that the Jacobi process converges
slowly when the number of rotations is low [28], which is exactly the practically relevant scenario we
have, i.e., g � d2; iii) with the same computational complexity, i.e., g terms in the factorization, our
proposed approach is always more accurate since we include as a special case the Givens rotations.

4.2 Comparison with structured matrix factorization

Our approach requires the explicit availability of the orthonormal principal directions Up. Previous
methods that factor using only Givens rotations are not applied directly on an orthogonal matrix.
These methods rely on receiving as input a symmetric object (e.g., XXT) and then using a variant of
Jacobi iterations for matrix diagonalization [31] or multiresolution factorizations [30] to find the good
rotations that approximate the orthonormal eigenspace. Applying Givens transformations directly
to X on the left, i.e., GijX, cannot lead to the computation of the PCA projections U but only
to the polar decomposition. On the other hand, when applying Givens rotations on both sides of
the covariance matrix, i.e., GijXXTGT

ij , then the right eigenspace V cancels out in the product
(12) and we are able to directly recover U (but we need XXT explicitly). Finally, note that the
diagonalization process approximates the full eigenspace U and cannot separate from the start the p
principal components Up because they are solving the following problem

minimize
Ū, Λ̄

‖XXT − ŪΛ̄Ū‖2F subject to Ū ∈ Fg. (14)

This formulation is useful to approximate the whole symmetric matrix XXT (or U), but not neces-
sarily the p principal eigenspace Up. To get these we would need to complete the diagonalization
process, find the p largest entries on the diagonal of Λ̄ and then work backward to identify the
rotations that contributed diagonalizing those largest elements. This procedure would be prohibitively
expensive. Previous work, e.g. [30, 32], deals with approximating XXT rather than computing PCA.
In the same line of work, the one-sided Jacobi algorithm for SVD [16] can also be applied.

7

50 100 150 200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of transformations g

R
ep

re
se

nt
at

io
n

er
ro

r
(%

)

bound, Theorem 2
circulant
only Givens rotations
proposed

100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of transformations g

R
ep

re
se

nt
at

io
n

er
ro

r
(%

)

bound, Theorem 2
circulant
only Givens rotations
proposed

Figure 1: Average approximation errors and stan-
dard deviations over 100 realizations of random
orthonormal matrices of size d = 50 (left) and
d = 100 (right). For reference we show the bound
developed in Theorem 3, the approximation accu-
racy of the circulant [24] (Toeplitz performed just
marginally better) and that of the using the factor-
ization (3) but allowing only Givens rotations. As
expected, performance degrades with large d.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

45

Normalized number of transformations g/d

N
u
m

b
e
r

o
f
s
ta

g
e
s

d = 50

d = 100

Figure 2: Left: for d = 100 and g ∈
{332, 664, 1328} we show the evolution (mean
and standard deviation) of the objective func-
tion with the number of iterations. In each case,
the first g iterations are the initialization process.
Right: for d ∈ {50, 100} we show the number of
stages in each transformation we learrn with the
proposed algorithm as a function of g. For both
plots results are averaged over 100 realizations.

5 Experimental results

Given the rather pessimistic guarantees, we tackle problems: how well does Algorithm 1 recover ran-
dom orthogonal matrices and principal components such that we benefit from the computational gains
but do not significantly impact the approximation/classification accuracy. Source code available.1

5.1 Synthetic experiments

For fixed d we generate random orthonormal matrices from the Haar measure [25]. Figure 1 shows
the representation error (2d)−1‖U− Ū‖2F for the proposed method. The plot shows that allowing
for the Givens transformations G̃ij in (2) brings a 17% relative benefit as compared to using only
the Givens rotations while, for the same g, the computational complexity is the same. The circulant
approximation performs worst because it has the lowest number of degrees of freedom, only d
(computationally, it is comparable with the Givens and proposed approaches for g = 100). Lastly, we
can observe that the bound is very pessimistic, especially for these values of g. In Figure 2 (left) we
show for fixed number of transformations g the progress that the proposed algorithm makes with each
iteration. It is interesting to observe that the initialization steps (first g steps) significantly decrease
the approximation error while the other step make only moderate improvements. This indicates that
convergence is slow and might take a large number of iterations with little progress made by the latter
steps. Also in Figure 2 (right) we show the number of stages in each transformation. A stage is a set
of extended orthogonal Givens transformations that can be applied in parallel, i.e., they do not share
any indices (ik, jk) among them. This is important from an implementation perspective as parallel
processing can be exploited to speedup the transformations.

5.2 MNIST digits and fashion

We now turn to a classification problem. We use the MNIST digits and fashion datasets. The points
have size d = 400 (we trimmed the bordering whitespace) and we have N = 6× 104 training and
Ntest = 104 test points. In all cases, we use the k-nearest neighbors (k-NN) algorithm with k = 10,
and we are looking to correctly classify the test points. Before k-NN we apply PCA and our proposed
method. Results are shown in Figure 3. We deploy two variants of the proposed method: approximate
the principal components as if they had equal importance and approximate the principal components
while simultaneously also updating estimates of the singular values.
For comparison, we also show the sparse JL [26]. In this case, the target dimension is p ∈ {15, 30}
while the random transformation of size p × d only has three non-zero entries per column. More
non-zeros did not have any significant effect on the classification accuracy while increasing (doubling,
in this case) the target dimension p increases the classification accuracy by 10%. The results reported
in the plots are averages for 100 realizations and the standard deviation is below 1%. Of course, the
significant advantage of the JL approach over PCA is that no training is needed. The disadvantage

1https://github.com/cristian-rusu-research/fast-orthonormal-approximation

8

65 130 259 389 519 648 778
70

75

80

85

90

95

100

S−JL, p = 15, s = 3 (x10)

S−JL, p = 30, s = 3 (x10)

DCT, p = 15 (x30)

x52.6

x52.6

x25.2

x26

x11.9

x12.2

x7.2

x7.8

x5.1

x5.7

x4

x4.4

x3.2

x3.4

full PCA

Number of transformations g

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 o

f
k
−

N
N

 (
%

)

proposed, spectrum update

proposed, identity spectrum

65 130 259 389 519 648 778 908
65

70

75

80

85

S−JL, p = 15, s = 3 (x10)

S−JL, p = 30, s = 3 (x10)

DCT, p = 15 (x30)

 x50
 x46

 x23.5 x23.8

 x11.4

 x12.4 x7.5

 x8.4

 x5.4

 x6

 x4.2

 x4.4

 x3.4

 x3.4

 x2.8

 x2.8
full PCA

Number of transformations g

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 o

f
k
−

N
N

 (
%

)

proposed, spectrum update

proposed, identity spectrum

Figure 3: Classification accuracy obtained by the
k-NN algorithm for the MNIST digits (left) and
fashion (right) datasets as a function of the com-
plexity of the proposed projections. Dimension-
ality reduction was done with p = 15 principal
components. The bold text represents the speedup
(FLOPS) compared to the cost of projecting with
the unstructured, optimal, PCA components which
takes 2pd operations. For the sparser JL the vari-
able s is the number of non-zeros in each column.

1 120 240 360 480 600 720

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
p
re

s
e
n
ta

ti
o
n
 e

rr
o
r

(%
)

g = 60, d = 256

g = 120, d = 256

g = 240, d = 256

65 130 259 389 519 648 778

5

6

7

8

9

10

11

12

13

N
u

m
b

e
r

o
f

s
ta

g
e

s

Number of transformations g

proposed, spectrum update

proposed, identity spectrum

Figure 4: For the USPS dataset (d = 256) we
have, left: and g ∈ {60, 120, 240} we show the
evolution (mean and standard deviation) of the
objective function with the number of iterations –
again, in each case, the first g iterrations are the
initialization steps; right: the number of stages
in each transformation created by the proposed
method as a function of the number of extended
orthogonal Givens transformations g.

Table 1: Average classification accuracies for k-NN when using PCA projections and our approxima-
tions without spectrum update, for various datasets. We also show the speedup (FLOPS and actual
running time) and the number of features selected in the calculations as a proportion out of the total d
(see also Remark 2). Results are averaged over 100 random realizations (train/test splits).

DATASET FULL PCA PROPOSED ALGORITHM
ACCURACY ACCURACY SPEEDUP(FLOPS) SPEEDUP(TIME) SELECTION

PENDIGITS 95 ± 0.7 91 ± 2.1 ×1.6 ×1.1 1
ISOLET 92 ± 0.4 90 ± 1.0 ×12 ×10.1 1
USPS 95 ± 1.2 94 ± 0.8 ×7.7 ×4.7 0.64
UCI 90 ± 1.9 87 ± 1.5 ×2.5 ×1.6 0.72
20NEWS 80 ± 3.1 77 ± 2.1 ×3.1 ×2.5 0.3
EMNIST DIGITS 97 ± 2.5 95 ± 1.8 ×13 ×11.3 0.37
MNIST 8M 96 ± 2.0 94 ± 0.9 ×15 ×13.7 0.28

is that if we choose greedily the target projection dimension, i.e., low p, the accuracy degrades
significantly for JL. Results are identical for PCA when p is 15 of 30.
Since we are dealing with image data, we also project using the discrete cosine transform (DCT). For
the digits dataset, the performance is poor but, surprisingly, for the fashion dataset, this approach
is competitive given the large speedup it reports (we used the sparse fast Fourier transform [23] as
we want only the largest p components). We have also performed the projection by fast wavelet
transforms with ‘haar’ and several of the Daubechies ‘dbx’ filters but the results were always similar
to that of the DCT. For clarity of exposition, we did not add these results to the figures.
Our proposed methods report a clear trade-off between the classification accuracy and the numerical
complexity of the projections. If we insist on an accuracy level close (within 1–2%) of the full PCA
then the speedup is only about x3. Reasonable accuracy is obtained for a speedup of x4–x5 after which
the results degrade quickly. For p = 15 better performance seems impossible via randomization. In
this figure, the speedup is measured in terms of the number of operations (FLOPS).
Finally, in Figure 6 (left) we compare our proposed methods against the sparse PCA on MNIST digits.
sPCA performs exceptionally well in terms of the classification accuracy given the computational
budget (a similar result is replicated for MNIST fashion). On other datasets where the principal
components capture some global features (not local like in our example) we expect this performance
to degrade. The training time of sPCA exceeds by 60% the running time of PCA plus that of our
method. We used the implementation of Wang et al. [48]. Because of ideas in Remark 1, we perform
only the finally useful calculations and further reduce the computational cost on average by one third
(these are accounted for already in the numbers in the plots).

9

0.5 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

α

‖U
p
−

Ū
p
‖ F

MNIST digits

USPS

UCI

0.5 1 2 3 4 5 6
0

0.5

1

1.5

α

‖U
p
−

Ū
p
‖
2

MNIST digits

USPS

UCI

0.5 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

α

su
b
sp
a
ce
(U

p
,Ū

p
)

MNIST digits

USPS

UCI

0.5 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

α

av
er
ag

e
u
T i
ū
i

MNIST digits

USPS

UCI

Figure 5: We show for three datasets used in Section 5.3, as a function of the number of Givens
transformations g in Ūp that goes like g = αp log2 d, the Frobenius (left most) and operator norms
errors (second from the left), angle between subspaces distance measured in radians (third from the
left) and correlations (right most shows the average correlations but also minimum and maximum
values). The results are averaged over 10 realizations (random training/testing data samples) but the
variance is always below 0.05.

5.3 Experiments on other datasets

The 20-newsgroups dataset consists of 18827 articles from 20 newsgroups (approximately 1000
per class). The data set was tokenized using the rainbow package (www.cs.cmu.edu/ mccal-
lum/bow/rainbow). Each article is represented by a word-count vector for the d = 2× 104 common
words in the vocabulary. For this dataset we have Ntest = 5648, p = 200, and as shown in Figure 6
(right) in this case we outperform sparse PCA.
We also apply our algorithm to several other popular dataset from the literature: PENDIG-
ITS (www.ics.uci.edu/∼mlearn/MLRepository.html) with 10 classes and d = 16, N = 7494,
Ntest = 3498, p = 4; ISOLET (archive.ics.uci.edu/ml/datasets/isolet) with 26 classes and d = 617,
N = 6238, Ntest = 1559, p = 150; USPS (github.com/darshanbagul/USPS_Digit_Classification)
with 10 classes and d = 256, N = 7291, Ntest = 2007, p = 12; UCI (ftp.ics.uci.edu/pub/machine-
learning-databases/optdigits) with 10 classes and d = 64, N = 3823, Ntest = 1797, p = 6; EMNIST
digits (nist.gov/itl/iad/image-group/emnist-dataset) with 10 classes and d = 784, N = 24 × 104,
Ntest = 4 × 104, p = 15; MNIST 8m (leon.bottou.org/papers/loosli-canu-bottou-2006) with 10
classes and d = 784, N = 6.4× 106, Ntest = 1.7× 106, p = 15. All the results are shown in Table
1. Here we provide two measures for the speedup: the FLOPS (number of arithmetic operations,
additions and multiplications) and the actual running time (in seconds). For the time speedup, we
first computed Ū and then implemented the matrix-vector multiplication and compared it to the
generic matrix-vector multiplication with U, both compiled in C using the gcc compiler and –O3
flag. Once computed by the proposed algorithm, the transformation could also be hardcoded and a
further speedup improvement could be achieved. The running time speedups are slightly below the
FLOPS speedups due to overhead in modern CPUs (fetching data, register loading etc.). Aside the
computational benefits of the proposed transformations we note that while complex instruction set
computing machines are closing the speedup gap in terms of running time the price is higher energy
consumption and more complex execution pipelines/circuitry.
In Figure 4, for the USPS dataset, we provide insights into the behavior of the proposed algorithm

with each iteration and the number of stages in each transformation that we construct. Results are
similar to the ones shown for the random orthogonal approximation. We observe again that the
initialization step is very efficient in reducing the approximation error (especially when compared to
the iterative process that follows) and that the number of stages that have to be applied sequentially
can further improve the running time when implementing the proposed transformations.
Finally, one of the most famous applications of PCA is in the field of computer vision for the problem
of human face recognition. The eigenfaces [41] approach was used successfully for face recognition
and classification tasks. Here, we want to reproduce the famous eigenfaces by using the proposed
methods. The original eigenfaces and their approximations (sparse eigenfaces [51]), with different g
and therefore different levels of detail, are shown in Figure 7.

5.4 Results on other approximation errors

In Section 3.1 we have explored several other ways to measure the approximation accuracy of the
proposed algorithm. We note that in the proposed method we keep the Frobenius norm objective
function but we also measure the operator norm, the angle between subspaces distance and the

10

0 500 1000 1500 2000 2500 3000 3500 4000
82

84

86

88

90

92

94

96

98

Number of operations

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 o

f
k
−

N
N

 (
%

)

proposed, identity spectrum

proposed, spectrum updated

sparse PCA

0 1 2 3 4 5 6 7

x 10
4

66

68

70

72

74

76

78

80

Number of operations

C
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 o

f
k
−

N
N

 (
%

)

proposed, identity spectrum

proposed, spectrum updated

sparse PCA

Figure 6: Classification accuracy versus num-
ber of operations on the MNIST digits (left) and
20NEWS (right) datasets for our proposed meth-
ods and the sparse PCA method [48, 52].

Figure 7: A few eigenfaces obtained by the opti-
mal PCA (top) and by our proposed method with
g = 3059 and g = 1020 (middle and bottom, re-
spectively). The projection speedup (FLOPS) is
x4.1 and x13.9, respectively.

Table 2: Speed-up achieved with the proposed approximations Ūp against a vanilla C implementation
of dense matrix-vector multiplication and BLAS Level 2 functions, in both cases with no parallelism.

DATASET: ISOLET USPS EMNIST DIGITS MNIST 8M

C LANGUAGE (TIME) ×10.1 ×4.7 ×11.3 ×13.7
BLAS (TIME) ×4.8 ×2.5 ×5.7 ×6.8

average/minimum/maximum correlations. All results for three datasets are shown in Figure 5, the
choices of parameters are the same as in Section 5.3. The first observation is that the approximation
errors increase with larger d (as already clear from Remark 4 and Theorem 3), i.e, best results are
obtained for UCI (d = 64) and the worst for MNIST (d = 400). Second, note that improving the
Frobenius norm error we also improve all the other error measures. Thirdly, note the similar behavior
between the operator norm and subspace distance errors. It is interesting to observe that the two plots
seem to suggest experimentally that arccos(σmin(UT

p Ūp)) ≈ 1− σmax(Ip −UT
p Ūp) which hold

over a large array of number of Givens transformations g. Lastly, the two right-most plots highlight
the connection between the operator norm optimization and the maximization of the lowest coherence
between columns and their approximations (as per Theorem 5).
Depending on the application at hand we can choose how to measure the approximation error.

5.5 Details of the implementation

The source code attached to this paper is written for the Matlab environment. Besides the implemen-
tation of Algorithm 1, we also provide the code to efficiently perform the matrix-vector multiplication
with the proposed Ū and Ūp, respectively (also taking into account Remark 3). Still, due to the
characteristics of Matlab, our implementation is not faster than the dense matrix-vector multiplication
“*”. To provide an appropriate comparison, we implement the matrix-vector multiplication with our
structures in the compiled lower-level programming language C. We provide comparisons of this
implementation against two scenarios: a vanilla matrix-vector multiplication (using the appropriate
ordering of the loops to exploit locality) and the Basic Linear Algebra Subprograms (BLAS) Level 2
routines for matrix-vector multiplication (SGEMV). We use the single thread variant of BLAS as for
the dimensions d we consider the overhead of the parallel implementation is significant.
Applying the proposed transformations on batch features, i.e., matrix-matrix multiplications, would
require careful application of the proposed transformations (2) to fully use the computing architecture
and maximize performance.

6 Conclusions

This paper proposes a new matrix factorization algorithm for orthogonal matrices based on a class
of structured matrices called extended orthogonal Givens transformations. We show that there is a
trade-off between the computational complexity and accuracy of the approximations created by our
approach. We apply our method to the approximation of a fixed number of principal components and
show that, with a minor decrease in performance, we can reach significant computational benefits.

11

Future research directions include strengthening the theoretical guarantees since they are way above
what we observe experimentally. Further, it would be of interest to improve the complexity of the
proposed algorithm either by a parallel implementation or using randomization (e.g. computing a
random subset of the O(d2) scores). As an immediate application, it would be interesting to apply
our decomposition to the recently proposed unitary recurrent neural networks [50].

Acknowledgment

This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM),
funded by NSF STC award CCF-1231216, and the Italian Institute of Technology. Part of this
work has been carried out at the Machine Learning Genoa (MaLGa) center, Universita di Genova
(IT). Lorenzo Rosasco acknowledges the financial support of the European Research Council (grant
SLING 819789), the AFOSR projects FA9550-17-1-0390 and BAA-AFRL-AFOSR-2016-0007
(European Office of Aerospace Research and Development). Cristian Rusu acknowledges support by
the Romanian Ministry of Education and Research, CNCS-UEFISCDI, project number PN-III-P1-
1.1-TE-2019-1843, within PNCDI III.

References
[1] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform.

In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages 557–563, 2006.

[2] T. Anderson, I. Olkin, and L. Underhill. Generation of random orthogonal matrices. SIAM Journal on
Scientific and Statistical Computing, 8(4):625–629, 1987.

[3] A. Barvinok. Approximating orthogonal matrices by permutation matrices. Pure and Applied Mathematics
Quarterly, 2:943–961, 2006.

[4] M.-A. Belabbas and P. J. Wolfe. Spectral methods in machine learning and new strategies for very large
datasets. Proceedings of the National Academy of Sciences, 106(2):369–374, 2009.

[5] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical algorithms I. Communica-
tions on Pure and Applied Mathematics, 44(2):141–183, 1991.

[6] R. Biloti, L. C. Matioli, and J. Yuan. A short note on a generalization of the Givens transformation.
Computers & Mathematics with Applications, 66(1):56–61, 2013.

[7] Å. Björck and G. H. Golub. Numerical methods for computing angles between linear subspaces. Mathe-
matics of Computation, 27(123):579–594, 1973.

[8] E. Borel. Introduction geometrique a quelques theories physiques. Gauthier-Villars, 1906.

[9] R. N. Bracewell. The fast Hartley transform. Proceedings of the IEEE, 72(8):1010–1018, 1984.

[10] R. P. Brent and F. T. Luk. The solution of singular value and symmetric eigenvalue problems on multipro-
cessor arrays. SIAM J. Sci. Stat. Comput., 6:69–84, 1985.

[11] G. Cao, L. R. Bachega, and C. A. Bouman. The sparse matrix transform for covariance estimation and
analysis of high dimensional signals. IEEE Transactions on Image Processing, 20(3):625–640, 2011.

[12] H. Chen and B. Zeng. New transforms tightly bounded by DCT and KLT. IEEE Signal Processing Letters,
19(6):344–347, 2012.

[13] B. Collins and C. Male. The strong asymptotic freeness of Haar and deterministic matrices. Annales
Scientifiques de l’Ecole Normale Superieure, 47, 2011. doi: 10.24033/asens.2211.

[14] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk. Iteratively reweighted least squares minimiza-
tion for sparse recovery. Communications on Pure and Applied Mathematics, 63(1):1–38, 2010.

[15] P. Drineas, R. Kannan, and M. Mahoney. Fast Monte Carlo algorithms for matrices II: Computing a
low-rank approximation to a matrix. SIAM Journal on Computing, 36(1):158–183, 2006.

[16] Z. Drmac and K. Veselic. New fast and accurate Jacobi SVD algorithm. II. SIAM Journal on Matrix
Analysis and Applications, 29(4):1343–1362, 2008.

[17] B. J. Fino and V. R. Algazi. Unified matrix treatment of the fast Walsh-Hadamard transform. IEEE
Transactions on Computers, C-25(11):1142–1146, 1976.

[18] C. B. Freksen and K. G. Larsen. On using Toeplitz and circulant matrices for Johnson-Lindenstrauss
transforms. In 28th International Symposium on Algorithms and Computation, pages 32:1–32:12, 2017.

[19] T. Frerix and J. Bruna. Approximating orthogonal matrices with effective Givens factorization.
arXiv:1905.05796, 2019.

12

[20] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, 1996.

[21] K. H. Greenewald and A. O. Hero. Kronecker PCA based spatio-temporal modeling of video for dismount
classification. Proceedings of SPIE - The International Society for Optical Engineering, 9093, 2014.

[22] N. Halko, P. Martinsson, and J. Tropp. Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM Review, 53(2):217–288, 2011.

[23] P. Indyk, M. Kapralov, and E. Price. (Nearly) sample-optimal sparse Fourier transform. In Proceedings of
the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 480–499, 2014.

[24] S. Jain and J. Haupt. Convolutional approximations to linear dimensionality reduction operators. In IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 5885–5889, 2017.

[25] K. Johansson. On random matrices from the compact classical groups. Annals of Mathematics, 145(3):
519–545, 1997.

[26] D. M. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. J. ACM, 61(1):4:1–4:23, 2014.

[27] S. Karnik, Z. Zhu, M. B. Wakin, J. Romberg, and M. A. Davenport. The fast Slepian transform. Applied
and Computational Harmonic Analysis, 46(3):624 – 652, 2019.

[28] H. P. Kempen. On quadratic convergence of the special cyclic Jacobi method. Numer. Math., 9:19–22,
1966.

[29] A. V. Knyazev and M. E. Argentati. Principal angles between subspaces in an A-based scalar product:
algorithms and perturbation estimates. SIAM Journal on Scientific Computing, 23(6):2008–2040, 2002.

[30] R. Kondor, N. Teneva, and V. K. Garg. Multiresolution matrix factorization. In Proceedings of the 31st
International Conference on Machine Learning, pages II–1620–II–1628, 2014.

[31] L. Le Magoarou, R. Gribonval, and N. Tremblay. Approximate fast graph Fourier transforms via multi-layer
sparse approximations. IEEE Transactions on Signal and Information Processing over Networks, 4(2):
407–420, 2018.

[32] A. B. Lee, B. Nadler, and L. Wasserman. Treelets - an adaptive multi-scale basis for sparse unordered data.
Annals of Applied Statistics, 2(2):435–471, 2008.

[33] J. Makhoul. A fast cosine transform in one and two dimensions. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 28(1):27–34, 1980.

[34] M. Mathieu and Y. LeCun. Fast approximation of rotations and Hessians matrices. arXiv:1404.7195, 2014.

[35] F. Merchant, T. Vatwani, A. Chattopadhyay, S. Raha, S. Nandy, R. Narayan, and R. Leupers. Efficient
realization of Givens rotation through algorithm-architecture co-design for acceleration of QR factorization.
arXiv:1803.05320, 2018.

[36] W. Rath. Fast Givens rotations for orthogonal similarity transformations. Numerische Mathematik, 40(1):
47–56, 1982.

[37] C. Rusu and J. Thompson. Learning fast sparsifying transforms. IEEE Transactions on Signal Processing,
65(16):4367–4378, 2017.

[38] P. Schonemann. A generalized solution of the orthogonal Procrustes problem. Psychometrika, 31(1):1–10,
1966.

[39] U. Shalit and G. Chechik. Coordinate-descent for learning orthogonal matrices through givens rotations.
In Proceedings of the 31st International Conference on Machine Learning, pages I–548–I–556, 2014.

[40] B. Simon. CMV matrices: Five years after. Journal of Computational and Applied Mathematics, 208(1):
120–154, 2007.

[41] L. Sirovich and M. Kirby. Low-dimensional procedure for the characterization of human faces. J. Opt.
Soc. Am. A, 4(3):519–524, 1987.

[42] C. Spengler, M. Huber, and B. C. Hiesmayr. A composite parameterization of unitary groups, density
matrices and subspaces. Journal of Physics A: Mathematical and Theoretical, 43(38):385306, 2010.

[43] K. Stewart. Total variation approximation of random orthogonal matrices by Gaussian matrices. Journal
of Theoretical Probability, 2019. ISSN 1572-9230. doi: 10.1007/s10959-019-00900-5.

[44] G. Strang. Fast transforms: banded matrices with banded inverses. Proceedings of the National Academy
of Sciences, 107(28):12413–12416, 2010.

[45] T. E. Tilma and G. Sudarshan. Generalized Euler angle parametrization for SU(N). J. Phys., A35:
10467–10501, 2002.

[46] J. A. Tropp. An introduction to matrix concentration inequalities. Found. Trends Mach. Learn., 8(1–2):
1–230, 2015.

[47] C. Van Loan. Computational Frameworks for the Fast Fourier Transform. Society for Industrial and
Applied Mathematics, 1992.

13

[48] Z. Wang, H. Lu, and H. Liu. Tighten after relax: Minimax-optimal sparse PCA in polynomial time.
Advances in neural information processing systems, pages 3383–3391, 2014.

[49] M. V. Wickerhauser. Two fast approximate wavelet algorithms for image processing, classification, and
recognition. Optical Engineering, 33:33 – 33 – 11, 1994.

[50] S. Wisdom, T. Powers, J. R. Hershey, J. L. Roux, and L. E. Atlas. Full-capacity unitary recurrent neural
networks. In Advances in Neural Information Processing Systems 29, pages 4880–4888, 2016.

[51] H. Zhang, W. Liu, L. Dong, and Y. Wang. Sparse eigenfaces analysis for recognition. In 12th International
Conference on Signal Processing, pages 887–890, 2014.

[52] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of Computational and
Graphical Statistics, 15(2):265–286, 2006.

14

Supplementary materials

More on Remark 3. We say that the orthonormal group has O(d2) degrees of freedom as it was
established [2] that any orthonormal matrix U can be factored into a product as

U =

 d∏
i=1

d∏
j=i+1

Gij(θij)

D, (15)

where D is a diagonal matrix with entries only in {±1} and the Gij(θij) are Givens rotations, with
angles θij , i.e., we have c = cos θij and s = sin θij in (2). To generate a random orthonormal U we
therefore need to generate random D (which are {±1} with equal probability) and d(d−1)

2 random
angles 0 ≤ θij ≤ π/2. These angles are mutually independent and it is known that their joint density
function is a random variable

Z ∝

(
d∏
k=2

cosk−2 θ1k

)(
d∏
k=3

cosk−3 θ2k

)(
d∏
k=d

cosk−d θ(d−1)k

)
. (16)

We define the beta random variable
√
y = cos θ (and ±

√
1− y = sin θ) with density

f(y, α, β) =
yα−1(1− y)β−1

B(α, β)
, B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
with y ∈ [0, 1]. (17)

Because we are interested in the computational complexity of a random orthonormal matrix we focus

on the following three special cases: i) do nothing: G̃ij =

[
±1 0
0 ±1

]
; ii) permute coordinates:

G̃ij =

[
0 ±1
±1 0

]
; and iii) G̃ij ∈

{
1√
2

[
1 1
−1 1

]
, 1√

2

[
1 −1
1 1

]}
. The first two cases perform no

operations while the last performs only 4 (as compared to 6 for a general rotation). Unfortunately,
the joint density in (16) does not seem to have a simlpe closed-form expression. As such we show
in Figure 8 numerical results of the probability distribution of cos θ over all angles θij , which we
observe numerically that approaches an exponential distribution λ exp(−λc). Concentration around
the three special cases does not occur and therefore a random orthonormal matrix will generally have
computational complexity O(d2). For example, if we discretized the continuum of c = cos θ then the
probability that a random U is an approximate permutation matrix and therefore basically exhibits no
numerical complexity is (1 − exp(−λε))

d(d−1)
2 for 0 < ε � 1, i.e., the probability that all d(d−1)2

rotations have cos θ ≤ ε. �

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
(Z

 =
 c

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s

0

10

20

30

40

50

60

70

80

90

100

P
(Z

 =
 s

)

Figure 8: Experimental distribution on the entries (cosine and sine on the left and right, respectively) of
the Givens rotations Gij from (15). We observe numerically that cos θ follows closely an exponential
distribution λ exp(−λc) with λ ≈

√
d/2 on the interval [0, 1].

Proof of Theorem 1. For simplicity of exposition we will drop the sub-index k herein and therefore
(4) develops to the following

‖L−GijN‖2F =‖L‖2F +‖GijN‖2F−2tr(NTGT
ijL) = ‖σp‖22 +‖σ̄p‖22 − 2tr(GT

ijLNT), (18)

where the Frobenius norms reduces to the `2 norms of the spectra and we have used the circular
permutation property of the trace. It is convenient to denote Z = LNT and the 2 × 2 matrix

15

Z{i,j} =

[
Zii Zij
Zji Zjj

]
. Given that Gij performs operations only on rows i and j, the trace is

tr(GT
ijLNT) =

d∑
k=1,k/∈{i,j}

Zkk + tr(G̃T
ijZ{i,j}) = tr(Z) + tr(G̃T

ijZ{i,j})− tr(Z{i,j}). (19)

To minimize the quantity in (18) we have to maximize (19) which is known as a Procrustes problem
[38] whose solution is given by the polar decomposition of Z{i,j} detailed in [20][Chapter 9.4.3].
Therefore, we set the optimal transformation to

G̃?
ij = V1V

T
2 , Z{i,j} = V1SVT

2 , (20)

where use the SVD of Z{i,j} (S = diag(s1, s2) are the singular values). With this choice, we have

max tr(GT
ijLNT)= tr(Z)+tr(S)−tr(Z{i,j}) = tr(Z)+‖Z{i,j}‖∗−tr(Z{i,j}) = tr(Z)+Cij . (21)

We denote the nuclear norm ‖Z{i,j}‖∗, i.e., the sum of the singular values s1 and s2 and we define

Cij = ‖Z{i,j}‖∗ − tr(Z{i,j}). (22)

Intuitively, the results (18), (19) follows after observing that: 1) the Gij can be viewed as a perturbed
identity matrix; 2) if Gij is exactly Id×d then ‖L−N‖2F = ‖σp‖22 + ‖σ̄p‖22 − 2tr(Z) while if Gij is
the optimal orthonormal transformation Q that minimizes (18) given by the Procrustes solution [38]
then we have ‖L−QN‖2F = ‖σp‖22 + ‖σ̄p‖22 − 2‖Z‖∗, where the last term is the nuclear norm of
Z; 3) therefore, we actually apply the identity transformation on all coordinates, i.e., the tr(Z) term,
while for the two chosen coordinates we apply the best (in the sense of reducing the error) orthogonal
transformation whose contribution is the nuclear norm term ‖Z{i,j}‖∗ and then correct for the trace
term that was wrongly added initially in tr(Z), by subtracting tr(Z{i,j}).
There are d(d− 1)/2 quantities Cij but they can be computed efficiently by noting that the singu-

lar values of Z{i,j} are s1,2 =

√
1
2

(
‖Z{i,j}‖2F±

√
‖Z{i,j}‖4F−4 det(Z{i,j})2

)
. Observe that both

singular values are of the form σ1,2 =
√
A±
√
B which can be written as

√
X ±

√
Y where

X = A+
√
A2−B
2 and Y = A − X . Written like this we can see that ‖Z{i,j}‖∗ = σ1 + σ2 =

2X =
√
‖Z{i,j}‖2F + 2|det(Z{i,j})|. Depending on the sign of the determinant we have either

‖Z{i,j}‖∗ =
√

(Zii + Zjj)2 + (Zij − Zji)2 or ‖Z{i,j}‖∗ =
√

(Zii − Zjj)2 + (Zij + Zji)2, re-
spectively. These give the final formulas for Cij from (5). �

Proof of Theorem 2. Assume d is even and partition the set {1, . . . , d} into d/2 pairs of indices
(ik, jk). We therefore have

d/2∑
k=1

Cikjk =

d/2∑
k=1

(‖U{ik,jk}‖∗ − Uikik − Ujkjk) =

d/2∑
k=1

‖U{ik,jk}‖∗ − tr(U). (23)

As a side note, to maximization of this partitioned quantity is related to the weighted maximum
matching algorithm (of maximum-cardinality matchings) on the graph with d nodes and with edge
weights Cikjk . With this choice of indices, the objective function becomes∥∥∥∥∥∥U−

d/2∏
k=1

Gikjk

∥∥∥∥∥∥
2

F

= 2d− 2tr(U)− 2

d/2∑
k=1

Cikjk = 2d− 2

d/2∑
k=1

‖U{ikjk}‖∗. (24)

We use the singular value decomposition of a generic U{i,j} = V1SVT
2 ,S = diag(s), and develop:

|tr(U{i,j})|=|tr(V1SVT
2)|=|tr(SVT

2 V1)|=|tr(S∆)|=

∣∣∣∣∣
2∑
t=1

st∆tt

∣∣∣∣∣≤∆max

2∑
t=1

st=∆max‖U{i,j}‖∗,

(25)
where we have use the circular property of the trace and ∆ = VT

2 V1 where ∆tt are its diagonal
entries which obey |∆tt| ≤ ∆max. We define the diagonal coherence as

∆max = max{|∆11|, |∆22|}. (26)

16

With (25), we can state that for the kth transformation that

E[‖U{ik,jk}‖∗] ≥
π

2
E[tr(U{ik,jk})], (27)

where we have used the fact that V1 and V2 have the structure G̃ij in (2) and therefore

E[∆max]=
1

π2

∫∫ π

0

| cos(x) cos(y) + sin(x) sin(y)|dxdy=
2

π
.

Finally, given an orthonormal U of size d× d, d ≥ 4, we use (24) and (27) to bound

E


∥∥∥∥∥∥U−

d/2∏
k=1

Gikjk

∥∥∥∥∥∥
2

F

 = 2d− 2

d/2∑
k=1

E[‖U{ik,jk}‖∗] ≤ 2d− π
d/2∑
k=1

E[tr(U{ik,jk})]

≤ 2d− πE[tr(U)] = 2d− πE

[
d∑
t=1

|Utt|

]
= 2d−

√
2πd,

(28)

where we have used that E
[∑d

t=1 |Utt|
]

=
√

2π−1d because the diagonal elements of U can be

viewed as Gaussian random variables with zero mean and standard deviation d−1/2 (as the columns
of U are normalized in the `2 norm) [43] and because the `1 norm of a standard Gaussian random
vector of size d is

√
2π−1d.

When d is odd, we extend the matrix with a zero column/row and “1” on the diagonal and the
argument follows in the same way. In (24) we could use the expected value calculated in (37) but we
reach a worse, lower, constant in (28) for the −

√
d term and therefore a worse overall bound. �

Proof of Theorem 3. Given the orthonormal U, by [20][Theorem 5.2.1], we can construct its QR
factorization using a set of Givens rotations [20][Chapter 5.2.5]. After introducing zeros in the
first r columns of U, by left multiplication with Givens rotations, we reach its following partial
triangularization

Jigjg . . .Ji1j1U =

[
D′′ 0r×(d−r)

0(d−r)×r U′

]
, (29)

where the diagonal matrix D′′ of size r×r has entriesD′′tt ∈ {±1} and U′ of size (d−r)×(d−r) is
orthonormal. To introduce the zeros on the tth column we need (d− t) Givens rotations and therefore
to bring U to the structure in (29) we need g = r

2 (2d − r − 1) Givens rotations which we have
denoted Jikjk , k = 1, . . . , g. We are exploiting the fact that the triangularization of an orthogonal
matrix leads to a ±1 diagonal. Then we might consider a good approximation to U the product

Ū = JTi1j1 . . .J
T
igjg

D. where D =

[
D′′ 0r×(d−r)

0(d−r)×r D′

]
with D′tt = sgn(U ′tt) and D′′ is taken

from (29). The goal of the diagonal matrix D is to ensure that the product in Ū has a nonnegative
diagonal. Then, given g transforms we can bound

‖U− JTi1j1 . . .J
T
igjgD‖2F = 2(d− brc)− 2tr(D′U′). (30)

If we consider G̃ij in (2) instead of the rotations Jikjk then the quantity on the right becomes an
upper bound, since Givens rotations are a special case of G̃ij – we can always initialize the Gikjk
of Algorithm 1 with the Jikjk defined above and the iterative procedure is guaranteed not to worsen

the factorization. Therefore, the result follows after using E [tr(D′U′)] = E
[∑d−brc

t=1 |U ′tt|
]

=√
2(d− brc)π−1. �

Proof of Theorem 4. First, we introduce the off-diagonal “norm”, i.e., the square-root of the squared
sum of the off-diagonal elements of an orthonormal matrix U ∈ Rd×d as

off(U)2 =

d∑
t=1

d∑
q=1,q 6=t

U2
tq = ‖U‖2F −

d∑
t=1

U2
tt = d−

d∑
t=1

U2
tt. (31)

Better approximations Ū of U lead to lower off(UŪT), as UŪT approaches the identity. If we use
this measure, we reach the following result.

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

u

C
ij(u

)

Empirical mean

(1−u)
2

1 2 3 4 5 6 7

Nuclear norms

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
(X

 =
 x

)

0 1 2 3 4 5

Un-normalized scores C
ij

0

0.5

1

1.5

2

2.5

3

3.5

4

P
(X

 =
 C

ij
)

Figure 9: Left: empirical mean and standard deviation verification of Remark 5; Middle: empirical
pdf for the nuclear norms of 2× 2 sub-matrices from random orthonormal matrices; Right: empirical
pdf for the scores for random U{i,j} if the entries are standard Gaussian random variables (without
the normalization factor d−1/2).

We use the fact that Cij is added to the diagonal of U, but only to Uii and Ujj . The quantity
f(γ) = (Uii+γCij)

2+(Ujj+(1−γ)Cij)
2, γ ∈ R, is minimized forCij 6= 0 when γ0 = 1

2+
Ujj−Uii

2Cij

(and therefore f(γ0) = 1
2‖U{i,j}‖

2
∗) which leads to

off(UGT
ij)

2 = d−
d∑

t=1,t/∈{i,j}

U2
tt − f(γ) ≤ d−

d∑
t=1,t/∈{i,j}

U2
tt − f(γ0)

=d−
d∑
t=1

U2
tt + U2

ii + U2
jj − f(γ0) = off(U)2 +

(Uii − Ujj)2

2
− Cij(Uii+Ujj)−

C2
ij

2

=off(U)2+
(Uii−Ujj)2

2
−
‖U{i,j}‖2∗−(Uii+Ujj)

2

2
= off(U)2 + U2

ii + U2
jj −

‖U{i,j}‖2∗
2

.

(32)

We now use de explicit formulas for the singular values of a 2× 2 matrix and the fact that

‖U{i,j}‖2∗ = s21 + s22 + 2s1s2 = ‖U{i,j}‖2F + 2|det(U{i,j})|, (33)

and expand this expression to get in (32)

if det(U{i,j}) ≥ 0 : off(UGT
ij)

2 ≤ off(U)2 +
(Uii − Ujj)2 − (Uij − Uji)2

2
,

if det(U{i,j}) < 0 : off(UGT
ij)

2 ≤ off(U)2 +
(Uii + Ujj)

2 − (Uij + Uji)
2

2
.

Therefore, to guarantee off(UGT
ij)

2 ≤ off(U)2 we need 2(U2
ii + U2

jj) ≤ ‖U{i,j}‖2∗ which is
equivalent to

if det(U{i,j}) ≥ 0 : (Uii − Ujj)2 ≤ (Uij − Uji)2,
if det(U{i,j}) < 0 : (Uii + Ujj)

2 ≤ (Uij + Uji)
2.

(34)

In this paper we assume that U is taken randomly from the Haar measure [25] and then modified to
have positive diagonal. Therefore, we have Utt ≥ 0 for all t by construction, otherwise we would
just consider the update Utt ← sign(Utt)Utt. Moreover, as the algorithm progresses we continue to
have that det(U{i,j}) ≥ 0 because each Gij adds a positive amount (the Cij value) to the diagonal
elements Uii and Ujj thus converging towards Id×d in the sense of (36).
In a similar way we can construct a lower bound. Assuming w.l.o.g. that Uii ≥ Ujj ≥ 0, the
quantity f(γ) = (Uii + γCij)

2 + (Ujj + (1 − γ)Cij)
2 is maximized when γ0 = 1 and therefore

f(γ0) = (Uii + Cij)
2 + U2

jj which, similarly to (32), leads to

off(UGT
ij)

2 ≥ off(U)2 − Cij(2Uii + Cij).� (35)

More on Remark 4. Understanding the properties of these Cij is of crucial importance for our
approach. First, notice the effect one generalized Givens transformation has: we have ‖U−Gij‖2F =
‖UGT

ij − I‖2F = 2d− 2tr(UGT
ij), which together with (18) leads to

tr(UGT
ij) = tr(U) + Cij ≤ d. (36)

18

0

0.2

0.4

0.6

0.8

1
0 0.2 0.4 0.6 0.8 1

U
jj0.05

0.1
0.25

U
ii

0.50.75

0

0.2

0.4

0.6

0.8

1
0 0.2 0.4 0.6 0.8 1

U
jj

0.10.25
0.5

1

U
ii

1.5
Figure 10: Empirical mean (left) and maximum (right) values of Cij for the toy matrix U{i,j} where
the diagonal elements Uii and Ujj (both in [0, 1]) are fixed and the off-diagonals entries denoted z1
and z2 are uniform random variables in the interval

[
−
√

1− β,
√

1− β
]

where β = max(U2
ii, U

2
jj)

since the columns and rows of U are `2 normalized. Low values (close to 0) are coded as dark blue
while high values (close to 2) are coded as dark red.

In this sense, the Gij “pushes” UGT
ij towards the identity matrix by “contributing” Cij to the

diagonal of U, i.e., we are estimating the inverse of U which in this case is just the transpose.
Notice that 0 ≤ Cij ≤ 4. The minimum is achieved for symmetric positive semidefinite matrices
(because in this case the eigenvalues and singular values are the same and therefore the nuclear norm
equals the trace) and the maximum for U{i,j} = −I2×2. This immediately leads to a local optimality
condition for our approach: there is no Gij to improve the approximation if all U{i,j} are symmetric
positive definite. Assume now we are given a random orthogonal matrix. Because the singular values
s1,2 depend on the entries of U{i,j} which we model as Gaussian random variables with zero mean
and standard deviation d−1/2 [43], we have by direct calculation that E[s1] ≈ 1.7724d−1/2 and
E[s2] ≈ 0.5190d−1/2 which leads to E[‖U{i,j}‖∗] ≈ 2.2914d−1/2. The trace is the sum of two
absolute value Gaussian random variables and therefore E[tr(U{i,j})] = 2

√
2(πd)−1 which leads to

E[Cij] ≈ 0.6956d−1/2.� (37)

More on Remark 5. To see how the scores Cij depend on the diagonal entries of our toy model, by
direct calculation with the truncated standard Gaussian random variables we have that

E[Cij(u)] =
1

2πerf2
(√

1−u2

2

) ∫∫ √1−u2

−
√
1−u2

exp

(
−z

2
1 + z22

2

)
Cij(u) dz1dz2 ∝ (1− u)2. (38)

We show in Figure 9 the empirical results (mean and standard deviation of Cij) on the toy matrix

U{i,j} =

[
u z2
z1 u

]
for 0 < u < 1. The empirical mean follows the approximation in Remark 5 (and

is tight for u ≤ 0.7) while we notice that the variance is high for almost the whole interval. In Figure
10 we show the average (left) and maximum (right) costs Cij achieved for another toy model where

the diagonal elements are distinct U{i,j} =

[
Uii z2
z1 Ujj

]
for 0 ≤ Uii, Ujj ≤ 1.

Finally, notice that when U{i,j} =

[
u Uij
Uij u

]
we have Cij = 2(Uij − u) if u ≤ Uij and zero

otherwise, and when U{i,j} =

[
u −Uij
Uij u

]
we have Cij = 2

√
u2 + U2

ij − 2u indicating that skew

symmetric sub-matrices have higher Cij than symmetric ones, in general. �

19

Proof of Remark 7. We use the fact that columns of U and Ū have unit norm, and the fact that the
Frobenius norm is entrywise:

‖(U− Ū)Σd‖2F =

d∑
i=1

σi‖ui − ūi‖22 =

d∑
i=1

σi(‖ui‖22 + ‖ūi‖22 − 2uTi ūi) =2

d∑
i=1

σi(1− cos(θi)).�

(39)

Proof of Remark 8. First, note that given any proper norm which is invariant to orthonormal
transformations, we have that ‖U − Ū‖2 = ‖I − UT Ū‖2 and we denote the error matrix E =
I−UT Ū. Now, start from the error matrix E = I−UT Ū and use the fact that UT Ū is orthonormal
to notice by straightforward calculation that:

ETE = (I− ŪTU)(I−UT Ū) = I−UT Ū− ŪTU + I = E + ET . (40)

Denote now a complex-valued eigenvalue of E by zk = ak + ibk, then because of the equality above
we have that z∗kzk = 2<(zk) which in turn can be written as a2k + b2k = 2ak or (ak − 1)2 + b2k = 1.
This is the equation of a circle of radius one centered at (1, 0) in the complex plane. Another way to
view this result is to observe that UT Ū is orthonormal an therefore its spectrum is on the unit circle
and then I shifts the whole spectrum to the right by one unit.
Moreover, we also have that EET = E + ET and therefore ETE = EET which means that E is
a normal matrix. As such, the singular values of E are the absolute values of its eigenvalues and
therefore ‖E‖2 ≤ 2. �

Proof of Theorem 5. The proof is based on the Gershgorin circle theorem (detailed in Chapter 7.2
of [20]) applied to the error matrix E = I−UT Ū. If we denote Q = UT Ū, we then have for the ith
eigenvalue of E that

|λi − 1 + uTi ūi| ≤
∑
j 6=i

|Qij | ≤
√

(d− 1)(1− (uTi ūi)2). (41)

The last inequality on the right hand side comes from the `1 − `2 inequality ‖x‖1 ≤
√
d− 1‖x‖2

applied to the vectors of size d − 1 (the rows of Q except for their diagonal elements and whose
`2 norm is

√
1−Q2

ii). Returning to (41), for the term on the left hand side we have by the reverse
triangle inequality (|a− b| ≥ ||a| − |b||) that

||λi| − |1− uTi ūi|| ≤ |λi − (1− uTi ūi)|. (42)

Finally combining (41) and (42) we have that

0 ≤ |λi| ≤ 1− uTi ūi +
√

(d− 1)(1− (uTi ūi)2). (43)

This inequality holds for 0 ≤ uTi ūi ≤ 1 and d ≥ 2. The expression on the right-hand side is
monotonic decreasing for uTi ūi ≥ 0. As such, the largest upper bound happens for i = arg min

i
uTi ūi.

And because, as shown in Remark 8, the error matrix is a normal matrix we get a bound on the
operator norm (the singular values of a normal matrix are the absolute values of its eigenvalues). �

20

	1 Introduction
	2 The proposed algorithm
	2.1 The basic building blocks
	2.2 The proposed greedy algorithm

	3 Analysis of the proposed algorithm
	3.1 Other ways to measure the approximation error

	4 Application: fast PCA projections
	4.1 Comparison with the symmetric diagonalization by Givens rotations approach
	4.2 Comparison with structured matrix factorization

	5 Experimental results
	5.1 Synthetic experiments
	5.2 MNIST digits and fashion
	5.3 Experiments on other datasets
	5.4 Results on other approximation errors
	5.5 Details of the implementation

	6 Conclusions

