
1

PIANO: A Fast Parallel Iterative Algorithm for
Multinomial and Sparse Multinomial Logistic

Regression
R. Jyothi and P. Babu

Abstract—Multinomial Logistic Regression is a well-studied
tool for classification and has been widely used in fields like image
processing, computer vision and, bioinformatics, to name a few.
Under a supervised classification scenario, a Multinomial Logistic
Regression model learns a weight vector to differentiate between
any two classes by optimizing over the likelihood objective. With
the advent of big data, the inundation of data has resulted in large
dimensional weight vector and has also given rise to a huge num-
ber of classes, which makes the classical methods applicable for
model estimation not computationally viable. To handle this issue,
we here propose a parallel iterative algorithm: Parallel Iterative
Algorithm for MultiNomial LOgistic Regression (PIANO) which
is based on the Majorization Minimization procedure, and can
parallely update each element of the weight vectors. Further, we
also show that PIANO can be easily extended to solve the Sparse
Multinomial Logistic Regression problem - an extensively studied
problem because of its attractive feature selection property. In
particular, we work out the extension of PIANO to solve the
Sparse Multinomial Logistic Regression problem with `1 and
`0 regularizations. We also prove that PIANO converges to a
stationary point of the Multinomial and the Sparse Multinomial
Logistic Regression problems. Simulations were conducted to
compare PIANO with the existing methods, and it was found
that the proposed algorithm performs better than the existing
methods in terms of speed of convergence.

Index terms— Multinomial logistic regression, Majoriza-
tion Minimization, Sparse, Parameter estimation, Regulariza-
tion, Parallel algorithms

I. INTRODUCTION

In the field of machine learning and data mining, one of the
central goals is to classify the extracted features from the data
into different categories or classes using a statistical model
[1]. That is, given (xi,yi)1≤i≤n, where xi ∈ Rd is a feature
vector and yi ∈ Rm is a class label which is represented as a
“1-of-m” encoding vector i.e., its ith element is equal to one
if x belongs to class i and is zero otherwise, the task here
is to train a statistical model which can predict y based on
x. A statistical model classifies the feature vector by dividing
the input space into decision regions whose boundaries are the
decision surfaces. Under a supervised classification scenario,
the task of the statistical model is to learn the parameters of
these decision surfaces from the training data by using either
a probabilistic or deterministic approach ([1], [2]). Classifiers
such as Support Vector Machine [3] and Neural Network [4]
take a deterministic approach towards classification wherein
they construct a discriminant function which directly assigns
each input feature vector x to one of the classes. Classifiers

based on probabilistic approach, models the posterior probabil-
ity P (y|x) as a function of parameter of the decision surfaces.
There are two approaches to model the posterior probability
- the first approach used by the generative classifiers such
as Hidden Markov Model [5] and naive Bayes classifier [6],
learn a model for joint probability P (x,y) and then uses
Bayes rule to calculate the posterior probability P (y|x), and
the second approach used by discriminative classifiers directly
models the posterior probability - which reduces the number
of parameters to be estimated [1]. In this paper, we consider
the parameter estimation problem of one such discriminative
classifier - Multinomial Logistic Regression (MLR) which has
been widely applied in diverse fields such as hyperspectral
image classification ([7], [8]), text categorization ([9], [10])
and in biomedical data analysis ([11], [12]).
MLR is a linear model, i.e., its decision boundaries are defined
via linear functions of the feature vector x and are represented
by hyperplanes. Denoting the parameter of the ith hyperplane
as wi ∈ Rd×1, MLR estimates {wi}mi=1 from the training
data and then uses it to predict the class labels of the actual
data sample. MLR models the posterior probability as the
normalized exponential or the softmax transformation of a
linear function of the feature vector x. Then, representing
each class label as a Bernoulli random variable, the param-
eters {wi}mi=1 are estimated by maximizing the log-likelihood
function or by minimizing the negative of the log-likelihood
function. This minimization problem, as will be shown in the
next section, is convex and differentiable but does not have
a closed-form solution. Hence, iterative methods are usually
employed to estimate the parameters of the MLR classifier.
With the advent of big data, it is desirable that these iterative
methods are able to cope up with the large dimensions of the
feature vector and the huge number of classes. Large scale data
is not atypical ([13], [14], [15]) - for example, in the recently
released classification data set from [14], which is a library
containing large scale text classification data, the total number
of classes and features were about 12, 294 and 347, 256,
respectively. Therefore, the total number of parameters to be
learned were about 4, 269, 165, 264. In such a case, training
MLR classifier with an iterative algorithm which sequentially
updates the parameters can be time consuming even for a
single iteration.
Another common issue which occurs during the training of
MLR is the problem of over-fitting; wherein the classifier
works perfectly well on the training data but works poorly
on the test data - this usually occurs when the number of

ar
X

iv
:2

00
2.

09
13

3v
1

 [
st

at
.M

L
]

 2
1

Fe
b

20
20

2

features d is more than the number of training samples n
[16]. To prevent over-fit, a standard approach is to regularize -
wherein an extra term is added to the log-likelihood function
to penalize the weights taking large values. A common penalty
term used is the `1 norm regularizer which not only penalizes
the weights taking large values but also promotes sparsity.
However, the addition of `1 norm regularizer makes the log-
likelihood minimization problem non-differentiable and hence
it is more challenging to solve when compared to the log-
likelihood minimization problem of the unregularized MLR
classifier.
A conventional algorithm used to estimate the parameters of
the unregularized MLR classifier is the Iterative Reweighted
Least Squares algorithm [17]. It is based on Newton-Raphson
method and involves computing the inverse of a square matrix
of size dm at every iteration. This makes the algorithm compu-
tationally expensive for large dimension of the feature vector
and for large number of classes. Moreover, since this method
is based on Newton-Raphson, IRLS requires the objective
function to be differentiable and hence cannot be used to
estimate the parameters of the regularized MLR classifier. To
avoid taking the inverse at every iteration, the authors in [18]
proposed an algorithm based on Majorization Minimization
(MM) principle (which will be explained in section.III) which
as shown in [18], can be easily extended to estimate the
parameters of the regularized MLR classifier. However, this
algorithm sequentially updates the parameters of the MLR
classifier. LC algorithm developed by Gopal et.al. [19], also
based on the MM principle, semi-parallely updates the param-
eters of the MLR classifier i.e., it parallely updates the block
of weights wi corresponding to each class, however similar
to the IRLS algorithm, LC requires the objective function to
be differentiable and hence cannot be extended to estimate
the parameters of the regularized MLR classifier. Also, at
every iteration, LC algorithm uses the LBFGS solver, which
as shown in the simulation section, hampers its convergence
speed. The algorithms proposed in ([20], [21]) were developed
explicitly to estimate the parameters of the regularized MLR
classifier. However, these algorithms are sequential in nature.
In this paper, we present a novel fast parallel algorithm
(PIANO), which unlike the LC algorithm, updates every
element of each wi parallely. We also extend the algorithm
to estimate the parameters of the regularized MLR classifier.
The major contributions of the paper are as follows:

1) A MM based parallel algorithm - Parallel Iterative
Algorithm for MultiNomial LOgistic Regression
(PIANO) is proposed to estimate the parameters of the
MLR classifier. The proposed algorithm updates each
element of {wi}mi=1 parallely - which is useful when
the number of features and classes are huge.

2) We also show that the proposed algorithm can be
extended to estimate the parameters of the regularized
MLR classifier. We estimate the parameters for both `1
and `0 regularizations.

3) The monotonicity and convergence to a stationary point
is proved for the proposed algorithm.

4) Numerical simulations are conducted to compare the
proposed algorithms with the existing algorithms.

The paper is organized as follows. We formulate the problem
and give a brief review of the existing methods in Sec. II.
Next, we given an overview of MM in Sec. III. In Sec.
IV, we propose a parallel algorithm PIANO to solve the
problem in (3) and also show that PIANO can be extended
to solve the Sparse MLR problem in (10) and (11). Next, we
show that the proposed algorithm converges to the stationary
point of the MLR and Sparse MLR problem. In Sec. V
we compare the algorithms with the existing algorithms via
computer simulations and conclude the paper in Sec. VI.

II. PROBLEM FORMULATION AND LITERATURE SURVEY

Given the training samples (xi,yi)1≤i≤n, MLR models
the posterior probability
P (yi = 1|x,w1,w2, · · · ,wm) as the softmax transformation
of a linear function of the feature vector x:

P (yi = 1|x,w1,w2, · · · ,wm)
∆
= σi (w1,w2, · · · ,wm,x)

∆
=

exp
(
wT

i x
)

m∑
j=1

exp
(
wT

j x
)

(1)
where yi is the ith element of y, m is the number of classes,

σi(a)
∆
=

exp(ai)
m∑
j=1

exp(aj)

is the softmax function. When m = 2,

the model in (1) corresponds to logistic regression model and
for m > 2, the above model is known by several names such
as multinomial logistic regression model, softmax regression
model, and the conditional maximum entropy model [1].
Assuming that the n training samples are generated inde-
pendently, the components of {wi}i=m

i=1 are learned from the
training data (xi,yi)1≤i≤n using the maximum likelihood
approach. Since each class label yi is a binary vector, they
can be modeled as a Bernoulli multivariate random variable
[22]. The likelihood function is given by:

L(w̃) =

n∏
j=1

m∏
i=1

(P (yi = 1|xj ,w1,w2, · · · ,wm))
yji

=

n∏
j=1

m∏
i=1

σi (w1,w2, · · · ,wm,xj)
yji

(2)

where w̃ ∈ Rdm×1 is obtained by stacking [wT
1 , · · · ,wT

m]T ,
yji is used to denote the ith component of the jth class
label yj and σi (w1,w2, · · · ,wm,xj) is given by (1). The
components of {wi}i=m

i=1 can be estimated by maximizing
the log-likelihood or by minimizing the negative of the log-
likelihood function in (2):

MLR: minimize
w̃

lMLR(w̃)
∆
=

n∑
j=1

(
−

m∑
i=1

yjiw
T
i xj + log

m∑
i=1

exp
(
wT

i xj

)) (3)

All though the problem in (3) is convex and differentiable, one
cannot obtain a closed-form solution using the KKT conditions

3

primarily due to the presence of log-sum-exponential terms in
(3). Hence, iterative methods are usually employed to solve
the problem in (3). A conventional algorithm used to solve
the problem in (3) is the Iterative Reweighted Least Squares
(IRLS) algorithm [17] which is based on Newton-Raphson
method. Its update equation is given by:

w̃k+1 = w̃k −H
(
w̃k
)−1

r
(
w̃k
)

(4)

where w̃k is the value taken by w̃ at the kth iteration, r
(
w̃k
)

and H
(
w̃k
)

are the gradient and Hessian of lMLR (w̃) at

w̃ = w̃k, respectively and it is given by:

r
(
w̃k
)
= −

n∑
j=1

(
pj

(
w̃k
)
− yj

)
⊗ xj (5)

H
(
w̃k
)
=

n∑
j=1

(
P j

(
w̃k
)
− pj

(
w̃k
)
pj

(
w̃k
)T)

⊗ xjx
T
j

(6)
where ⊗ represents the Kronecker operator,
pj(w̃

k) = [p
(1)
j (w̃k), · · · p(m)

j (w̃k)]T , p
(i)
j (w̃k) =

P
(
yij = 1|xj ,w

k
1 ,w

k
2 , · · · ,wk

m

)
and P j

(
w̃k
)

is a diagonal

matrix with diagonal elements {p(1)
j (w̃k), · · · , p(m)

j (w̃k)}.
Since the Hessian is a function of w̃k, its inverse has to be
computed at every iteration - which makes the IRLS algorithm
computationally expensive. To avoid taking the inverse at
every iteration, the authors in [18] proposed an algorithm
based on Majorization Minimization (MM) principle with the
following update step:

w̃k+1 = w̃k −B−1r
(
w̃k
)

(7)

where B =
1

2

(
I − 11T

m

)
⊗

n∑
j=1

xjx
T
j and 1 =

(1, 1, · · · , 1)T . The update step in (7) involves computing
the inverse of B however, since B is independent of w̃, its
inverse can be precomputed - giving it a computational benefit
over IRLS. Recently, the authors in [19] proposed a semi-
parallel algorithm named LC which is also based on MM
procedure wherein the weights corresponding to each class
can be updated parallely i.e., each {wi}i=m

i=1 can be updated
parallely. At every iteration, the authors in [19] solved the
following sub-problem:

argmin
wi

−
n∑

j=1

yijw
T
i xj +

n∑
j=1

aj exp
(
wT

i xj

)
(8)

where aj
∆
=

1
m∑
i=1

exp
((

wk
i

)T
xj

) (9)

The problem in (8) does not have a closed-form solution
and the authors in [19] used the LBFGS solver to obtain
wi, which hampers the speed of the algorithm. The authors
in [19] have also proposed another parallel algorithm using
Alternating Direction Method of Multipliers (ADMM). The

numerical simulations in [19] report that ADMM has slower
speed of convergence when compared to LC.
We also consider the problem of parameter estimation of the
regularized MLR classifier:

S0-MLR: minimize
w̃

lMLR(w̃) + λ‖w̃‖0 (10)

where λ > 0 is the regularization parameter and ‖.‖0 is the
`0 vector norm. An attractive feature of the problem in (10)
is that the weights obtained are sparse in nature - which helps
in feature selection and also has computational benefits [23].
The problem in (10) is non-convex and not differentiable and
is usually solved by either approximating the `0 constraint
([24], [25]) or by relaxing the `0 norm with `1 norm:

S1-MLR: minimize
w̃

lMLR(w̃) + λ‖w̃‖1 (11)

The solution of the above problem can be interpreted as the
maximum a posteriori estimate of w̃ with the assumption
that the elements of w̃ has Laplacian prior distribution. Note
that one can also use `2 norm to penalize the large weights.
However, it does not result in a sparse weight vector and
hence is not usually preferred. The problems in (10) and (11)
are referred as Sparse MLR problems.
The authors in [18] have extended their algorithm to solve
the problem in (11). The extended algorithm is based on the
combination of MM and alternating minimization i.e., they
updated each element of w̃ using MM while keeping the
other components of w̃ fixed. Then they get the following
update equation:

w̃k+1
i = soft

w̃k
i −

ri

(
w̃k
)

Bii
,
λ

Bii

 (12)

where Blm denotes the (l,m) element of matrix B, ri(w̃k)
is the ith element of r(w̃k) and

soft(a, b) = sign(a)max{0, |a| − b} (13)

where max(a, b) chooses the largest value among a and b,
sign(a) is equal to 1 if a > 0 and sign(a) is equal to −1 if a <
0. Note that since the above algorithm is based on alternating
minimization, one cannot parallely update the elements of w̃.
The IRLS and the LC algorithm proposed to solve the problem
in (3) cannot be extended to solve the problem in (11), as
these algorithms requires the objective function to be smooth.
Boyd et.al. [20] proposed a non-parallel algorithm based on
ADMM to solve the problem in (11). They first introduced an
additional variable z̃ and converted the unconstrained problem
in (11) to a constrained problem:

minimize
w̃, z̃

lMLR(w̃) + g(z̃)

such that w̃ − z̃ = 0
(14)

where g(z̃) = λ‖z̃‖1. Then they formed the augmented
lagrangian of the above problem and solved the augmented
lagrangian problem by first alternatingly updating the primal
variables w̃ and z̃. Next, they updated the dual variable using
the updated primal variables. The authors in [21] proposed
GJ-FLEXA, FLEXA and Inexact GJ algorithms to solve

4

the problem in (11). These algorithms are basically gradient
based methods and at every iteration, instead of minimizing
the original problem in (11), these algorithms minimize an
approximation of lMLR(w̃) in (11). The approximation is
done using second-order Taylor series and an extra term
is added to it, to make the approximation strongly convex.
The three algorithms differ only in the way they update the
elements of w̃: GJ-FLEXA is a non-parallel algorithm, while
FLEXA and Inexact GJ is a parallel and a hybrid parallel-
sequential algorithm, respectively. Under the numerical results
section, Facchinei et.al. in [21] concluded that the non-parallel
algorithm GJ-FLEXA outperforms the other algorithms. This
could be because the authors in [21] simply approximates the
lMLR(w̃) using a second-order Taylor series and do not exploit
any structure of the objective function in (11).

III. MAJORIZATION MINIMIZATION

Majorization Minimization is a procedure to generate an
iterative algorithm which is used to solve an optimization
problem f(x) more efficiently, for example, in the case of
convex problems it can be used to avoid huge matrix inversions
and in the case of multivariate optimization problem, it can be
used to split the parameters - which allows the algorithm to be
implemented parallely. The MM framework mainly consists of
two steps: at every iteration construct a “surrogate” function
g
(
x|xk

)
which majorizes f(x) followed by its minimization

to generate xk+1 i.e.:

xk+1 ∈ arg min
x

g
(
x|xk

)
(15)

The surrogate function is a tighter upper bound of the objective
function and hence must satisfy the following properties:

g
(
xk|xk

)
= f

(
xk
)

(16)

g
(
x|xk

)
≥ f (x) (17)

The MM procedure is depicted in Fig. 1, wherein g(x|xk)
is the surrogate function which majorizes f(x) around
xk at the kth iteration. From Fig. 1, it can be seen that
f(xk+2) < f(xk+1) < f(xk). By using (15), (16) and (17),

Figure 1: MM procedure

it can be shown that the objective function is monotonically

decreased at every iteration:

f(xk+1) ≤ g
(
xk+1|xk

)
≤ g

(
xk|xk

)
= f(xk) (18)

The first inequality and the last equality are by using (16)
and (17). The second inequality is by (15). Note that an
objective function can have more than one surrogate function.
However, the computational complexity and convergence rate
will vary with the choice of the surrogate function. To have
lower computational complexity, the surrogate function must
be easy to minimize and the convergence rate of the resultant
algorithm will depend on how well the surrogate function
follows the shape of the objective function. Hence, the choice
of the surrogate function dictates the convergence rate and
complexity of the algorithm. An overview of the various
surrogate functions can be found in [26], [27].

IV. PROPOSED ALGORITHM FOR MULTINOMIAL LOGISTIC
REGRESSION

In this section we propose a novel parallel algorithm PI-
ANO to solve the problem in (3) based on the MM procedure.
The proposed algorithm can parallely update each element of
w̃ - which is particularly useful when the number of features
and classes are large. At the end of this section we prove that
the proposed algorithm converges to the stationary point of
the problem in (3), and discuss its computational complexity.

A. Parallel Iterative Algorithm for MultiNomial LOgistic Re-
gression (PIANO)

The objective function lMLR(w̃) in (3) is not separable in
each element of w̃ due to the presence of log-sum-exponential
terms which couple each element of w̃ together - making it
challenging to parallely minimize lMLR(w̃). In this subsection,
we develop an iterative algorithm PIANO which solves the
problem in (3) using the MM principle in which we form a
surrogate function g(w̃il|w̃k) which majorizes the log-sum-
exponential term and hence the objective function lMLR(w̃)
in (3). The surrogate function g(w̃il|w̃k) is separable in each
element of w̃ and hence each element of w̃ can be updated
parallely. We now discuss the following lemmas which will
be used to construct the surrogate function g(w̃il|w̃k).

Lemma 4.1: Given any z = zk, log (z) can be upper
bounded as:

log (z) ≤ log
(
zk
)
+

1

zk
(
z − zk

)
(19)

The upper bound for log (z) is linear in z.
Proof: Since the log function is concave in R [28], a

tighter upper bound for log(z) at zk can be found by the first
order Taylor expansion - which is a tangent plane to the log
function at z = zk. The first order Taylor approximation for
a differentiable function f(z) at z = zk is given by:

f(z) ≤ f(zk) + f ′
(
zk
) (
z − zk

)
(20)

where f ′
(
zk
)

denotes the differentiation of f(z) at zk. Sub-
stituting for f(z) = log(z) in (20), the inequality in (19) is
achieved.

5

Lemma 4.2: Given any w = wk, the function exp
(
wTx

)
can be upper bounded as:

exp
(
wTx

)
≤

d∑
i=1

1

d
exp

(
dxi

(
wi − wk

i

)
+ (wk)Tx

)
(21)

Proof: We replicate the proof from [26] for the sake of
clarity. Note that the exp (·) is convex and hence by using the
Jensen’s inequality ([29], [30]) we get:

exp

(
d∑

i=1

si
d

)
≤

d∑
i=1

exp (si)
d

(22)

Letting si = dxi
(
wi − wk

i

)
+ (wk)Tx and substituting it in

(22), the inequality in (21) is achieved.

Let z =

m∑
i=1

exp
(
wT

i xj

)
, then by using lemma 4.1, we can

upper bound the objective in (3) at any given w̃k by the
following surrogate function ĝ(wi|w̃k):

ĝ(wi|w̃k) = −
n∑

j=1

m∑
i=1

yjiw
T
i xj +

n∑
j=1

aj

m∑
i=1

exp
(
wT

i xj

)
(23)

where aj =
1

m∑
i=1

exp
((

wk
i

)T
xj

) , j ∈ (1, 2 · · ·n)
(24)

Its worth mentioning that the above surrogate function is
separable in each wi. To make it separable in each element
of wi, we once again majorize ĝ(wi|w̃k). Using lemma 4.2,
the second term of (23) can be majorized, after rearranging
we arrive at a new upperbound for the objective function in
(3), which we denote as g

(
wil|w̃k

)
:

g
(
wil|w̃k

)
= −

m∑
i=1

d∑
l=1

wilvil

+

n∑
j=1

aj

m∑
i=1

d∑
l=1

1

d

(
exp (dxjlwil)

exp
(
dxjlwk

il − xT
j w

k
i

)) (25)

where wil denotes the lth component of the ith weight vector
wi and vil denotes the lth component of ith vector vi which
is given as:

vi =

n∑
j=1

yjixj , i ∈ (1, 2 · · ·m) (26)

Note that {vi}i=m
i=1 does not depend on the weight matrix

and hence can be pre-computed. Also, the surrogate function
g
(
wil|w̃k

)
is separable in each element of w̃. Hence, each

wil of w̃ can be updated parallely. Therefore, at any iteration,
given w̃k, the surrogate minimization problem would be:

minimize
wil

−
m∑
i=1

d∑
l=1

wilvil

+

n∑
j=1

aj

m∑
i=1

d∑
l=1

1

d

(
exp (dxjlwil)

exp
(
dxjlwk

il − xT
j w

k
i

)) (27)

The above problem does not have a closed-form solution.
Below we propose a parameter free bisection method to solve
the problem in (27). To discuss the same in a clear way, we
consider the generic form of the problem in (27):

minimize
w

f(w)
∆
= −wv +

n∑
j=1

rjexp (xjw) (28)

The gradient of the objective function in (28) is given by:

f ′(w)
∆
= −v +

n∑
j=1

rjxjexp (xjw) (29)

The gradient in (29) can be shown to be always increasing.
We exploit this fact to choose the initial interval [a, b] of the
bisection method - which otherwise becomes a burden and has
to be correctly chosen for the bisection method to work. We
now discuss different possibilities to choose a and b based on
the value of the gradient at w = 0:
• Case 1: f ′(0) > 0

Consider the following example: f1(w) = 10w +
exp(5w) + exp(−4w) whose gradient is f ′1(w) = 10 +
5exp(5w) − 4exp(−4w) which is plotted in Fig. 2. The

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
w

-400

-200

0

200

400

600

800
 f

1'
(w

)

Figure 2: f ′1(w) vs w

following observations can be made from Fig. 2 - the
gradient f ′1(w) is always increasing, has a value greater
than zero at w = 0 and is equal to zero for w = −0.2609,
which is the minimizer. The latter observation is expected
because since the gradient is increasing and f ′1(0) is
positive, the value of the gradient can become equal
to zero only for a negative value of w. Hence, if one
implements bisection method to solve for f ′1(w) = 0, a
can be chosen equal to zero and b could be chosen as a
small negative number and one can keep decreasing the
value of b until the sign of f ′1(0) and sign of f ′1(b) are
opposite of each other. This makes the choice of a and b
simple.

• Case 2: f ′(0) < 0
Similar to the previous case, to justify the choice of a
and b in this case, we start by considering the following
example: f2(w) = −20 + exp(3w) + exp(4w) whose
gradient is f ′2(w) = −20 + 3exp(3w) + 4exp(4w) which
is plotted in Fig. 3. Similar to the previous observation,
we can see from Fig. 3 that the gradient of f2(w) is

6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
w

-50

0

50

100

150

200

250

300

 f
2'
(w

)

Figure 3: f ′2(w) vs w

always increasing. However, in contrast to the previous
case the gradient has a value lesser than zero at w = 0
and is equal to zero for w = 0.2911. This observation
is also expected because the gradient is increasing and
has a value lesser than zero at w = 0 - implying that
it can become equal to zero only for a positive value
of w. Hence, one can choose a = 0 and a small positive
number for b and keep increasing it until the sign of f ′1(0)
and sign of f ′1(b) are opposite of each other to solve for
f ′2(w) = 0 using bisection method.

The pseudo code of the proposed algorithm is as follows:

Table 1: Parallel Algorithm for Multinomial Logistic
Regression - PIANO
Input: Training samples: x1,x2 · · ·xn, Class labels:
y1,y2 · · ·yn

Initialize: Set k = 0. Initialize w̃0

Pre-compute: vi =

n∑
j=1

yijxj , i ∈ (1, 2 · · ·m).

Repeat:

1) Compute: aj =
1

m∑
i=1

exp
((

wk
i

)T
xj

) , j ∈ (1, 2 · · ·n)

2) Compute the following parallely over all the elements of
w̃:

g′(wil|w̃k) = −vil +
n∑

j=1

ajxjl
exp (dxjlwil)

exp
(
dxjlwk

il − xT
j w

k
i

)
Compute the value of g′(wil|w̃k) at wil = 0.

Choose the value of b based on whether the value of
g′(wil|w̃k) at wil = 0 is greater than or lesser than zero, as
described in the Subsection. IV-A

wk+1
il is obtained by solving (27) using bisection method

with a = 0 and updated b.

3) k ← k + 1, until

∣∣∣∣∣ lMLR(w̃
k)− lMLR(w̃

k−1)

lMLR(w̃
k−1)

∣∣∣∣∣ ≤ 10−3

We now discuss the computational complexity of PIANO
algorithm. The proposed algorithm PIANO, unlike the IRLS
algorithm and the algorithm developed by the authors in
[18], does not involve computing the inverse of any matrix.
Also, when compared to LC which updates each wi parallely,
PIANO updates every element of each wi parallely. Further,
each {vi}i=m

i=1 which is required to compute wil can be pre-
computed as it is independent of wil and also at every iteration,
except for the computation of (wk

i)
Txj , PIANO requires

only inexpensive scalar operations. To solve for the surrogate
minimization problem, PIANO implements parameter free
bisection method, whose complexity depends on the length of
the initial interval [a, b]. Since, the value of a and b are chosen
such that they are close to the minimizer of the surrogate
minimization problem, it reduces the length of the initial
interval and thereby reduces the complexity of the bisection
method.

B. Sparse Multinomial Logistic Regression with `1 regulariza-
tion

In this subsection, we extend the PIANO algorithm to solve
the Sparse MLR problem with `1 regularization, which is given
by:

`1 Sparse-MLR: minimize
w̃

lMLR(w̃) + λ‖w̃‖1 (30)

Note that the addition of `1 norm makes the above problem
non-smooth. While the second term of the above problem is
already separable in each element of w̃, to make the first term
of the above problem also separable in each element of w̃,
we majorize lMLR(w̃) using lemma 4.1 and 4.2, similar to the
development of PIANO algorithm:

g
l1

(
wil|w̃k

)
= −

m∑
i=1

d∑
l=1

wilvil

+

n∑
j=1

aj

m∑
i=1

d∑
l=1

1

d

(
exp (dxjlwil)

exp
(
dxjlwk

il − xT
j w

k
i

))+ λ

m∑
i=1

d∑
l=1

|wil|

(31)
The surrogate function g

l1

(
wil|w̃k

)
is separable in each

element of w̃ and hence each element of w̃ can be updated
parallely. Therefore, at any iteration, given w̃ = w̃k, the
surrogate minimization problem is:

minimize
wil

−
m∑
i=1

d∑
l=1

wilvil

+

n∑
j=1

aj

m∑
i=1

d∑
l=1

1

d

(
exp (dxjlwil)

exp
(
dxjlwk

il − xT
j w

k
i

))+ λ

m∑
i=1

d∑
l=1

|wil|

(32)
The above problem does not have a closed-form solution.
Similar to the previous section, we develop parameter free
bisection method to solve the above problem which we explain
by considering the following generic problem:

minimize
w

f(w)
∆
= −wv +

n∑
j=1

rjexp (xjw) + λ |w| (33)

7

The gradient of the objective function in (33) is given by:

f ′(w)
∆
= −v +

n∑
j=1

rjxjexp (xjw) + λ
∂|w|
∂w

= h(w) + λ
∂|w|
∂w

(34)

where the subgradient
∂|w|
∂w

is given as:

∂|w|
∂w

=

 1 if w > 0
−1 if w < 0
[−1, 1] if w = 0

. (35)

The gradient in (34) is the same as in (29), except for the
addition of subgradient term whose value can be either 1, −1
or some value in the interval [−1, 1] and hence the gradient in
(34), similar to the gradient in (29), is always increasing. We
exploit this fact to choose the appropriate subgradient value
from (35) and also to choose the initial interval of the bisection
method. We now discuss some cases based on the value of
h(0) in (34):
• Case 1: The value of h(0) is greater than one

Consider the following example: f3(w) = 10w +
exp(5w) + exp(−4w) + |w| whose gradient is f ′3(w) =

h(w)+
∂|w|
∂w

= 10+5exp(5w)− 4exp(−4w)+ ∂|w|
∂w

. In
this case, the solution for f ′3(w) = 0 cannot be at w = 0,

since f ′3(0) = h(0) +
∂|0|
∂w

= h(0) ± 1 6= 0. Hence, the
solution for f ′3(w) = 0 can only occur at a positive value
of w or at a negative value of w, which dictates the value

of the subgradient
∂|w|
∂w

. The function h(w), plotted in
Fig. 2, is always increasing and is greater than one at
w = 0, which implies that the solution of f ′3(w) = 0
can only be at a negative value of w and hence the value

of the subgradient
∂|w|
∂w

= −1. Then as discussed in the

previous section, to solve for f ′3(w) = h(w) +
∂|w|
∂w

=

10 + 5exp(5w) − 4exp(−4w) − 1 = 0 using bisection
method, a can be chosen equal to zero and b could be
chosen as a small negative number and one can keep
decreasing the value of b until the sign of f ′3(0) and sign
of f ′3(b) are opposite of each other.

• Case 2: The value of h(0) is lesser than −1
To rationalize the choice of the initial interval and the
value of the subgradient in this case, we consider the
following example: f4(w) = −20+exp(3w)+exp(4w)+

|w| whose gradient is f ′4(w) = h(w) +
∂|w|
∂w

= −20 +

3exp(3w) + 4exp(4w) +
∂|w|
∂w

. Similar to the previous
case, the solution for f ′4(w) = 0 cannot be at w = 0,
since f ′4(0) = h(0)±1 6= 0. Since h(0) is lesser than −1
and the function h(w) is always increasing (as plotted
in Fig. 3), the solution for f ′4(w) = 0 can only be at a
positive value of w which implies that the value of the

subgradient
∂|w|
∂w

= 1. Hence, in this case, to solve for
f ′4(w) = 0 using bisection method, one can choose a = 0
and a small positive number for b and keep increasing it
until the sign of f ′4(0) and sign of f ′4(b) are opposite of

each other.
• Case 3: The value of h(0) is inbetween −1 and 1 i.e
−1 ≤ h(0) ≤ 1
If −1 ≤ h(0) ≤ 1, then w = 0 is the solution of
the problem in (33). To explain the same, consider the
following example: f5(w) = exp(5w) + exp(−4w) + |w|
whose gradient is f ′5(w) = h(w) +

∂|w|
∂w

= 5exp(5w)−

4exp(−4w) + ∂|w|
∂w

. We have plotted the function h(w)
in Fig. 4. From the figure, it can be seen that h(0) = 1
and hence the solution for f ′5(w) = 0 can either be at
w = 0 or for a negative value of w such that h(w) = 1.
But as can be seen from Fig. 4, only for w = 0, h(0) = 1
and hence the only possible solution for f ′5(w) = 0 is at
w = 0.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
w

-20

-10

0

10

20

30

40

50

60

70

 f
5'
(w

)

Figure 4: f ′5(w) vs w

The pseudo code of the proposed algorithm used to solve the
sparse MLR problem with `1 regularization is shown in Table.
2:

Table 2: Parallel Algorithm for Sparse Multinomial
Logistic Regression with `1 regularization
Input: Training samples: x1,x2 · · ·xn, Class labels:
y1,y2 · · ·yn

Initialize: Set k = 0. Initialize w̃0 and the initial bisection
values a = 0, b = 1

Pre-compute: vi =

n∑
j=1

yijxj , i ∈ (1, 2 · · ·m).

Repeat:

1) Compute: aj =
1

m∑
i=1

exp
((

wk
i

)T
xj

) , j ∈ (1, 2 · · ·n)

2) Compute the following parallely over all the elements of
w̃:

h(wil) = −
vil
λ

+
1

λ

n∑
j=1

ajxjl
exp (dxjlwil)

exp
(
dxjlwk

il − xT
j w

k
i

)

8

Table 2: Parallel Algorithm for Sparse Multinomial
Logistic Regression with `1 regularization

∂|wil|
∂wil

=

{
−1 if h(wil) > 1
1 if h(wil) < −1

.

if −1 ≤ h(wil) ≤ 1 then wk+1
il = 0 else

g′
l1

(
wil|w̃k

)
= h(wil) +

∂|wil|
∂wil

Compute the value of g′
l1

(
wil|w̃k

)
at wil = 0.

Choose the value of b based on whether the value of
g′
l1

(
wil|w̃k

)
at wil = 0 is greater than or lesser than

zero, as described in Subsection. IV-A.

wk+1
il is obtained by solving (32) using bisection method

with a = 0 and updated b

end if
3) k ← k + 1
until∣∣∣∣∣∣
(
lMLR(w̃

k) + λ‖w̃k‖1
)
−
(
lMLR(w̃

k−1) + λ‖w̃k−1‖1
)

(
lMLR(w̃

k−1) + λ‖w̃k−1‖1
)

∣∣∣∣∣∣ ≤
10−3

The PIANO algorithm extended to solve the sparse MLR
problem has almost the same complexity as the PIANO
algorithm developed to solve the MLR problem with the
exception that the former requires an additional computation

of
∂|wil|
∂wil

, which is computationally inexpensive. Also, when

compared to the algorithms developed in [18] and [20], the
extended PIANO algorithm can update for each element of
w̃ parallely.

C. Sparse Multinomial Logistic Regression with `0 regular-
ization

In this subsection we show that the PIANO algorithm can
be extended to solve the sparse multinomial logistic regression
problem with `0 regularization. Like the `1 regularizer, the
`0 regularizer induces sparsity in w. The sparse multinomial
logistic regression problem with `0 regularization is given by:

`0 Sparse-MLR: minimize
w̃

lMLR(w̃)

subject to ‖w̃‖0 ≤ β
(36)

where ‖w̃‖0 counts the number of non-zero elements in w̃
and the constraint is such that w̃ must not have more than
β non-zero elements. The problem in (36) in contrast to the
problem in (30) is both non-convex and non-smooth and it is
challenging to solve. We now show that the PIANO algorithm
can be applied to solve the problem in (36). We first majorize
lMLR(w̃) as discussed in subsection IV-A using lemma 4.1

and lemma 4.2. Then at any iteration, given w̃k, the surrogate
minimization problem becomes:

minimize
wil

−
m∑
i=1

d∑
l=1

wilvil

+

n∑
j=1

aj

m∑
i=1

d∑
l=1

1

d

(
exp (dxjlwil)

exp
(
dxjlwk

il − xT
j w

k
i

))

subject to ‖w̃‖0 ≤ β

(37)

The problem above does not enjoy a closed-form solution.
Note that the above problem without the constraint is the
surrogate minimization problem in (27) used to solve the MLR
problem. Hence, we first minimize g

(
wil|w̃k

)
without the

sparsity constraint using the bisection approach as discussed
in subsection IV-A and to satisfy the constraint in (37) we
evaluate g

(
wil|w̃k

)
at its minimizer w∗il and sort the values

in ascending order. Then we preserve the elements of w̃∗

corresponding to the first β values of the sorted g
(
w∗il|w̃

k
)

and assign the remaining elements of w̃∗ to zero.

Table 3: Parallel Algorithm for Sparse Multinomial
Logistic Regression with `0 regularization
Input: Training samples: x1,x2 · · ·xn, Class labels:
y1,y2 · · ·yn

Initialize: Set k = 0. Initialize w̃0.
Repeat:
1) Compute the following parallely over all the elements of
w̃ using the user-independent bisection
method developed in subsection IV-A:

w∗il = minimize
wil

−
m∑
i=1

d∑
l=1

wilvil +

n∑
j=1

aj

m∑
i=1

d∑
l=1

1

d

(
exp (dxjlwil)

exp
(
dxjlwk

il − xT
j w

k
i

))
2) Preserve the elements of w̃∗ corresponding to the first β
values of the sorted g

(
w∗il|w̃

k
)

.
3) Assign the remaining elements of w̃∗ to zero.
4) w̃k+1 = w̃∗

5) k ← k + 1

until

∣∣∣∣∣∣
(
lMLR(w̃

k) + β‖w̃k‖0
)
−
(
lMLR(w̃

k−1) + β‖w̃k−1‖0
)

(
lMLR(w̃

k−1) + β‖w̃k−1‖0
)

∣∣∣∣∣∣ ≤
10−3

Note that the PIANO algorithm extended to solve the sparse
MLR problem with `0 regularization has the computational
complexity as PIANO with a small additional complexity due
to the sorting step done to satisfy the constraint in (36).

D. Proof of Convergence for PIANO
Given that PIANO is based on MM procedure, the sequence

of points {w̃k} generated by MM algorithm will monotoni-
cally decrease the problem in (3). Moreover, since lMLR(w̃) in
(3) is bounded below, it is ensured that the sequence lMLR(w̃

k)

9

will converge to a finite value.
We now show that the sequence {w̃k} converges to the sta-
tionary point of the problem in (3). Firstly, from the monotonic
property of MM we have:

lMLR(w̃
0) ≥ lMLR(w̃

1) ≥ lMLR(w̃
2) (38)

Assume that there is a subsequence w̃rj converging to a limit
point q̃. Then from (16), (17) and (38) we get:

g(w̃rj+1 |w̃rj+1) = lMLR(w̃
rj+1) ≤ lMLR(w̃

rj+1) ≤ g(w̃rj+1|w̃rj) ≤ g(w̃|w̃rj)
(39)

where g(.) is the surrogate function as defined in (25). Then,
letting j →∞, we get:

g(q̃|q̃) ≤ g(w̃|q̃) (40)

which implies g′(q̃|q̃) ≥ 0. Since the first order behavior
of surrogate function is same as function lMLR(w̃) ([31]),
g′(q̃|q̃) ≥ 0 implies l′MLR(q̃) ≥ 0. Hence, q̃ is the station-
ary point of lMLR(w̃) and therefore the proposed algorithm
converges to the stationary point of the problem in (3).
Similar analysis can be done to show that the proposed
algorithm converges to the stationary point of the sparse
multinomial logistic regression problem with `1 and `0 regu-
larization, since both the problems are bounded below and are
solved using MM procedure. Hence, we do not discuss their
proof of convergence in detail here.

V. PERFORMANCE STUDY: SIMULATIONS AND REAL-LIFE
DATA SET

In this section we present numerical simulations to compare
the PIANO algorithm with the state-of-the art algorithms used
to solve the MLR and Sparse MLR problems. In particular, for
the MLR problem we compare PIANO with the MM based
algorithm developed in [18] and the class wise semi-parallel
LC algorithm [19]. In the case of Sparse MLR, we compare the
proposed algorithm with the MM based algorithm developed
in [18], ADMM [20] and the algorithm developed in [21]. All
the simulations were carried out on a PC with 2.40GHz Intel
Xeon Processor with 64 GB RAM.
A Multinomial Logistic Regression
a) In the first simulation, we fix the dimension of the feature
vector d to be equal to 50, the number of samples n to be 500
and the number of classes m to be 30 and compare the conver-
gence speed of the proposed algorithm with the state-of-the art
algorithms, the MM based algorithm proposed in [18] and the
class wise semi-parallel algorithm LC proposed in [19]. The
elements of xj was randomly generated from Standard Normal
distribution with zero mean and unit variance. The algorithms
were made to run until the following condition was met:∣∣∣∣∣f(w̃k)− f(w̃k−1)

f(w̃k−1)

∣∣∣∣∣ ≤ 10−3 (41)

where f(w̃k) stands for lMLR(w̃). The initial objective value
lMLR(w̃

0) for all the three algorithms were kept same. Fig.5
shows the run time vs objective value in log for the three
algorithms. From Fig. 5, it can be seen that the proposed
algorithm takes lesser time to converge when compared to

0 0.5 1 1.5
time(sec)

0

1000

2000

3000

4000

5000

6000

7000

8000

PIANO
MM based Algorithm in [18]
LC [19]

Figure 5: Comparison of convergence speeds of the proposed
algorithm with the MM based algorithm developed in [18] and
the LC algorithm developed in [19] .

the other two algorithms. Although, it is a single run, we
observed the same for different values of problem settings.
This is mainly due to the parallel nature of the proposed
algorithm which can parallely update each element of w̃
when compared to the class wise semi-parallel algorithm -
LC and the non-parallel MM algorithm.

b) In this simulation, we vary the size of w̃ and compare the
performance of our algorithm with other standard methods.
The comparison is done based on how quickly the algorithms
reduce the initial objective value lMLR(w̃

0) to about 60% of
the initial objective value lMLR(w̃

0). The dimension d was
varied from 50 to 500 in steps of 50, the number of samples
n and the number of classes m were equal to 1000 and 30,
respectively. The elements of xj was randomly generated
from a Standard Normal distribution with zero mean and
unit variance. The initial value of w̃ was randomly generated
from a uniform distribution from [0, 1] and was kept same
for all the three algorithms. The run time was averaged over
50 trials. Fig. 6 shows the performance of the algorithms for
varying dimension d, number of samples n equal to 1000
and number of classes m equal to 30. From Fig. 6 it can
be seen that the proposed algorithm takes the least time to
converge to 60% of the initial objective value lMLR(w̃

0) when
compared to the state-of-the art algorithms.

B Sparse Multinomial Logistic Regression
a) In this simulation we fix the dimension of the feature
vector d to be 60, number of samples n to be 50, number of
classes m to be 2 and regularization parameter λ as 0.25 and
compare the convergence speed of the proposed algorithm
with the algorithms used to solve the Sparse MLR problem
with `1 regularization - MM based algorithm developed in
[18], ADMM algorithm [20] and the algorithm developed
in [21]. In the case of ADMM, w̃ was obtained by using
BFGS algorithm, which was implemented using the available
inbuilt function in Matlab. The elements of xj was randomly
generated from a Standard Normal distribution with zero

10

50 100 150 200 250 300 350 400 450 500
dimension of the feature vector

10-2

10-1

100

101

102

ti
m

e
(s

e
c
)

LC [19]
MM based Algorithm in [18]
PIANO

Figure 6: Comparison of run time of proposed algorithm with
existing algorithm for varying dimension d of the feature
vector.

mean and unit variance. The algorithms were made to run
till the condition in (41) was met with f(w̃k) defined as
lMLR(w̃)+λ‖w̃‖1. Fig. 7 shows the run time vs the objective
value in log for the algorithms. From Fig. 7 it can be seen

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time(sec)

0

10

20

30

40

50

60

70

80

PIANO
MM based Algorithm in [18]
ADMM [20]
Facchinei [21]

Figure 7: Comparison of convergence rate of the proposed al-
gorithm with MM based algorithm developed in [18], ADMM
algorithm proposed in [20] and the algorithm developed in
[21] by Facchinei et.al.

that the proposed algorithm takes lesser time to converge
when compared to the other algorithms. We observed the
same for different problem settings.

b) In this simulation, we vary the size of w̃ and compare the
performance of the proposed algorithm with the state-of-the
art algorithms used to solve the Sparse MLR problem. The
comparison is done based on how quickly the algorithms
reduce the initial objective value to about 60% of the initial
objective value. The dimension d was varied from 1000 to
10000 in steps of 1000 and the number of samples n and the
number of classes m was equal to 500 and 2, respectively.
The elements of xj was randomly generated from a Standard
Normal distribution with zero mean and unit variance.

The initial value of w̃ was randomly generated from a
uniform distribution from [0, 1] and was kept same for all the
algorithms. Fig. 8 shows the performance of the algorithms
for varying dimension d, number of samples n equal to 500,
number of classses m equal to 2 and regularization parameter
λ equal to 0.5. From Fig. 8 it can be seen that the proposed
algorithm takes the least time to converge when compared to
the other algorithms. This could be because PIANO is the
only algorithm which can parallely update each element of
w̃ for the Sparse MLR problem.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
dimension of the feature vector

10-2

10-1

100

101

102

103

104

ti
m

e
(s

e
c

)

Facchinei [21]
ADMM [20]
MM Algorithm in [18]
PIANO

Figure 8: Comparison of run time of proposed algorithm with
existing algorithm for varying dimension d of the feature
vector.

c) In this simulation we fix the dimension of the feature
vector d equal to 12, number of samples n equal to 5,
number of classes m equal to 2 and show that the PIANO
algorithm extended to solve the Sparse MLR problem with `0
regularization is monotonic. Fig. 9 shows the objective value
vs time plot and as can be seen from the figure the proposed
algorithm for the sparse MLR problem with `0 regularization
is monotonic.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
time(sec)

42

43

44

45

46

47

48

Figure 9: Monotonic convergence of PIANO for Sparse MLR
with `0 regularization

11

C Real-life data
In this subsection, we compare the performance of the
algorithms with some benchmark data sets that are used to
analyze classification algorithms. We briefly describe each
data set here:

1) IRIS data set - It is a multivariate data set and contains
fifty samples from each of the three species of the Iris
flower - Iris Setosa, Iris Versicolour and Iris Virginica.
Four features were measured from each sample - sepal
length, sepal width, petal length and the petal width, all
in centimeters. The task is to learn a classifier which
could classify the type of species.

2) Poker Hand data set - It is a multivariate data set
containing 25010 samples. Each sample is an example
of a poker hand consisting of five playing cards drawn
from a deck of 52 cards. Each card is described using
two features - suit and rank. Hence, the five cards are
described by ten features. There is one class feature that
describes the poker hand. The purpose of this data set
is to learn a classifier which could distinguish the ten
types of poker hands from each other.

3) DB World emails data set - This data set contains 64
emails from the DB World mailing list which announces
conferences, jobs, books, software and grants. The task
is to train a classifier to learn to distinguish between
announcement of conferences and everything else. Every
email is represented as a vector containing d binary
values, where d is taken to be 4702 is the size of the
vocabulary extracted from all the emails. The entry of
the vector is one if the corresponding word belongs to
the email and is zero otherwise.

4) URL Reputation data set - This data set contains 2.4
million URLs which are collected from a large web mail
provider over a period of 120 days. The task is to train
a classifier which could distinguish between malicious
and benign websites. This data set contains 3.2 million
lexical and host-based features which were extracted
from the URLs. We use a subset of this data to evaluate
the performance of the algorithms i.e., we use 20000
URLs and 50000 features to compare the performance
of the algorithms.

The above data sets are available in [13]. The summary of
the statistics of the above data sets is given in Table. I. The

Table I: Summary of the Data Set Statistics

Data Set Number
of
classes

Number
of
samples

Dimension
of the
feature
vector

IRIS 3 150 4
Poker Hand 10 25010 11
DB World emails 2 64 4702
URL Reputation 2 20000 50000

algorithms are compared based on how quickly the algorithms
reduce the initial objective value to about 60% of the initial
objective value. When n < d i.e. for DB World emails and

URL Reputation data sets, we obtained the optimal w̃ by
solving the Sparse MLR problem with `1 regularization with
λ equal to 0.01. For IRIS and Poker Hand data sets, since
n > d, optimal w̃ was obtained by solving the MLR problem.
The time taken by the algorithms is shown in Table. II. Also,
all the algorithms converged to the same 60% of the initial
objective value. In the case of URL Reputation Data set,

Table II: Comparison of run time of the algorithms in seconds

Data Set PIANO MM LC ADMM Facchinei
IRIS 0.03 0.06 0.04 - -
Poker Hand 0.04 0.60 0.43 - -
DB World emails 4.03 ×

10−4
0.5 - 21.39 4.16

URL Reputation 0.076 116.8 - > 1
hour

16.16

ADMM using BFGS algorithm ran into memory issues and
hence w̃ was obtained using the memory efficient LBFGS
algorithm. From Table. II it can be seen that PIANO algorithm
performs consistently well for all the data sets.

VI. CONCLUSION

In this paper, we proposed an iterative algorithm PIANO
based on MM procedure to solve the Multinomial Logistic
Regression problem. An attractive feature of PIANO is that
it can parallely update each element of the weight vector w̃,
which is useful when the number of features and classes are
large. We then showed that PIANO can be easily extended
to solve the Sparse Multinomial Logistic Regression problem
with both `0 and `1 regularization. Computer simulations were
conducted to compare the PIANO algorithm with the state-of-
the art algorithms and was found that the proposed algorithm
has faster speed of convergence.

REFERENCES

[1] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[2] S. Theodoridis, Machine learning: a Bayesian and optimization perspec-
tive. Academic Press, 2015.

[3] V. N. Vapnik, “The nature of statistical learning,” Theory, 1995.
[4] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE

transactions on pattern analysis and machine intelligence, vol. 12,
no. 10, pp. 993–1001, 1990.

[5] P. R. Runkle, P. K. Bharadwaj, L. Couchman, and L. Carin, “Hidden
markov models for multiaspect target classification,” IEEE Transactions
on Signal Processing, vol. 47, no. 7, pp. 2035–2040, 1999.

[6] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI
2001 workshop on empirical methods in artificial intelligence, vol. 3,
no. 22, 2001, pp. 41–46.

[7] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semisupervised hyperspectral
image segmentation using multinomial logistic regression with active
learning,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 48, no. 11, pp. 4085–4098, 2010.

[8] ——, “Semisupervised hyperspectral image classification using soft
sparse multinomial logistic regression,” IEEE Geoscience and Remote
Sensing Letters, vol. 10, no. 2, pp. 318–322, 2012.

[9] A. Genkin, D. D. Lewis, and D. Madigan, “Large-scale bayesian logistic
regression for text categorization,” Technometrics, vol. 49, no. 3, pp.
291–304, 2007.

[10] G. Ifrim, G. Bakir, and G. Weikum, “Fast logistic regression for text
categorization with variable-length n-grams,” in Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2008, pp. 354–362.

12

[11] I. Kurt, M. Ture, and A. T. Kurum, “Comparing performances of logistic
regression, classification and regression tree, and neural networks for
predicting coronary artery disease,” Expert systems with applications,
vol. 34, no. 1, pp. 366–374, 2008.

[12] G. C. Cawley and N. L. Talbot, “Gene selection in cancer classification
using sparse logistic regression with bayesian regularization,” Bioinfor-
matics, vol. 22, no. 19, pp. 2348–2355, 2006.

[13] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[14] I. Partalas, A. Kosmopoulos, N. Baskiotis, T. Artières, G. Paliouras,
É. Gaussier, I. Androutsopoulos, M. Amini, and P. Gallinari,
“LSHTC: A benchmark for large-scale text classification,” CoRR, vol.
abs/1503.08581, 2015.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[16] V. Vapnik, The nature of statistical learning theory. Springer science
& business media, 2013.

[17] D. P. O’Leary, “Robust regression computation using iteratively
reweighted least squares,” SIAM Journal on Matrix Analysis and Ap-
plications, vol. 11, no. 3, pp. 466–480, 1990.

[18] B. Krishnapuram, L. Carin, M. A. Figueiredo, and A. J. Hartemink,
“Sparse multinomial logistic regression: Fast algorithms and general-
ization bounds,” IEEE transactions on pattern analysis and machine
intelligence, vol. 27, no. 6, pp. 957–968, 2005.

[19] S. Gopal and Y. Yang, “Distributed training of large-scale logistic
models,” in International Conference on Machine Learning, 2013, pp.
289–297.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[21] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel selective algorithms
for nonconvex big data optimization,” IEEE Transactions on Signal
Processing, vol. 63, no. 7, pp. 1874–1889, 2015.

[22] A. Papoulis and S. U. Pillai, Probability, random variables, and stochas-
tic processes. Tata McGraw-Hill Education, 2002.

[23] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational
invariance,” in Proceedings of the twenty-first international conference
on Machine learning. ACM, 2004, p. 78.

[24] H. A. Le Thi, H. M. Le, T. P. Dinh et al., “A dc programming approach
for feature selection in support vector machines learning,” Advances in
Data Analysis and Classification, vol. 2, no. 3, pp. 259–278, 2008.

[25] H. M. Le, H. A. Le Thi, and M. C. Nguyen, “Sparse semi-supervised
support vector machines by dc programming and dca,” Neurocomputing,
vol. 153, pp. 62–76, 2015.

[26] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algo-
rithms in signal processing, communications, and machine learning,”
IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 794–816,
2016.

[27] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The
American Statistician, vol. 58, no. 1, pp. 30–37, 2004.

[28] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[29] J. L. W. V. Jensen, “Om konvekse funktioner og uligheder imellem
middelvaerdier,” Nyt tidsskrift for matematik, vol. 16, pp. 49–68, 1905.

[30] J. L. W. V. Jensen et al., “Sur les fonctions convexes et les inégalités
entre les valeurs moyennes,” Acta mathematica, vol. 30, pp. 175–193,
1906.

[31] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence
analysis of block successive minimization methods for nonsmooth
optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126–
1153, 2013.

http://archive.ics.uci.edu/ml

	I Introduction
	II Problem formulation and literature survey
	III Majorization Minimization
	IV Proposed Algorithm for Multinomial Logistic Regression
	IV-A Parallel Iterative Algorithm for MultiNomial LOgistic Regression (PIANO)
	IV-B Sparse Multinomial Logistic Regression with 1 regularization
	IV-C Sparse Multinomial Logistic Regression with 0 regularization
	IV-D Proof of Convergence for PIANO

	V Performance study: simulations and real-life data set
	VI Conclusion
	References

