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Abstract. We study the problem of exact support recovery based on noisy

observations and present Refined Least Squares (RLS). Given a set of noisy

measurement
y = Xθ∗ + ω,

and X ∈ RN×D which is a (known) Gaussian matrix and ω ∈ RN is an

(unknown) Gaussian noise vector, our goal is to recover the support of the

(unknown) sparse vector θ∗ ∈ {−1, 0, 1}D. To recover the support of the θ∗

we use an average of multiple least squares solutions, each computed based
on a subset of the full set of equations. The support is estimated by iden-

tifying the most significant coefficients of the average least squares solution.

We demonstrate that in a wide variety of settings our method outperforms
state-of-the-art support recovery algorithms.

1. Introduction

1.1. The Problem. The task of estimating the support of a sparse signal based on
noisy measurements plays a key role in many applications, such as, image denoising
[1, 2], communication [3], machine learning [4, 5, 6]. Here, we consider support

recovery of an unknown ternary signal θ∗ ∈ {−1, 0, 1}D, given the noisy vector

y = Xθ∗ + ω,

where X ∈ RN×D is a measurement matrix whose entries are independent random
variables with mean 0 and variance 1, and the noise ω ∈ RN is Gaussian. Exploiting
the known sparsity k of the unknown signal θ∗, our goal is to recover its support,
i.e. all indices d such that θ∗d 6= 0. We are interested in the case when the system
is underdetermined and has more variables than equations D > N .

y = θ + w

Figure 1. We try to recover the support of θ from the observa-
tions X and y, where y = Xθ + ω. The (known) matrix X is a
Gaussian random matrix, so is the (unknown) noise ω, we try to
recover the support of θ with few measurements.
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1.2. Existing Results. A popular approach for recovering the support of θ∗ is
using an `1 regularized quadratic programming problem, also known as the Least
Absolute Shrinkage and Selection Operator (LASSO) [7]. The LASSO is cast as
a convex problem, and can be solved using efficient optimization schemes [8, 9].
Several authors have introduced iterative algorithms improving the support recov-
ery capabilities of the LASSO, these include: Iterative Re-weighted Least Squares
(IRLS) [10], Iteratively Re-weighted `1 minimization (IRL1) [11], and Iterative
Support Detection (ISD) [12]. Other solutions for support recovery include greedy
algorithms such as Orthogonal Matching Pursuit (OMP) [13], and its extensions
[14, 15, 16], or non convex schemes such as the Trimmed LASSO (TL) [17], smoothly
clipped absolute deviation (SCAD) [18], or stochastic gates (STG) [19]. For a more
complete survey of the existing methodologies, we refer the reader to [20, 21, 22, 23].
Following the approach of Randomly Aggregated Least Squares (RAWLS) proposed
by the authors in [24], we introduce Refined Least Squares (RLS), a procedure for
estimating the support of θ∗ based on the noisy vector y and the observations
matrix X. Our algorithm is greedy, relying on estimating the support (and sign)
of one coefficient at a time. We demonstrate that Refined Least Squares (RLS)
effectively recovers the support, specifically in the low information regime where
N is much smaller than D, the regime where the noise is high and there is a large
number of active coefficients (k).

2. Refined Least Squares

2.1. RAWLS. The purpose of this section is to introduce the main idea behind
Refined Least Squares (RLS). Our starting point is RAWLS (Randomly Aggregated
unWeighted Least Squares), a method introduced by the authors in [24]. The main
idea behind RAWLS is somewhat counter-intuitive: we are given N equations with
D variables (with special emphasis on N < D)

y = Xθ∗ + ω.

It is easy to see that

θ̂ = arg min
θ
‖Xθ − y‖

does not usually lead to very good results (in particular, θ̂ is not typically sparse).
The main idea behind RAWLS is to do a least squares regressions on a subset of
the equations: for any arbitrary subset A ⊂ {1, 2, . . . , N}, we use XA to denote
the reduction of X to those rows indexed by A and likewise for the vector yA. We
can then consider

θ̂A = arg min
θ∈RD

‖XAθ − yA‖.

This will typically lead to even worse results compared to using least squares on
the full system since we work with less information. However, since there are
many different subsets A ⊂ {1, 2, . . . , N}, we can obtain several different estimators

θ̂A1
, θ̂A2

, . . . θ̂Am
and average them. RAWLS chooses m random subsets of size

|Ai| = b0.6 min(D,N)c and averages over the different least squares solutions. The
main observation that makes RAWLS work is that the coordinate (and the sign) of
these averages with the largest (absolute) entry likely corresponds to a coordinate
for which θ∗ has a nonzero entry (with the same sign). This coordinate is removed
in a greedy fashion and the procedure is reiterated on the remaining problem.
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2.2. Refined Least Squares. Refined Least Squares (RLS) is a significant refine-
ment over RAWLS and leads to a very effective algorithm (see §3 for results). As
was already pointed out in [24], we believe that the idea of suitably averaging over
least square solutions computed over subsets of equations to be a promising idea
and not yet suitably explored. We present two additional ideas which we call

(1) averaged guessing and
(2) the OMP flip

They lead to Refined Least Squares (RLS) which achieves state-of-the-art results
in several challenging regimes. We now explain these two new ideas.

2.2.1. Averaged Guessing. RAWLS produces a guess for a coordinate with nonzero
support by averaging least square recoveries over random subsets of size |Ai| =
b0.6 min(D,N)c. As demonstrated in Fig. 2, the constant 0.6 leads to the decent
results in terms of support recovery but not in a very strict sense – any constant in
the range [0.6, 0.9] seems to lead to rather comparable behavior (this is related to
the distribution of singular values of random matrices, see below). The main new
idea is to run several such predictions, for |Ai| ∈ [0.85 min(Dk, N), 0.9 min(Dk, N)],
where Dk is the number of variables at peeling step k = 1, ..., D. Then, using a
majority vote among the top selected components, we get an additional layer of
stability leading to better results.

2.2.2. The OMP flip. The second new ingredient is based on the following idea. As
RAWLS proceeds in greedily selecting coordinates, the problem tends to become
more difficult as the leading variables (corresponding to the strongest coefficients)
are removed because the signal to noise ratio shrinks. In particular, after k − 1
steps, we have a system of N equations for D − k + 1 unknowns which is mainly
dominated by noise once k ∼ D. The final step is as follows: for D Gaussian vectors
g1, . . . , gD ∈ RN (the columns of the matrix X), we are given y = (±1) · gi + ω
and are asked to reconstruct i from knowing y and the D vectors g1, . . . , gD ∈ RN .
It is difficult to imagine an estimator better than

î = arg max
1≤i≤D

|〈y, gi〉| .

This way of reconstructing coordinates is the main idea behind Orthogonal Match-
ing Pursuit (OMP) [13]. Once there is a single coordinate left to reconstruct, (RLS)
switches to this OMP heuristic. This also leads to additional stability.
The Algorithm. To estimate the support we use an ensemble of estimates, each
based on a different subset size |Ai| = n0. We fix the subset size

n0 ∈ [0.85 min(Dk, N), 0.9 min(Dk, N)]

and start the peeling procedure to estimate the set of support indices I ⊂ {1, ..., D}.
Using m (we use m = 100) random subsets of the equations (of size n0 each), the
RLS estimate is based on the following approximation

θ̄ =
1

m

m∑
i=1

θ̂Ai .

We estimate a support coefficient as θ̂` = sign(max θ̄), where ` = arg max |θ̄| is the
index of the support variable. The process is repeated 5 times with different subset
size n0 ∈ [0.85 min(Dk, N), 0.9 min(Dk, N)]. Finally, the set of support indices I is
estimated as using a majority voting over the different sets identified in the 5 peeling
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procedures: we pick the coordinate most frequently identified as most likely (in case
of a tie, we choose randomly among the most frequently occuring ones). After that,

we remove X` from X, where X` is the `’s column of the matrix, and update y by

subtracting X`θ̂`. This process is repeated k − 1 times for estimating the leading
support indices, the last coefficient is estimated using OMP. A description of the
peeling procedure is also presented in Algorithm 1.

Algorithm 1 Refined Least Squares (RLS)

Input: Observations matrix X, and target vector y.

1: for d = 1 : k − 1 do
2: for i = 1 : m do
3: Draw a set of equations Ai ⊂ {1, ..., N} of size n0.

4: Use least squares to find θ̄Ai
= X†Ai

yAi

5: end for
6: Compute the approximation θ̄ = 1

m

∑m
i=1 θ̂Ai

7: Estimate θ̂` = sign(max θ̄), where ` = arg max |θ̄|
8: Remove the ` column from X and update y by subtracting X`θ̂`, where X`

is the `’s column of the matrix.
9: end for

10: Estimate the k’th coefficient using OMP.

2.3. The Theorem. Our main theoretical contribution is a rigorous result ex-
plaining why, for this type of problem, it is actually advantageous to use a least
squares approach over a reduced set of equations (something that is maybe counter-
intuitive since we ‘throw away’ information). We will now state the theorem which
is relevant for a large number of algorithms of this type. Our setting is as follows:
we assume that N < D is given and that X ∈ RN×D is a random Gaussian matrix
with each entry being an independent N (0, 1) random variable. Let us assume that
the vector θ∗ ∈ RD is fixed and that ω ∈ RD is a Gaussian perturbation. We
are given y = Xθ∗ + ω. We compute a least squares approximation X†y, where
X† = XT (XXT )−1, and are interested in how close this approximation is toX†θ∗.

This means that the main question is regarding the size of ‖X†y −X†Xθ∗‖: we
hope that the least squares reconstruction of y is very close to that of Xθ∗. The
subsequent Theorem tells us that how close these two numbers are depends on the
dimensions of X ∈ RN×D: their distance grows as N/D gets closer to 1.

Theorem. If the size of the matrix X tends to infinity, with N/D < 1 fixed, and
ωi ∼ N (0, 1), we have

EX ,ω ‖X
†y −X†Xθ∗‖ = (1 + o(1))

√
N

D −N
.

We note that E‖X†Xθ∗‖ may be thought of as the projection onto a random
hyperplane and we may thus assume that

E‖X†Xθ∗‖ ∼
√
N

D
‖Xθ∗‖.

This shows that both ‖X†Xθ∗‖ and ‖X†y −X†Xθ∗‖ have a priori same depen-
dence on the ratio of the dimensions of X. N/D should not be too small because
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this amounts to throwing away a lot of information. However, it also should not
be too close to 1 either since in that case the size of the error starts growing dra-
matically: this is because the matrix X suddenly starts having singular values
closer to 0 which badly influence the inversion problem. The main ingredient is the
Marchenko-Pastur Theorem which holds for general random rectangular matrices
whose random variables are independent and have mean value 0 and variance 1:
the Theorem also applies to measurement matrices that are not Gaussian (as we
demonstrate in Section 3). A numerical evaluation supporting the Theorem appears
in Fig. 3.

Figure 2. Probability of successfully recovering the support of
the signal using RLS with a subset of size n0 (x-axis presents the
normalized subset size n0/N). In this experiment, we use D = 64
variables N = 50 equations and a sparsity of k = 20. We use
several values for m, the number of subsets used for estimating the
support via Algorithm 1.

3. Experimental Results

In the following subsection we evaluate the support recovery capabilities of RLS in
different settings. We compare the performance of RLS to several strong baselines,
such as: the LASSO [7], IRL1 [11], TL [17], OMP [13], ISD [12] and RAWLS [24].
We apply RLS with m = 100 which was shown stable across different settings (as
demonstrated in Fig. 2 smaller values of m may also work in practice). We evaluate
performance in terms of the empirical probability for perfect support recovery.
This probability is estimated as the portion of simulations which obtained perfect
support recovery out of 200 runs. Perfect support recovery is counted only if S(θ) =

S(θ̂), where S(θ) := {i ∈ 1, ..., D|θi 6= 0}.
For the first example (see Fig. 4), we use a design matrix X with values drawn
independently from N(0, 1), the number of variables is D = 64 with sparsity k = 30.
This example demonstrates the advantage of RLS over several strong baselines for
different noise levels (σ = 0.5 and σ = 1). Then (see Fig. 5), we repeat the
experiment but use a correlated design matrixX. To generateX, we first construct
a Toeplitz covariance matrix Σ with values Σi,j = 0.3|i−j|, where i, j = 1, ..., D,
then we generate X by drawing its values from N(0,Σ). In the next experiment
(see Fig. 6), we investigate what happens when the design matrix X takes its
entries from a fair Bernoulli distribution. Each entry Xij is taken independently
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Figure 3. Numerical evaluation of the relation predicted by The-
orem 1 forD = 300 and 10 ≤ N ≤ 290. As the number of equations
N tends to D (the number of variables), the expected `2 norm of

X†y−X†Xθ∗ (black dots) grows like N1/2(D−N)−1/2 (red line).

Figure 4. Evaluating the probability of exact support recovery
vs. the number of measurements N . We use D = 64 variables,
with a sparsity k = 30, and a design matrix X with values drawn
from N(0, 1). We compare the proposed procedure (RAWLS) to
several baselines for: σ = 0.5 (top panel) and σ = 1 (bottom
panel).

and uniformly at random from {−1, 1}. In the last experiment (see Fig. 7), we
investigate the behavior of these methods with respect to sparsity. We fix D = 64
variables, N = 40 equations and assume the error on the right-hand side to be of
scale σ = 1. We observe that RLS can recover the true support with some nonzero
(albeit small) likelihood even when the solution is far from sparse (k = 30).
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Figure 5. Evaluating the probability of exact support recovery
vs. the number of measurements N . We use D = 64 variables,
with a sparsity k = 30, and a design matrix X with values drawn
from N(0,Σ), where Σi,j = 0.3|i−j|. We compare the proposed
procedure (RAWLS) to several baselines for: σ = 0.5 (top panel)
and σ = 1 (bottom panel).

4. Proof of the Theorem

Proof. We will use X†y to denote the `2−smallest vector satisfying

X†y = arg min
θ∈RD

‖Xθ − y‖.

This solutions is contained in the vector space V spanned by the rows of the matrix
(if θ had a component that was orthogonal to these rows, then it would not have any
effect in the matrix multiplication Xθ and removing that component would result
in a smaller `2−norm). Since the number of variables, D, is larger than the number
of equations, N , and X is Gaussian we know that the minimum is 0 with likelihood
1 (the system is underdetermined and thus has a solution with likelihood 1). By

linearity, we have X†(y −Xθ∗) = X†ω and thus ‖X†y −X†Xθ∗‖ = ‖X†ω∗‖.
At this point, we fix the random matrix X and take an expectation over ω. We
observe that each entry of ω is an independent N (0, 1) Gaussian. Let us now
assume that the singular value decomposition of X is given by X = UΣV ∗ and
thus X† = V Σ†U∗. The matrices U and V are unitary and the distribution of
Gaussian vectors is invariant under an application of orthogonal matrices, thus
Eω‖X†ω‖ = Eω‖Σ†ω‖. Writing ω = (ω1, . . . , ωN ) and writing σ1, . . . , σN for the
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Figure 6. Evaluating the probability of exact support recovery vs.
the number of measurements N . We use D = 64 variables, with a
sparsity k = 30, and a design matrix X with values drawn from
a fair Bernoulli distribution. We compare the proposed procedure
(RAWLS) to several baselines for: σ = 0.5 (top panel) and σ = 1
(bottom panel).

Figure 7. Evaluating the probability of exact support recovery
vs. sparsity level k. We use D = 64 variables, with N = 40
observations, σ = 1 and different sparsity levels.

singular values of X, we can use the explicit form of Σ† to compute

Eω‖Σ†ω‖ = Eω

(
N∑
i=1

ω2
i

σ2
i

)1/2

.
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Jensen’s inequality leads to

Eω

(
N∑
i=1

ω2
i

σ2
i

)1/2

≤

(
Eω

N∑
i=1

ω2
i

σ2
i

)1/2

=

(
1

N

N∑
i=1

1

σ2
i

)1/2
√
N.

We note that this inequality is strict, however, standard deviation inequalities imply
that the inequality becomes asymptotically sharp because the sum starts to tightly
concentrate around its mean value as the dimension of the matrix increases. The
distribution of singular values of rectangular matrices of dimension N ×D is given
by the Marchenko-Pastur distribution with parameter 0 ≤ N/D ≤ 1. Using fN/D
to denote the density of the Marchenko-Pastur distribution, we see that, in the
limit as N,D →∞ with N/D fixed,

EX
1

N

N∑
i=1

1

σ2
i

= (1 + o(1))
1

D

∫ ∞
0

fN/D(x)

x
dx.

It remains to analyze the integral. The Marchenko-Pastur distribution is given by

fλ(x) =
1

2π

√
(λ+ − x)(x− λ−)

λx

where λ± = (1 ±
√
λ)2 and 0 < λ < 1 is the ratio of the random matrix. The

antiderivative of this function when weighted with 1/x happens to have a closed
form

∫ √
(λ+ − x)(x− λ−)

x2
dx =

=
1

x

√
−λ2 − (x− 1)2 + 2λ(1 + x)

+ arctan

(
1 + λ− x√

−λ2 − (x− 1)2 + 2λ(1 + x)

)

− 1 + λ

1− λ
arctan

(
x+ λ(2 + x)− λ2 − 1

(λ− 1)
√
λ2 + 2λ(1 + x)− (1 + x)2

)
.

Taking appropriate limits x→ ±λ±, we obtain∫ λ+

λ−

√
(λ+ − x)(x− λ−)

x2
dx =

2λπ

1− λ

from which we deduce∫ ∞
0

fN/D(x)

x
dx =

1

1−ND−1
=

D

D −N
.

�
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