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Abstract

The problem of off-grid direction-of-arrival (DOA) estimation is investigated. We develop a grid-based

method to jointly estimate the closest spatial frequency (the sine of DOA) grids, and the gaps between

the estimated grids and the corresponding frequencies. By using a second-order Taylor approximation, the

data model under the framework of joint-sparse representation is formulated. We point out an important

property of the signals of interest in the model, namely the proportionality relationship, which is empirically

demonstrated to be useful in the sense that it increases the probability of the mixing matrix satisfying the

block restricted isometry property. Simulation examples demonstrate the effectiveness and superiority of the

proposed method against several state-of-the-art grid-based approaches.

Keywords: Block restricted isometry property (RIP), compressive sensing, off-grid DOA estimation,

second-order Taylor approximation

1. Introduction

Grid-based methods have gained interest in direction-of-arrival (DOA) estimation in recent years. Such

approaches include least absolute shrinkage and selection operator (LASSO) [1–3] and sparse iterative

covariance-based estimation [4–7], among others. See [8] for a comprehensive review of grid-based sparse

methods for DOA estimation. The advantage of grid-based methods is that they have super-high resolution

even in the case when only one single snapshot is available, provided that all the source spatial frequencies

align exactly with the preset grid. However, this condition may not be satisfied in practice, since the region

of interest (ROI) contains infinite candidates and hence grid mismatch almost always exists when we split

the ROI into a finite number of grids. This is known as the off-grid issue and has attracted a lot of research

interest in array signal processing during the past decade, see for example [9–25].

Existing solutions to tackle the off-grid problem can be categorized into three groups. The first group

uses denser grids or the coarse-to-fine strategy such as [2]. The drawbacks of these methods are twofold. On
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one hand, denser grids lead to extremely expensive computational complexity; on the other hand, too dense

grids may result in weak incoherence among the steering vectors. The second group consists of the so-called

gridless approach [26–31]. Its weakness is that most of these methods are restricted to regularly sampled

measurements that can only be taken from a uniform linear array (ULA) [32]. The last group of methods

estimates the off-grid bias together with the grids closest to the true spatial frequencies. Representative works

include the first-order Taylor approximation [13, 15] and the neighbor-grid based method [19], denoted in

this paper as 1st Taylor G-LASSO and Neighbor G-LASSO, respectively.

It is known that in general the first-order Taylor approximation is accurate enough, especially when the

grid size is small. However, when the grid size is set not small enough so as to save computational cost, there

still exists a large bias. In such a situation, a high-order Taylor approximation decreases the approximation

error. To this end, we introduce a second-order Taylor approximation in off-grid DOA estimation. We

observe in this case the proportionality relationship of the signals of interest. With this, we propose a novel

optimization approach which is shown by simulation to produce more accurate frequency estimates in off-grid

scenarios. Moreover, the uniqueness issue of the proposed method is discussed by means of the restricted

isometry property (RIP), which is one of the most important tools in compressive sensing [33].

Notation: In this paper, bold-faced lower-case and upper-case letters stand for vectors and matrices,

respectively. Superscripts ·T, ·H, and ·∗ denote transpose, Hermitian transpose, and complex conjugate

operators, respectively. vec{·} denotes the vectorization operator, diag{·} returns a diagonal matrix whose

main diagonal is given in the curly bracket, and Re{·} and Im{·} are real and imaginary parts of a complex-

valued variable, respectively. ⊙ symbolizes the Khatri-Rao product. C and R are the sets of complex and

real numbers, respectively. I is the identity matrix of appropriate dimension. 0 and 1 denote the all-zeros

and the all-ones vectors of appropriate length, respectively. For a vector x, |x| and ‖x‖2 represent the

element-wise absolute value and the L2 norm of x, respectively. The symbols �, �, and ≻ are element-wise

less than or equal to, greater than or equal to, and greater than operators, respectively.

2. Signal Model

Suppose a linear array of M sensors whose positions are contained in q = [q1, q2, · · · , qM ]T, receives K

far-field narrowband signals from directions φ = [φ1, φ2, · · · , φK ]T with φk ∈ [−π/2, π/2). For simplicity, we

define the spatial frequencies as u = [u1, u2, · · · , uK ]T with uk = sin(φk) ∈ [−1, 1). The array observation

can be modeled as

y =

K∑

k=1

ska(uk) + n = A(u)s + n,

where sk is the k-th signal waveform, s = [s1, s2, · · · , sK ]T represents the signal vector, and n ∈ CM is

the noise vector. The steering matrix A(u) = [a(u1), a(u2), · · · , a(uK)] ∈ CM×K has the steering vectors

as columns, where a(uk) = [e
2πq1

λ
uk , e

2πq2
λ

uk , · · · , e
2πqM

λ
uk ]T, for k = 1, 2, · · · ,K, with λ being the signal

wavelength and  =
√
−1.
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In grid-based methods, we formulate the signal model by means of a sparse representation, as

y =

L∑

l=1

xla(vl) + n = A(v)x + n,

where v = [v1, v2, · · · , vL]T denotes the frequency grid vector with L being the number of grids (in general

L ≫ M > K), A(v) ∈ CM×L stands for the overcomplete dictionary matrix, and x = [x1, x2, · · · , xL]
T is a

sparse vector whose elements xl = sk if vl = uk, and xl = 0 otherwise. When the true frequencies do not

exactly lie in the preset grids, we encounter the off-grid issue. To handle this problem, we propose a method

to simultaneously estimate the closest frequency grids, and the gaps between the closest grids and the true

frequencies, using a second-order Taylor approximation.

3. Proposed Method

3.1. Second-Order Taylor Approximation

We start by considering a second-order Taylor approximation of the steering vectors. For any ul, we have

a(ul) ≈ a(vl) + a′(vl)pl +
a′′(vl)

2
p2l ,

where vl is the grid closest to ul, a
′(vl) =

da(v)
dv

∣∣∣
v=vl

, a′′(vl) =
d2

a(v)
dv2

∣∣∣
v=vl

, and pl = ul − vl ∈ [−δ/2, δ/2]

with δ being the grid size. Collecting all the candidates, we have

[a(u1),· · ·, a(uL)] ≈ A(v)+A′(v)diag{p}+1

2
A′′(v)diag{p}2,

whereA′(v) = [a′(v1), · · · , a′(vL)] ∈ CM×L,A′′(v) = [a′′(v1), · · · , a′′(vL)] ∈ CM×L, and p = [p1, p2, · · · , pL]T.
Hence, the signal model can be approximately written as:

y ≈
[
A(v) +A′(v)diag{p}+ 1

2
A′′(v)diag{p}2

]
x+ n

=

[
A(v),A′(v),

1

2
A′′(v)

]



x

diag{p}x
diag{p}2x


+ n, (1)

where the signals of interest [xT, (diag{p}x)T, (diag{p}2x)T]T are referred to as block signal in the sequel.

3.2. Properties of the Block Signal

As shown in signal model (1), the unknown block signal is divided into three parts: (i) x1 , x, (ii)

x2 , diag{p}x, and (iii) x3 , diag{p}2x. Without loss of generality, we assume x is a real-valued vector,

see Remark 1 below. Denote the l-th entries of x1, x2, and x3 as x1,l, x2,l, and x3,l, respectively. We notice

the following properties of the block signal [xT
1 ,x

T
2 ,x

T
3 ]

T.

• Since x is a sparse vector as mentioned in Section 2, x1, x2, and x3 are all sparse and share the same

sparsity pattern. This property is known as block-sparsity [13] or joint-sparsity [15].
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• It holds that x2,l = plx1,l and x3,l = p2l x1,l. Due to −δ/2 ≤ pl ≤ δ/2, ∀l ∈ {1, 2, · · · , L}, it is easy to

verify that the following inequalities hold:

− δ

2
|x1| � x2 � δ

2
|x1| , −

(
δ

2

)2

|x1| � x3 �
(
δ

2

)2

|x1| . (2)

• It can be seen that x1, x2, and x3 satisfy the proportionality relationship, as

x2
2,l = x1,lx3,l, ∀l ∈ {1, 2, · · · , L}. (3)

Remark 1. For any complex-valued data model, say y = Ax, we have its real-valued counterpart as ỹ = Ãx̃,

where ỹ = [Re{y}T, Im{y}T]T, x̃ = [Re{x}T, Im{x}T]T, and Ã =


 Re{A} −Im{A}

Im{A} Re{A}


.

3.3. Problem Formulation Development

Based on the aforementioned relationships among x1, x2, and x3, we propose the following minimization

problem:

min
x1,x2,x3

g(x1,x2,x3) s.t. (2) and (3). (4)

The cost function in (4) is given by

g(x1,x2,x3) ,
1

2

∥∥∥∥y−A(v)x1−A′(v)x2−
1

2
A′′(v)x3

∥∥∥∥
2

2

+ µ
∥∥∥
[
xT
1 ,x

T
2 ,x

T
3

]T∥∥∥
2,1

, (5)

where µ is a regularization parameter balancing the data fitting and the model sparsity, and ‖·‖2,1 is the

mixed L2,1 norm of a vector, defined as

∥∥∥
[
xT
1 ,x

T
2 ,x

T
3

]T∥∥∥
2,1

=

L∑

l=1

√
|x1,l|2 + |x2,l|2 + |x3,l|2.

Problem (4) is non-convex and hard to solve due to its constraints. We first consider the constraints

of (2). The difficulty of dealing with (2) comes from the absolute value operator [15]. However, when the

signals are assumed to be real positive, i.e., s ≻ 0 (and x1 = x � 0), the constraints of (2) in (4) become

− δ

2
x1 � x2 � δ

2
x1, 0 � x3 �

(
δ

2

)2

x1, x1 � 0, (6)

which are linear and thus convex. It is worth pointing out that 0 � x3 in (6) is the result of x3,l = p2l x1,l, ∀l ∈
{1, 2, · · · , L} and x1 � 0. Note that the assumption of real positive signals is valid in various situations.

For instance, in multiple-snapshot scenarios, the signal vector denotes the signal powers which are naturally

positive, see Remark 2.

In the sequel, we consider the last constraint in (4), viz. (3). Firstly, we convert (3) to its equivalent

form as in [34]:
∥∥∥∥∥∥


 2x2,l

x1,l − x3,l



∥∥∥∥∥∥
2

= x1,l + x3,l, ∀l ∈ {1, 2, · · · , L}. (7)
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Then, we introduce an additional variable z ∈ RL with entries zl satisfying

0 ≤ zl ≤ η, ∀l ∈ {1, 2, · · · , L}, (8)

where η is a small user-defined parameter, and rewrite (7) as

∥∥∥∥∥∥


 2x2,l

x1,l − x3,l



∥∥∥∥∥∥
2

≤ x1,l + x3,l + zl, ∀l ∈ {1, 2, · · · , L}, (9)

which belongs to the set of standard second-order cone and hence is convex.

By replacing the constraint (2) with (6) and replacing (3) with (8) and (9), we finally relax the non-convex

problem (4) into a convex one, as

min
x1,x2,x3,z

g(x1,x2,x3) s.t. (6), (8), and (9). (10)

Remark 2. Note that the proposed method is developed for the single-snapshot scenario. However, it can

be easily extended to the case of multiple snapshots. To be precise, when multiple snapshots are available,

we have the covariance matrix R = ARsA
H + σ2I, where σ2 is the noise power. Note that we assume

the signals to be uncorrelated with the noise, and the noise components are independent and identically

distributed. Vectoring R yields

vec{R} = (A∗ ⊙A)rs + σ2vec{I}, (11)

where rs is the main diagonal of Rs, denoting the signal powers. The data model (11) is similar to the signal

model introduced in Section 2, and therefore, we can develop our method on the basis of (11).

To analyze the computational cost, we formulate Problem (10) under the framework of standard second-

order cone programming (SOCP) [35], as

min
x1,x2,x3,z,t

L∑

l=1

tl = 1Tt

s.t. (6), (8), and (9),
√
|x1,l|2+|x2,l|2+|x3,l|2 ≤ tl, ∀l ∈ {1, 2, · · · , L},

∥∥∥∥y−A(v)x1−A′(v)x2−
1

2
A′′(v)x3

∥∥∥∥
2

≤ ǫ,

where t = [t1, t2, · · · , tL]T is an auxiliary variable vector, and ǫ is a tuning parameter related to µ in (10).

The computational cost of the above problem with implementation of SOCP is O
(
9(M + 1)L2 + 72L

)
per

iteration, and the number of iterations is bounded above by O(
√
L) [35]. The proposed second-order Taylor

approximation method is referred to as 2nd Taylor G-LASSO. The computational complexity of the 2nd

Taylor G-LASSO, as well as those of LASSO [1, 2], Neighbor G-LASSO [19], and 1st Taylor G-LASSO

[13, 15], are summarized in Table 1.
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Table 1: Computational Cost Using SOCP Implementation

Method Cost per Iteration No. of Iterations

LASSO O
(
(M + 1)L2

)
O(1)

Neighbor G-LASSO O
(
4(M + 1)L2 + 12L

)
O(

√
L)

1st Taylor G-LASSO O
(
4(M + 1)L2 + 28L

)
O(

√
L)

2nd Taylor G-LASSO O
(
9(M + 1)L2 + 72L

)
O(

√
L)

4. Uniqueness Property of the Proposed Solution

Note that, for underdetermined linear systems, uniqueness of a sparse solution is one of the fundamental

problems in compressive sensing [36]. In this section, we discuss this issue in view of the proposed signal

model in (1). To this end, we first introduce the following definition and theorem [33]:

Definition. An M × bL block matrix D is said to have the block RIP with parameter βK , if for every K

block-sparse vector c of length bL, it holds that

(1− βK)‖c‖22 ≤ ‖Dc‖22 ≤ (1 + βK)‖c‖22.

Theorem. Let y = Dc0 be measurements of a K block-sparse vector c0. If D satisfies the block RIP with

parameter β2K < 1, then there exists a unique block-sparse vector c satisfying y = Dc; and further, if D

satisfies the block RIP with β2K <
√
2 − 1, then the convex optimization problem: minc ‖c‖2,1 s.t. y = Dc,

has a unique solution and the solution is equal to c0.

Define c0 = [xT, (diag{p}x)T, (diag{p}2x)T]T and D = [A(v),A′(v), 1
2A

′′(v)]. In the absence of noise,

our proposed model in (1) can be rewritten as: y = Dc0. Without loss of generality, we denote D̄ as the

column-normalized matrix structured from D. Our task is to check whether or not D̄ satisfies the block RIP

with parameter β2K < 1 and β2K <
√
2− 1. Note that determining the RIP parameter, i.e., β2K , of a given

matrix is in general an NP-hard problem [37, 38]. In what follows, we introduce a Monte Carlo test to check

the condition of the block RIP of D̄.

According to the definition, if D̄ has the block RIP with parameter β2K , then for any 2K block-sparse

vector c of length bL, it holds that

(1 − β2K)‖c‖22 ≤ ‖D̄c‖22 ≤ (1 + β2K)‖c‖22. (12)

Note that, for any 2K block-sparse vector c, we can write its unit-norm vector as c̄ = c/‖c‖2, such that

‖c̄‖2 = 1. As a result, (12) becomes:

(1− β2K) ≤ ‖D̄c‖22
‖c‖22

= ‖D̄c̄‖22 ≤ (1 + β2K).

Based on the above inequalities, the parameter β2K is calculated as

β2K = max
{
‖D̄c̄‖22 − 1 , 1− ‖D̄c̄‖22

}
. (13)
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We randomly generate a unit-norm 2K block-sparse vector c̄, and calculate β2K using (13). By repeatedly

performing the above steps for 104 Monte Carlo runs, we estimate the empirical probabilities of {β2K < 1}
and {β2K <

√
2 − 1}. The empirical probabilities versus block-sparsity 2K are presented in Figure 1, with

M = 8, qm = (m−1)λ
2 (m = 1, 2, · · · ,M), L = 200, and b = 1 for LASSO, b = 2 for Neighbor G-LASSO and

1st Taylor G-LASSO, and b = 3 for 2nd Taylor G-LASSO. It is seen that when the block-sparsity is small

(less than 8), the probabilities of {β2K < 1} of all the tested methods are high (greater than 0.9), and their

probabilities of {β2K <
√
2− 1} are larger than 0.5. Note that in Figure 1, the plot of 2nd Taylor G-LASSO

with proportional signals (abbreviated as “Prop. Sig.” in the figure), i.e., (3), has the highest probability.

This reveals that the proportionality relationship of the block signal contains useful information in the sense

that it increases the probabilities of {β2K < 1} and {β2K <
√
2− 1}.

5. Simulation

We evaluate the frequency estimation performance of 2nd Taylor G-LASSO, compared with LASSO [1–3],

Neighbor G-LASSO [19], and 1st Taylor G-LASSO [13, 15]. We adopt the root-mean squared error (RMSE)

and the empirical probability of correct detection (PCD) as performance metrics, defined as in [39]:

RMSE = 10 log10




√√√√ 1

KQ

K∑

k=1

Q∑

q=1

(ûk,q − uk)
2




and PCD = Qsuc/Q, respectively, where ûk,q denotes the frequency estimates of the k-th signal in the q-th

Monte Carlo run, Q is the total number of Monte Carlo trials, and Qsuc is the number of trials where the

frequency estimates { ûk| k = 1, 2, · · · ,K} fulfill: maxk {|ûk − uk|} ≤ δ/2. The Cramér–Rao bound (CRB)

[25] is drawn as a benchmark for RMSE comparison.

In the first experiment, a linear array of M = 16 omnidirectional sensors is considered to receive K = 2

signals with spatial frequencies u = [0.1815, 0.7942]T. The M = 16 sensors are randomly selected from a

ULA of 20 sensors with half-wavelength inter-element spacing. The frequency grid size is set to be δ = 0.01,

and hence the number of grids is L = 200. That is, the preset frequency grids are {−1,−0.99, · · · , 0.98, 0.99}.
Two parameters utilized in (10) are given as η = 10−5 and µ = σ

√
M ln(M) [40] with σ denoting the standard

deviation of the noise vector, which is assumed to be known a priori in our simulations. Q = 1000 Monte

Carlo trials are performed. The results of RMSE versus SNR and PCD versus SNR are plotted in Figures

2 and 3, respectively. It is seen that, in the large SNR region, 2nd Taylor G-LASSO has significantly lower

RMSE compared with the other grid-based approaches, and the PCD of 2nd Taylor G-LASSO is higher than

those of the other tested methods.

In the second experiment, we randomly select M sensors from a ULA of 20 sensors with half-wavelength

inter-element spacing, and M varies from 4 to 20. SNR is fixed to 20 dB, while the remaining parameters

are the same as those in the first experiment. The RMSE and PCD are depicted in Figures 4 and 5,

respectively. The results exhibit again better performance of the proposed 2nd Taylor G-LASSO than the

other competitors.
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In the third experiment, the number of frequency grids, i.e., L, varies from 50 to 500 with a step size of

50, the SNR is fixed to 20 dB, while the other parameters are unchanged as those in the first experiment.

The RMSE and PCD results are shown in Figures 6 and 7, respectively. It can be seen that (i) When the

number of grids is L < 400 (equivalently grid size of δ > 1/200), the RMSE of 2nd Taylor G-LASSO is

evidently smaller than those of the other tested methods; and (ii) When L ≥ 400 (that is δ ≤ 1/200), the

RMSE of 1st Taylor G-LASSO is very close to that of 2nd Taylor G-LASSO. This verifies that 2nd Taylor

G-LASSO works better than 1st Taylor G-LASSO in terms of DOA estimation accuracy, especially when

the grid size is not sufficiently small.

In the last experiment, we test the performances of the proposed method and several other algorithms

in multiple-snapshot scenarios. We utilize 100 snapshots, and the other parameters are set to be the same

as those in the first experiment. The strategy of transforming the multiple-snapshot signal model into a

single-snapshot one, which has been detailed in Remark 2 in Section 3.3, is applied to LASSO, Neighbor G-

LASSO, 1st Taylor G-LASSO, and 2nd Taylor G-LASSO. In addition, in this example, we also consider two

classical methods, namely, the Capon beamforming and multiple signal classification (MUSIC) algorithms

[41]. For comparison, on-grid MUSIC with a much tinier grid size δ = 0.0001 is also examined. The RMSE

and PCD are plotted in Figures 8 and 9, respectively, from which it is seen that both Capon beamforming

and MUSIC algorithms share similar performance with LASSO in the off-grid setup. On-grid MUSIC has the

smallest RMSE and the largest PCD among all the tested approaches. The proposed 2nd Taylor G-LASSO

outperforms LASSO, Neighbor G-LASSO, and 1st Taylor G-LASSO.

6. Conclusion

We have investigated the off-grid DOA estimation problem and have proposed a method using the second-

order Taylor approximation. By exploring the properties of the block signal, we have added the propor-

tionality relationship to our optimization problem. A Monte Carlo test has shown the usefulness of such

proportionality relationship in the sense that it increases the probabilities of {β2K < 1} and {β2K <
√
2−1}.

Numerical results have demonstrated that the proposed method outperforms several existing grid-based DOA

estimation approaches.
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Figure 1: Empirical probabilities of {β2K < 1} and {β2K <
√
2 − 1} versus block-sparsity 2K with 104 Monte Carlo runs,

M = 8, and L = 200.

12



-10 -5 0 5 10 15 20 25 30
SNR (dB)

-40

-35

-30

-25

-20

-15

-10

-5

R
M

SE
 (

dB
)

LASSO
Neighbor G-LASSO
1st Taylor G-LASSO
2nd Taylor G-LASSO
CRB

Figure 2: RMSE versus SNR with M = 16 sensors, K = 2 sources, L = 200 frequency grids, and grid size δ = 0.01.
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Figure 3: PCD versus SNR with M = 16 sensors, K = 2 sources, L = 200 frequency grids, and grid size δ = 0.01.
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Figure 4: RMSE versus number of sensors with SNR = 20 dB, K = 2 sources, L = 200 frequency grids, and grid size δ = 0.01.
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Figure 5: PCD versus number of sensors with SNR = 20 dB, K = 2 sources, L = 200 frequency grids, and grid size δ = 0.01.
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Figure 6: RMSE versus number of frequency grids with SNR = 20 dB, M = 16 sensors, and K = 2 sources.
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Figure 7: PCD versus number of frequency grids with SNR = 20 dB, M = 16 sensors, and K = 2 sources.
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Figure 8: RMSE versus SNR in multiple-snapshot scenarios with 100 snapshots, M = 16 sensors, and K = 2 sources.
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Figure 9: PCD versus SNR in multiple-snapshot scenarios with 100 snapshots, M = 16 sensors, and K = 2 sources.
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