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Abstract

Video processing solutions for motion analysis are key tasks in many com-
puter vision applications, ranging from human activity recognition to object
detection. In particular, speed estimation algorithms may be relevant in
contexts such as street monitoring and environment surveillance. In most re-
alistic scenarios, the projection of a framed object of interest onto the image
plane is likely to be affected by dynamic changes mainly related to per-
spectival transformations or periodic behaviours. Therefore, advanced speed
estimation techniques need to rely on robust algorithms for object detection
that are able to deal with potential geometrical modifications. The proposed
method is composed of a sequence of pre-processing operations, that aim to
reduce or neglect perspetival effects affecting the objects of interest, followed
by the estimation phase based on the Maximum Likelihood (ML) principle,
where the speed of the foreground objects is estimated. The ML estima-
tion method represents, indeed, a consolidated statistical tool that may be
exploited to obtain reliable results. The performance of the proposed algo-
rithm is evaluated on a set of real video recordings and compared with a
block-matching motion estimation algorithm. The obtained results indicate
that the proposed method shows good and robust performance.
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1. Introduction

Speed estimation systems play nowadays a fundamental role in contexts

of traffic control and road monitoring applications. Thanks to the increasing

deployment of cameras for surveillance purposes, a significant amount of

street-related information is available and may be exploited to build non-

intrusive video-based solutions for object speed estimation.

In many realistic scenarios, the motion of foreground objects is superposed

to other dynamic modifications that mainly arise from periodic behaviours

(e.g., typical of some human movements such as walking and running) or

directly result from the process of image acquisition [1], [2]. A video frame can

be indeed defined as a digital image generated by the projection of a three-

dimensional (3D) real-world scene onto a two-dimensional (2D) camera plane.

For this reason, perspectival effects are likely to affect the image of the framed

objects of interest. Hence the analysis of their motion, i.e., speed estimation

and periodic feature extraction, may be challenging in some scenarios.

The goal of this paper is the estimation of the speed of foreground objects

in a video sequence, accounting for the perspectival effects that may affect

their 2D projection throughout the video duration. To this purpose, we

may apply inverse projective transformations [1], [3] to each frame of the

video sequence to obtain a new processed sequence where the shape and

the size of the framed objects are affected by minor modifications and can

be considered constant throughout the video duration. We exploit a sound

estimation theory tool, i.e. the Maximum Likelihood (ML) principle [4] to

obtain an estimator of the speed of the objects of interest.

An extensive review of video-based solutions for speed estimation can be
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found in [5], where various methods are classified according to specific crite-

ria. In particular, classical approaches can be mainly categorized as based

on a) camera setting and calibration and b) vehicle detection and tracking.

The works described in [6] and [7] are examples in the first category, where

vanishing points are detected on the considered 2D scene and the camera

parameters are computed to enable the measurement of distances on the

road plane, hence the speed of the vehicle of interest. On the other hand,

solutions based on category b) vehicle detection and tracking, mainly rely on

background removal, feature detection or license plate detection algorithms.

In [8] and [9], background subtraction is performed by means of the Gaus-

sian Mixture Model. In [10], Scale Invariant Feature Transform (SIFT) and

Speeded Up Robust Features (SURF) algorithms are exploited to detect fea-

ture points, whereas in [11], the licence plate of the vehicle of interest is

detected using an open source software and is tracked in consecutive frames

to estimate the vehicle speed.

As a matter of fact, the literature on the extraction of information con-

tent from video signals is mainly based on heuristic ad-hoc solutions. To

our knowledge, little or no attempts to employ sound approaches from esti-

mation theory have been pursued and this paper wishes to contribute to fill

this gap. As exceptions to this general trend, we mention previous contri-

butions in which the ML criterion was successfully employed in the context

of video processing for the extraction of periodic features [12], [13]. De-

spite a sound and consolidated method, the ML approach continues to be

successfully applied to the solution of current problems. To mention a few,

examples of recent works on ML parameters estimation include [14] and [15].
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In the former, a pseudo ML algorithm is developed to estimate the position

of a multi-antenna receiver in dynamic multipath scenarios, whereas, in the

latter, the position of multiple emitters is estimated. Another application

of the ML approach can be found in [16], where a novel method for image

reconstruction based on ML exposure level estimation is proposed.

Given a model that describes the observed data, the ML method allows to

derive estimators of the unknown parameters of interest. In the application of

interest in this paper, once the motion model of the video sequence is defined,

the ML criterion can be applied to obtain an expression of the log-likelihood

function to be optimized through a maximization process: the coordinates

of the maximum of this function indicate the estimated components of the

parameters of interest, namely the speed vector in this work.

The performance of the proposed algorithm is compared with a more

conventional solution, i.e. the block-matching method [17, Ch. 4], that

tends to be subject to several problems mainly related to the presence of

noise, repeated patterns in the scene and the block size setting. This paper

expands upon preliminary conference contributions [18], [19].

The remainder of the paper is organized as follows. In Section 2, prelimi-

nary video processing operations are described, along with the mathematical

formulation of the dynamic motion model. In Section 3, the likelihood func-

tion and the resulting speed estimation procedure are proposed. In Section 4,

performance results on real videos are presented. Finally, in Section 5 con-

clusions are drawn.
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Figure 1: Overview of the proposed speed estimation method.

2. Observation model

2.1. Preliminary processing for object detection

The extraction of foreground objects in a video sequence is at the basis

of the proposed solution. An overview of the proposed method is shown in

Figure 1. In particular, an initial grayscale conversion from Red Green and

Blue (RGB) input sequences is performed to obtain a grayscale video signal

with frame period Ts. This conversion is motivated by the significant sim-

plification it entails in the following processing operations and is highlighted

in the first block of the diagram shown in Figure 1. Frames are sampled

at time instants nTs, n being the frame number, and can be described by

matrices of M1 ×M2 pixels. As already mentioned, in many realistic sce-

narios, foreground moving objects are likely to be subject to perspectival

transformations arising from the projective mapping of 3D real world points

to corresponding points on the 2D image plane [1]. This mapping has also an

immediate effect on the object speed: a constant speed in the real world may

correspond to a non-constant speed in the image plane. However, it is pos-
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sible to remove perspectival distortions by exploiting some image processing

techniques that also allow to approximately recover the original shape and

size of the objects of interest [1], [3]. To this purpose, as highlighted in the

second block of the diagram in Figure 1, we may apply inverse projective

transformations to each frame of the considered video sequence in order to

compensate for the non-constant speed.

Once the original shape and speed of the framed objects is restored and

can be considered constant in the 2D image plane, we proceed to detect

them by removing the background, which is assumed to be static. The back-

ground removal operation is highlighted in the third block of the diagram

in Figure 1 and is composed of four main steps, i.e., filtering, thresholding,

morphological operation and convex hull extraction, as shown in the respec-

tive blocks in Figure 1. Initially, we perform a basic image filtering operation

based on the absolute difference of each frame and the background frame,

i.e., reference frame, and we threshold the result to obtain a binary image

where pixels belonging to the foreground have intensity equal to 1 (white)

and those belonging to the background have intensity equal to 0 (black).

When the considered video sequence is affected by noise, a spatial averaging

filter can be applied to each frame to smooth the noise effect [1] and an es-

timate of the background can be obtained by a temporal average operation

performed on the whole sequence. We then apply a cascade of morphologi-

cal operations [1], i.e., erosion followed by dilation with different structuring

elements, to reduce the misclassification of isolated objects and we extract

the convex hull of the foreground objects to fill any remaining hole.

As a last step of this preliminary processing, object tracking and selection
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may be performed, as shown in Figure 1, based on standard feature extraction

techniques [2] to select a single object of interest, whereas the rest of the scene

can be considered as background. Once a region of interest has been selected,

a feature detection algorithm can be exploited to extract the locations of

corners or other points of interest of the foreground object, i.e., a vehicle,

at a specific frame. The locations of the detected features may be then

searched in subsequent frames through feature tracking algorithms such as

the Kanade-Lucas-Tomasi algorithm [20].

The definitions of the notation x[m, n], {si[m− vn, n]}I−1
i=0 and v̂ in Fig-

ure 1 are provided in Sections 2.2 and 3.

2.2. Dynamic motion model

Consider a frame size of M1 ×M2. The intensity of a pixel at position

m = (m1,m2) and frame n can be defined as a discrete function x[m, n],

where 0 ≤ m1 ≤M1 − 1 and 0 ≤ m2 ≤M2 − 1.

Considering I framed objects subject to perspectival distortion, or any

other dynamic change, the image of the i-th object can be denoted as si[m, n],

with 0 ≤ i ≤ I − 1. We can also consider a time dependent displacement

vector δi[n] = (δi,1[n], δi,2[n])T, where δi,1[n] and δi,2[n] represent the hori-

zontal and vertical components, respectively. Following the approach in [21],

and defining si[m − δi[n], n] as a shift that affects the i-th object in the

2D image plane at the n-th frame, we can model the pixel intensities of the

grayscale video signal as

x[m, n] = b[m] +
I−1∑
i=0

si[m− δi[n], n] + vb[m, n] + w[m, n] (1)
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where b[m] is the static background, whose partial occlusion/un-occlusion

due to the motion of the objects is taken into account by the term vb[m, n],

and w[m, n] represents samples of independent and identically distributed

(i.i.d.) zero-mean Gaussian noise. When inverse projective transformations

are applied and the shape and size of the framed objects can be considered

constant, their images and shifts in the 2D image plane can be simplified as

si[m] and si[m− δi[n]], respectively.

The I objects are now assumed to be moving with comparable and al-

most constant speed. This assumption is a basic requirement for any speed

estimation problem, as the speed must be almost constant over a window of

consecutive frames of sufficient duration in order to enable its correct esti-

mation. Hence, we can express the common displacement term as δ[n] = vn,

where v = (v1, v2)
T is the vector of the common uniform speed, measured in

pixel/frame, to be estimated. Accordingly, the model in (1) can be written as

x[m, n] = b[m] +
I−1∑
i=0

si[m− vn, n] + vb[m, n] + w[m, n]. (2)

By the preliminary background removal operation discussed in Section

2.1 and corresponding to the third block of the diagram shown in Figure 1,

it is possible to further simplify the observation model in (2) as

x[m, n] =
I−1∑
i=0

si[m− vn, n] + w[m, n] (3)

where the background-related terms have been neglected and the observation

sequence x[m, n] is obtained after the background removal operation.
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Assume first that v has integer components in pixel/frame. Further pro-

cessing can be conveniently performed in the Fourier Transform (FT) domain,

which provides the advantage of expressing a displacement as a linear phase

term thanks to the shift theorem, as also discussed in [21]. Hence, apply-

ing the definition of the Discrete Fourier Transform (DFT) of a generic 2D

discrete function [4], we can express the frequency domain equivalent of the

model in (3) as

X[k, n] =
I−1∑
i=0

Si[k, n]e−j2πuk
Tvn +W [k, n] (4)

where k = (k1, k2)
T is the vector of the two discrete indices of the 2D DFT,

with 0 ≤ kl ≤Ml − 1, l = 1, 2, uk = (k1/M1, k2/M2)
T is the vector of the

normalized spatial frequencies and uppercase letters denote the DFTs of the

corresponding signals in (3).

Consider now the case of a fractional value of the speed vector v, denote

the number of sub-pixel quantization levels by the integer F and assume v

is quantized accordingly. The displacement vector can be written as

vn = d[v, n] +
f [v, n]

F
=

(
d1[v1, n] +

f1[v1, n]

F
, d2[v2, n] +

f2[v2, n]

F

)T

(5)

where

d[v, n] = (d1[v1, n], d2[v2, n])T =
⌊
vn
⌋

(6)

f [v, n]

F
=

(f1[v1, n], f2[v2, n])T

F
= {vn} (7)

9



represent the integer and fractional parts of the vector, respectively, with

fi[vi, n] ∈ {0, 1, 2, . . . , F − 1}, i = 1, 2,
⌊
·
⌋

denotes the floor function and

{x} = x −
⌊
x
⌋
.

In order to extend the model in (3) to the most general case where a

foreground object may shift with a fractional speed, it is useful to define

the fractional sub-pixel translation y[m] of an image s[m] with fractional

displacement
(
f1
F
, f2
F

)
, fi = 0, 1, 2, . . . , F − 1, i = 1, 2, as

y[m] =

(
1− f1

F

)(
1− f2

F

)
s[m]

+
f1
F

(
1− f2

F

)
s
[
m− h1

]
+

(
1− f1

F

)
f2
F
s
[
m− h2

]
+
f1
F

f2
F
s
[
m− h1 − h2

]
(8)

where h1 = (1, 0)T and h2 = (0, 1)T are the unitary vectors related to the

two components. The model in (3) can be thus expanded as:

x[m, n] =

(
1− f1[v1, n]

F

)(
1− f2[v2, n]

F

) I−1∑
i=0

si
[
m− d[v, n], n

]
+
f1[v1, n]

F

(
1− f2[v2, n]

F

) I−1∑
i=0

si
[
m− d[v, n]− h1, n

]
+

(
1− f1[v1, n]

F

)
f2[v2, n]

F

I−1∑
i=0

si
[
m− d[v, n]− h2, n

]
+
f1[v1, n]

F

f2[v2, n]

F

I−1∑
i=0

si
[
m− d[v, n]− h1 − h2, n

]
+ w[m, n].

(9)

Taking the 2D DFT of (9), an equivalent observation model in the fre-
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quency domain can be obtained. Using again the shift theorem, this model

can be formulated as

X[k, n] =
I−1∑
i=0

Si[k, n]e−j2πuk
Td[v,n]a[v, n] +W [k, n] (10)

where

a[v, n] =

(
1− f1[v1, n]

F

)(
1− f2[v2, n]

F

)
+
f1[v1, n]

F

(
1− f2[v2, n]

F

)
e
−j2π k1

M1

+

(
1− f1[v1, n]

F

)
f2[v2, n]

F
e
−j2π k2

M2

+
f1[v1, n]

F

f2[v2, n]

F
e
−j2π

(
k1
M1

+
k2
M2

)
.

(11)

3. Maximum likelihood speed estimation

Observing now that the model in (10) describes Gaussian observations

that are independent in the spatial and discrete frequency domains, ML

estimation can be used to derive an expression of the estimator v̂ of the

unknown speed vector [4]. The dependence of (10) on the speed vector is

through the terms d[v, n] and a[v, n].

Considering an observation window of N frames, the relevant likelihood

function of the model in (10) is

p
(
X[k, 0] · · ·X[k, N − 1];v

)
=

(
1

2πσ2

)M1M2N
2

· exp

{
− 1

2σ2

M1−1∑
k1=0

M2−1∑
k2=0

N−1∑
n=0

∣∣∣∣∣X[k, n]

−
I−1∑
i=0

Si[k, n]e−j2πuk
Td[v,n]a[v, n]

∣∣∣∣∣
2} (12)
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where σ is the standard deviation of the additive Gaussian noise elements.

We can also derive the log-likelihood function from (12) as

ln
(
p(X[k, 0] · · ·X[k, N − 1];v)

)
= −M1M2N

2
ln(2πσ2)︸ ︷︷ ︸

(a)

− 1

2σ2

M1−1∑
k1=0

M2−1∑
k2=0

N−1∑
n=0

∣∣∣∣∣X[k, n]−
I−1∑
i=0

Si[k]e−j2πuk
Td[v,n]a[v, n]

∣∣∣∣∣
2

︸ ︷︷ ︸
(b)

(13)

where some terms are highlighted. In particular, given that (a) is a constant

term and the multiplicative coefficient − 1
2σ2 is a constant factor, in the sense

that they do not depend on the trial speed value v, they are irrelevant for the

estimation problem and can be discarded. The term (b) can be equivalently

minimized with respect to the value of v. Hence, an equivalent likelihood

function to be minimized is

M1−1∑
k1=0

M2−1∑
k2=0

N−1∑
n=0

∣∣∣∣∣X[k, n]−
I−1∑
i=0

Si[k]e−j2πuk
Td[v,n]a[v, n]

∣∣∣∣∣
2

. (14)

We can explicitly express (14) as

M1−1∑
k1=0

M2−1∑
k2=0

N−1∑
n=0

{
|X[k, n]|2 +

∣∣∣∣ I−1∑
i=0

Si[k, n]a[v, n]

∣∣∣∣2

− 2
I−1∑
i=0

Re
{
X[k, n]S∗

i [k, n]ej2πuk
Td[v,n]a∗[v, n]

}} (15)

where Re{·} and (·)∗ are the real part and the complex conjugate operators,

respectively. The quadratic terms in (15) are irrelevant or practically so.
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In fact, the term |X[k, n]|2 is independent of v and is irrelevant. The term∣∣∣∑I−1
i=0 Si[k, n]a[v, n]

∣∣∣2 depends on v through the factor a[v, n], that depends

only on the fractional part of the speed vector. In particular, if a grid search

with a resolution of 1
F

pixel/frame is implemented, then F 2 possible values

of a[v, n] are obtained according to (11), which repeat periodically over the

grid of possible values. It turns out that these values are subject to very

small variations if compared against the mixed term. As consequence, the

term
∣∣∣∑I−1

i=0 Si[k, n]a[v, n]
∣∣∣2 can be considered almost constant, hence practi-

cally also irrelevant, and (15) can be minimized by maximizing the following

approximate likelihood function

M1−1∑
k1=0

M2−1∑
k2=0

N−1∑
n=0

Re

{ I−1∑
i=0

X[k, n]S∗
i [k, n]ej2πuk

Td[v,n]a∗[v, n]

}
(16)

where the linearity of Re{·} and sum operators has been exploited. The accu-

racy of this approximate likelihood function will be discussed and numerically

demonstrated in the next section.

Finally, the following expression for the (quasi) ML speed estimator is

obtained:

v̂ = argmax
v

M1−1∑
k1=0

M2−1∑
k2=0

N−1∑
n=0

Re

{ I−1∑
i=0

X[k, n] · S∗
i [k, n]ej2πuk

Td[v,n]a∗[v, n]

}
.

(17)

In the case of integer values of displacement components, d[v, n] = vn

and a[v, n] = 1 in (11)-(17), thus a simplified version of the proposed solution

is obtained that corresponds to the one considered in [18] and [19]. In this
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particular case, it is possible to express (17) in the following compact form:

v̂ = argmax
v

M1−1∑
k1=0

M2−1∑
k2=0

Re

{
Y

[
k,−uk

Tv

Ts

]}
(18)

where

Y [k, q] =
N−1∑
n=0

I−1∑
i=0

X[k, n]S∗
i [k, n]e−j2πqTsn (19)

is the continuous-frequency FT of the temporal sequence
{∑I−1

i=0 X[k, n]S∗
i [k, n]

}
in the continuous-frequency variable q. The function (19) can be used with

q = −uk
Tv
Ts

to obtain (18).

The estimated speed vector v̂ is specified by the coordinates of the maxi-

mum of the log-likelihood function defined in agreement with (17) as follows

J(v) =
1

M1M2

M1−1∑
k1=0

M2−1∑
k2=0

N−1∑
n=0

Re

{
I−1∑
i=0

X[k, n] · S∗
i [k, n]ej2πuk

Td[v,n]a∗[v, n]

}
(20)

where the normalization coefficient 1/M1M2 is introduced to reduce the dy-

namic range of the log-likelihood function by several orders of magnitude

without any impact on the final estimate.

As described in Section 2.2, inverse projective transformations can be

applied to recover the original shape and size of the objects of interest, whose

images can thus be considered constant over time. If the image of the objects

of interest can be considered constant with respect to n, the definition in (20)

14



can be simplified as follows:

J(v) =
1

M1M2

M1−1∑
k1=0

M2−1∑
k2=0

N−1∑
n=0

Re

{
I−1∑
i=0

X[k, n] · S∗
i [k]ej2πuk

Td[v,n]a∗[v, n]

}
.

(21)

4. Applications and results

In this section, we discuss the performance of the proposed algorithm on

the basis of some experimental results directly obtained by maximizing (20)

or (21). In particular, since reasonable assumptions about the range of values

of the correct speed can be made, we can implement a simple grid search to

find the optimal value of v̂. Iterative gradient-search approaches could also

be considered to expedite the numerical solution [4], but are not pursued

here because out of the scope of the present paper.

As an illustrative example, the log-likelihood function in (20), for one of

the studied cases, is displayed in Figure 2 versus the components of the speed

vector v with a grid resolution of 0.5 pixel/frame for both components, (i.e.,

F = 2 in (11)). The peak of the function, whose coordinates indicate the

estimated speed value, is highlighted.

For the sake of completeness, the log-likelihood function in Figure 2 is

now compared with the quadratic term in (15), that has been neglected to

derive the approximate likelihood function (20). Accounting for the proper

scaling factor 1/2, this term is:

γ(v) =

M1−1∑
k1=0

M2−1∑
k2=0

N−1∑
n=0

1

2

∣∣∣∣ I−1∑
i=0

Si[k, n]a[v, n]

∣∣∣∣2. (22)
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Figure 2: Example of the log-likelihood function (20) plotted versus speed components.

The term in (22), obtained in agreement with the log-likelihood function

shown in Figure 2, is plotted in Figure 3, where two different scales are

considered for the sake of visualization. In particular, the scale used in Fig-

ure 3(a) allows to highlight the small variations of this term. The scale used

in Figure 3(b) is equal to the one in Figure 2 and allows to highlight the

practically constant behaviour of this term with respect to the log-likelihood

function in Figure 2. This comparison demonstrates the accuracy of the

presented approximate ML estimator. Note that, for the considered reso-

lution of 0.5 pixel/frame, only four values of a[v, n] and γ(v) are obtained

in expressions (11) and (22). The four values in γ(v) are clearly visible in

Figure 3(a).
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(a) (b)

Figure 3: Term in (22) plotted versus speed components for two different visualization
scales.

4.1. Performance measure

As the operations of object tracking and selection described in Section 1

can be exploited to focus on a single object, for the sake of simplicity, scenes

framing a single moving object are considered in this section, i.e., I = 1 in

(20) and (21). A few sets of real videos were recorded with different camera

angles. The performance of the estimation algorithm is analysed in terms

of Root Mean Square (RMS) Error (RMSE) between the estimated speed

vector and the correct speed, which is manually measured. The proposed

algorithm is also tested in the presence of noise to assess its robustness. To

this end, Gaussian noise with spatially and temporally i.i.d. elements is

superimposed to each video sequence. To smooth the noise effect, a spatially

averaging filter with size 7× 7 pixel is applied. Considering R different noise

realizations and J analysed videos, we define the RMSE normalized to the

RMS value of the correct speed by averaging over the noise realizations and
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video sequences as

ε =

√√√√√√√√
R∑
r=1

J∑
j=1

∣∣v̂r,j − vj
∣∣2

R
J∑
j=1

|vj|2
(23)

where vj and v̂r,j are the correct speed components for the j-th video and the

estimated speed components for the j-th video and the r-th noise realization,

respectively.

The obtained results are compared with the performance of the block-

matching method [17, Ch. 4]. At first, the normalized RMSE in (23) is

investigated for increasing values of the noise variance σ2 for single video

sequences and a small set of video sequences in which the same camera view-

point, position and location are preserved. The overall performance is finally

evaluated on all considered scenarios for increasing values of the peak signal

to average noise power ratio, or Signal to Noise Ratio (SNR) for brevity,

hence for decreasing values of the noise variance σ2.

4.2. Speed estimation

The proposed estimation algorithm is tested for 10 noise realizations on

12 sequences extracted from 5 real videos specifically recorded. Various cam-

era angles and locations are considered in order to assess the robustness of

the proposed method in different perspectival conditions. The preprocessing

operations described in Section 2.1 need to be calibrated for each set of videos

recorded with the same camera setting, position and location. In particular,

the inverse projective transformation and dimension of the structuring ele-

ments of the morphological operation need to be properly set. As multiple
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cars are captured in some of the recorded videos, it is sufficient to trim and

crop the sequences to focus on a single vehicle at a time. The duration of the

trimmed video sequences is variable and ranges from 25 to 165 frames. Also,

the size and the frame rate depend on the setting of the employed record-

ing device. In particular, here the frame rate is set as fs = 25 or 30 Hz,

whereas the frame size for all videos is converted to a fixed size of 800× 300

or 300× 800 pixel after the inverse projective transformation.

In Figures 4 and 5, a few illustrative examples of original and processed

frames of two considered sequences are shown. In particular, columns corre-

spond to different frame indices and rows (a), (b) and (c) indicate the original

sequences, the processed sequences after the inverse projective transforma-

tion and those after convex hull extraction, respectively. We refer to these

sequences as Sequence 1 (Figure 4) and Sequence 2 (Figure 5), for brevity.

The parameters for the reference block matching method also need to be

set. In particular, the block size is set to 75×75 or 105×105 pixel by trial and

error depending on the object size. Unlike the proposed ML estimation al-

gorithm, the block matching approach is applied to the considered processed

video sequences where the background extraction and removal operations are

not performed. The presence of background provides, indeed, texture infor-

mation about the diversity of blocks that helps the block matching function

to avoid undesired mismatches.
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frame 1 frame 81 frame 151

(a)

(b)

(c)

Figure 4: Sample frames of: (a) original Sequence 1, (b) processed sequence after the
inverse projective transformation, (c) processed sequence after background removal and
convex hull extraction.

The estimated speed values are expressed in pixel/frame and can be con-

verted to real world measurement units, such as km/h, by camera calibration
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frame 91 frame 121 frame 161

(a)

(b)

(c)

Figure 5: Sample frames of: (a) original Sequence 2, (b) processed sequence after the
inverse projective transformation, (c) processed sequence after background removal and
convex hull extraction.

and a suitable conversion rule, e.g.,

v̂km/h = v̂ · lm
lpx
· fs · 3.6 (24)

where lm and lpx represent a reference length in the real world, expressed in

meters, and its projection onto the 2D scene, expressed in pixels, respectively.

The reference length lm could be any known element of the real world scene,

e.g., the road length or width.

4.3. Performance analysis

In Figures 6(a) and 6(b) the normalized RMSE in (23) is shown against

increasing values of noise variance for the two sample sequences shown in
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(a)

(b)

Figure 6: Performance of the assessed estimation methods in terms of RMSE vs. noise
variance for: (a) sample Sequence 1 (Figure 4) and (b) sample Sequence 2 (Figure 5).

Figures 4 and 5, respectively. The RMSE in (23) is hence computed with

J = 1 and R = 10. The image of the foreground moving object can be

considered constant in both examples, as can be observed in the rows (c) of

both Figures 4 and 5, where the processed sequences are shown. The ML es-

timation method is tested by directly maximizing (20) or (21) and estimated
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speed components are searched over a quantization grid with fractional val-

ues of 0.5 pixel/frame. When the image of the object of interest can not be

considered constant with respect to n, (20) holds and a dedicated processing

operation is necessary to obtain the sequence Si[k, n]. To this purpose, the

moving object of interest is translated back to its original position by shifting

each frame of the sequence X[k, n] by the object centroid computed at the

n-th frame after the convex hull extraction operation depicted in Figure 1.

However, if the image of the foreground object can be considered constant, as

in this case, implementing expression (20) may be unnecessary and compu-

tationally expensive. In Figure 6, results obtained by applying (20) and (21)

are referred to as “ML - back translation” and “ML - no back translation”,

respectively. Both options are here analysed for the sake of completeness and

the trend of the respective RMSE curves plotted in Figure 6 confirms that

their performance is equivalent, especially for low values of noise variance.

On the other hand, the block matching method is tested with and without

the application of the spatial 7×7 pixel average filter. These variations of the

algorithm are indicated in Figure 6 as “BM Filtered” and “BM”, respectively.

According to the results in Figure 6, the filter has a positive effect especially

for high values of noise variance. It can also be observed that the RMSE

obtained with the block-matching method does not reach zero even in the

absence of noise, conversely to the ML curves in Figure 6(b). In this specific

case, the RMSE curves for the ML-based approaches are always far better

than the ones obtained by the block-matching method. For the sake of

visualisation, the rapidly increasing trend of the curves obtained with the

block-matching method for low values of noise variance σ2 can be better
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Figure 7: Performance of the assessed estimation methods in terms of RMSE vs. noise
variance for a set of two video sequences where the camera angle, position and location is
preserved.

observed in the insets depicted in Figures 6(a) and 6(b).

As a further example, the normalized RMSE in (23) is also computed

for increasing noise variance σ2 on a set of two video sequences where the

same perspectival conditions (i.e., camera viewpoint, position and location)

are preserved. In this case, J = 2 and R = 10 in (23). The obtained results

are shown in Figure 7 and confirm the performance observed in the previous

Figure 6.

In Figure 8, the normalized RMSE in (23) is finally shown against in-

creasing values of the SNR, defined as 1/σ2, for all considered scenarios, i.e.,

J = 12 and R = 10. Both ML curves tend to stabilize around 0.07 because

of the error introduced by the used quantization level. This value is in agree-

ment with an estimate of normalized RMSE obtained by assuming uniformly

distributed quantization error over the range [−0.5, 0.5) in each dimension

which, for the given video sequences, is about 0.04.
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Figure 8: Performance of the assessed estimation methods in terms of RMSE vs. SNR.

Observing the curves obtained for the block-matching method, the men-

tioned effect of the spatial average filter is confirmed: it is slightly positive for

low values of SNR, but excessively smoothing at high ones. The performance

of the block-matching approach in both cases is far below the proposed ML

estimation method. The presence of noise, even when comparatively low,

prevents indeed the block-matching algorithm from correctly detecting and

matching blocks. The block size and repetitive patterns, such as road lines,

which are present in some of the analysed scenarios, are critical aspects which

impair significantly the overall performance of the block-matching algorithm.

The effectiveness of the proposed ML estimation method with respect

to the block-matching approach is thus demonstrated in the considered het-

erogeneous set of realistic videos accounting for different perspectival views.

Thanks to sound pre-processing operations, the presented method is robust

against noise, achieving low values of RMSE also for low values of SNR and

high values of noise variance σ2.
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5. Conclusion

In this work a novel method to estimate the speed of foreground objects

in video signals is proposed. A model to describe the motion of objects un-

dergoing dynamic changes, such as perspectival transformations, is derived,

proper pre-processing operations are defined and the ML principle is applied

to obtain an estimator of the speed of the framed objects. In particular, this

paper aims to contribute to fill a gap, currently present in the literature on

video content extraction, by applying sound estimation methods, such as the

ML principle, to the context of motion analysis.

The proposed method is composed of robust video pre-processing stages

followed by the speed estimation algorithm. Its performance is investigated

by comparison with the well-known block matching approach, that is sub-

ject to some major limitations. Numerical validations are performed on the

assessed algorithms, which are tested on real video sequences, also in the

presence of noise. The tested video sequences differ in camera viewpoint,

position and location in order to include in the analysis scenarios affected

by different perspectival transformations. The effectiveness of the proposed

method is finally analysed on a number of experimental videos demonstrating

its good and robust performance.
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