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Abstract

This paper addresses the problem of real-time detection and tracking of a non-cooperative target in the challenging

scenario with almost no a-priori information about target birth, death, dynamics and detection probability. Further-

more, there are false and missing data at an unknown yet low rate in the measurements. The only information given

in advance is about the target-measurement model and the constraint that there is no more than one target in the sce-

nario. To solve these challenges, we model the movement of the target by using a polynomial trajectory function of

time (T-FoT), which aims to estimate the continuous-time trajectory of the target rather than a series of discrete-time

point estimates as is done in most existing filters/trackers. Data-driven T-FoT initiation and termination strategies are

proposed for identifying the (re-)appearance and disappearance of the target. During the existence of the target, real

target measurements are distinguished from clutter if the target indeed exists and is detected, in order to update the T-

FoT at each scan for which we design a least-squares estimator. Overall, our approach is Markov-free, data-driven yet

analytical. Simulations using either linear or nonlinear systems are conducted to demonstrate the effectiveness of our

approach in comparison with the Bayes optimal Bernoulli filters. The results show that our approach is comparable

to the perfectly-modeled filters, even outperforms them in some cases while requiring much less a-priori information

and computing much faster.
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1. Introduction

Target tracking that involves the online estimation of the trajectory of a target has been a long standing

research topic and plays a significant role in aerospace, traffic, defence, robotics, etc. [1] In this work, we

focus on an important class of targets with simple and smooth trajectory such as airplane, train, ship and

so on. Here, the smoothness of the trajectory is closely related with the dynamical equations of the target

based on differential calculation. The standard approach since the ground-breaking Kalman filter (KF) [2],

is to design a state space model (SSM) consisting of a Markov-jump model to describe the dynamics of the

target and a measurement model to relate the measurement of the sensors with the state of the target. In

addition, models are needed to characterize the background clutter-measurements and misdetection events.

However, in many cases especially those for non-cooperative targets [3], these models except the measure-

ment function are unavailable in advance and intractable to be identified accurately online. This leads to a

great challenge to the use of any filters.

Instead of estimating the discrete-time state of the target based on a sophistically designed SSM, we

are actually more interested in estimating the continuous-time trajectory/track of the target in the context

of target tracking. That is, we seek direct estimating the trajectory. Once such a trajectory is obtained, the

position (and also the velocity and acceleration which correspond to the first and second order derivatives
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of the position against time) of the target at a particular time can be easily inferred from the trajectory.

Moreover, high-level important information such as the class of the target, the motion model/pattern/feature

and so on may be able to be inferred from the continuous-time trajectory but not from a series of discrete

point estimates. Existing approaches to target trajectory estimation can be categorized in the following two

groups, depending on modeling the trajectory whether as a discrete-time series of position points or as a

continuous-time curve. The latter which describes the movement of the target in continuous time is the

focus of this paper.

1.1. Discrete-time Trajectory Estimation

There are various SSM-based studies that recursively estimate the discrete-time-series state set based

on the measurement sequence. Typically, it is given by a trajectory of a prescribed dynamical model such

that the output of the model best fits a series of measurements. This is often referred to generally as data as-

similation which have found many applications [4, 5, 6]. Different from the stochastic modeling of the state

process, deterministic Markov-jump models, namely using no random variable wk in (1), have been used

in the so-called shadowing filters/smoothers [7, 8], moving horizon estimator [9, 10] and Gauss-Newton

filter [11, 12]. In particular, the Gauss-Newton filter that models the state transition by a deterministic dif-

ferential equation is Cramér-Rao consistent (providing minimum variance) [11]. These approaches, mainly

designed for some specific systems, avoid the difficulties to accurately model the process noises and are

advantageous in handling constraints and measurement singularities. They, however, still rely heavily on

the Markov-jump model, which is essentially vulnerable to target maneuvering and unknown input (e.g.,

non-zero acceleration in the context of target tracking). To handle unknown inputs/noises in the motion of

the target, an alternative is the minimum model error estimator [13, 14] which, different from the classic

KF, requires no a-priori statistics on the form of the model error but determines it as a part of the solution.

In the multi-target case, by adding an unique label to each target, the target trajectory can be conse-

quently given by the time-series labelled states [15, 16]. Despite its promising performance, an insightful

discussion on the optimality of linking discrete-time points is given in [17]. Another relevant approach

models the trajectories of a random number of targets as a random finite set (RFS) to be estimated [18].

Compared to the point-state RFS, the trajectory RFS requires much higher computation and needs to solve

the problem of trajectories of different lengths in the same RFS.

1.2. Continuous-time Trajectory Fitting

Continuous-time trajectory curve described by a function contains more information than the discrete-

time point set. For example, one can learn more feature or class information of the target from the

continuous-time trajectory rather than from the discrete-time point set. In fact, signal processing stems from

the interpolation and extrapolation of a sequence of data that were viewed as a realization of a stochastic

process [19]. Data regression or fitting is a self-contained mathematical problem and a prosperous research

theme by its own, which has proven to be a powerful and universal method for pattern learning and time

series data prediction, and has the inherent advantages of dealing with outliers or missed detections [20],

especially when adequate analytical solutions may not exist. In particular, there have been a large number of

efforts devoted to trajectory curve fitting among different dimensions of the state space in various ways, e.g.,

[21, 22, 23, 24, 25, 26, 15, 27, 28], most of which, however, are non-recursive over time and not designed
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for online tracking. Differently, as the few attempts that assume a spatio-temporal trajectory for tracking,

[29, 30, 31, 32, 33] designed fitting cardinal trajectory-splines for each dimension. The resulting trajectory

is a continuous-time function of state, the same to our approach [34, 35, 36]; see Section 2. Even more ad-

vanced, machine learning and neural networks were employed for trajectory fitting [37, 38, 39, 40], which,

however, typically require an even larger amount of training data generated from proper a-priori models;

a cutting-edge review of Bayesian learning for data analysis can be found in [41]. These approaches are

usually not analytical and suffer from lack of interpretability of the parameters in the networks. Either way,

existing trajectory fitting approaches have not taken into account realistic tracking issues such as clutter

measurements, missed detection and target death, etc. as we will do in this paper.

What is more, it is necessary to identify in real-time whether the target is present or absent, especially

when the target is non-cooperative. This task is often referred to separately as “target detection” and is a

prerequisite for tracking. As such, a reasonable solution is to address target detection and tracking jointly,

as required in the context of realistic target tracking. Following this thinking, the terminology of “tracking”

means more than “filtering” does.

1.3. Joint Detection and Tracking (JDT)

An indispensable task in realistic target tracking is target detection that involves identifying whether the

target is present (or how many targets are present in the multi-target case) since the target may randomly

appear in or disappear from the field of view. There have been a plurality of SSM-based JDT approaches,

e.g., [42, 43, 44, 45]. One of the most attractive theories for this purpose is the RFS [46] of which the most

known single-target detection and tracking filter is the Bernoulli filter (BF) that is exact Bayes optimal [46,

47, 48]. Given exact statistics about the target birth, death, dynamics and detection probability and clutter

models and rate, such a single target tracking problem can be properly solved by the BF. This, however, is

often too ideal to be true for non-cooperative targets as these statistical information are generally unknown,

time/space-varying and can hardly be exactly characterized. In contrast, it becomes much challenging

when there is little a-priori statistical information about the target which is just the actual need in many

problems. While many effects have been devoted to online estimating one or two of these issues, e.g.,

fruitful achievements for noise identification alone [49, 50], no work addresses all in one. This motivates

our work in this paper.

1.4. Contribution and Paper Organization

In this paper, the target may randomly appear, disappear and re-appear anytime and anywhere in the

surveillance scenario while the number of targets is no more than one. The only information available

a-priori is the statistics of the measurements. For non-cooperative target tracking with little a-priori infor-

mation, we earlier proposed to model the target movement by using a trajectory function of time (T-FoT)

which reformulates the tracking as an online curve fitting problem [34, 35] for which the least-squares (LS)

approach plays a key role. Issues of false and missing data, as well as the connection of the approach with

the classic KF, have been further addressed in [36], based on the prerequisite that the target birth/initial

position, velocity and starting time are given in advance and that the target always exists in the scenario. In

this work, we relax these restrictive assumptions and further address the random (in both the state space and
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time domain) birth, death and even re-appearance of the target, improving the algorithm for better identify-

ing false and missing measurements. All aim at a computationally efficient, data-driven JDT approach that

suits the challenging, unknown background.

The remainder of the paper is organized as follows. Preliminary work is briefly addressed in Section 2.

Scenario assumptions and models we consider are given in Section 3. The proposed approach is given in

Section 4. Simulation results of our approach are given in Section 5, in comparison with the state-of-the-art,

properly modelled BF [47, 48]. The paper is concluded in Section 6.

2. Preliminaries

2.1. Conservational Models and An Alternative

In this work, we focus on the single target detection and tracking problem. This problem is usually

solved based on the SSM with additive noises which can be described as follows

xk = fk(xk−1) + wk, (1)

yk = hk(xk) + vk. (2)

where k ∈ N indicates the time-instant, xk ∈ R
Dx , yk ∈ R

Dy , wk ∈ R
Dx and vk ∈ R

Dy denote the Dx-

dimensional state, the Dy-dimensional measurement and their respective noises [49, 50] at time k, respec-

tively.

The SSM facilitates recursive optimal/suboptimal filtering [51, 52] in the Bayesian fashion whose per-

formance, however, heavily relies on the match between the Markov model (1) and the true target dynamics

which is intractable to be identified [53], as the terminology non-cooperative indicates. From time to time,

non-cooperative target may maneuvers [54, 55] or there is unknown input [52] and so on, adding difficulties

to precisely capture its kinematic model as in (1). This leads to a fundamental challenge in practice.

To eschew this challenge, we consider modeling the ground truth of the target motion by an engineering-

friendly, spatio-temporal T-FoT xt = f (t), where the target state xt is limited to its coordinate position in

the following unless otherwise stated. Moreover, the velocity and acceleration can be obtained from the

derivatives of the T-FoT over time. In particular, we parameter the T-FoT f (t) by F(t; C) using a set of

coefficients C that determine the trajectory based on the available measurements. This may be expressed as

follows

xt = F(t; C) + ǫ(t), (3)

where t ∈ R
+ indicates the (positive) continuous-time, ǫ(t) denotes the T-FoT residual function-of-time,

namely the approximate error of F(t; C) to the real T-FoT f (t).

By using the T-FoT, what is estimated now is the trajectory parameters C. This formulation is naturally

appealing to an important type of targets with smooth motion patterns such as aircraft, train, cruise ship,

etc. The trajectory as given by (3) may still be smooth even the target maneuvers [34]. A smooth trajectory

basically indicates a small process noise in the classic Markov motion model. More formally, we have the

following definition on the smoothness of a curve function: the T-FoT is twice continuously differentiable

and is said to be β-smooth in a time-window [k′, k] if ∀k′ ≤ t ≤ k,

‖ ▽2 F(t; C)‖s ≤ β, (4)
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where ‖ · ‖s denotes the spectral norm (i.e. the largest singular value in different dimensions).

The constraint (4) upper bounds the acceleration of the target by β. In the case we consider, β is relatively

insignificant as compared with the uncertainty of measurements.

2.2. Sliding Time-window LS T-FoT Fitting

To account for a-priori model information, one may define a constraint or penalty/regularization factor

ΩF(C) within the optimization [34, 35, 56]. Constrained fitting has actually been intensively studied [57].

Since we focus on non-cooperative targets in this work, we do neither assume constraints nor use any

a-priori target models. Alternatively, a penalty factor ΩF(C) may be used for measuring the disagreement

between the fitting function and the constraint. For example, ΩF(C) := (F(t; C)−xt)
T(F(t; C)−xt) measures

the mismatch between the fitting trajectory and the state xt that the target passes by at time t.

Obviously, the best T-FoT F(t; C) should minimize the approximate error |ǫ(t)|. But unfortunately, xt is

time-varying, unknown and is just what we want to estimate. We only have noisy measurements incoming

in series at discrete-time-instants as shown in (2). A natural idea is determining C as those which best fit

the time series measurements in a sliding time-window upto the current time k, denoted hereafter as

K := [k′, k]

where k′ = max(1, k − T ), and T is the length of the time-window.

Disregarding false and missing data issues temporally here, the T-FoT at time k can be estimated by

ĈK = argmin
C

k
∑

i=k′

Di(C). (5)

In this work, the data fitting error Di(C) is given in the LS sense using the Mahalanobis distance, i.e.,

Di(C) := ‖yi − ŷi‖
2

Σ−1
ei

= (yi − ŷi)
TΣ−1

ei
(yi − ŷi),

with a shorthand notation

ŷi = hi (F(i; C)) + v̄i (6)

where v̄i gives the mean of the measurement noise vi at discrete time i, and the fitting error is given as

ei := yi − ŷi, (7)

which accounts for two sources of uncertainties including the measurement noise vi and the T-FoT error

ǫ(i) and Σei
denotes the covariance of ei; assumption or simplification will be made on the statistics of the

fitting error; see (20).

We have analyzed in [36] that in a linear Gaussian system, the penalty factor can take into account the

Markov dynamic model information if available such that the optimization amounts to that behind the KF.

In other words, in the case of a deterministic Markov model (namely no process noise, E(wT
k
wk) = 0), the

optimization function of the KF will reduce to that of the T-FoT-oriented approach. The advantage of the

T-FoT formulation is that it does not assume a Markov model for modeling the movement of the target,

nor imposes requirements on state temporal independence and on chronological sensor data. Different from

existing modeling of the kinematic model error such as [58], our formulation (5) treats the model error in a

flexible regularization-based manner.
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Based on the T-FoT parameter estimate ĈK conditioned on the measurements yk′ :k received during time

[k′, k], the state at any time t can be inferred as follows

x̂t |yk′ :k
= F(t; ĈK) . (8)

More specifically, the inference is referred to as smoothing when t < k, as prediction or forecasting when

t > k and as online filtering when t = k. We focus on filtering in this work, i.e., estimate of the target

position will be updated whenever new measurements are available.

2.3. Online Estimating C

For easy computation, linear parameter dependence is assumed in each dimension and smooth piecewise

polynomial fitting function is then used, i.e.,

F(d)(t; C) = c
(d)

0
+ c

(d)

1
t + · · · + c

(d)
γ tγ, (9)

where γ is referred to as the order of the fitting function and d indicates the dimension in the position space.

Parameters c
(d)

0
, c

(d)

1
and c

(d)

2
indicate the initial position (at time t = 0), velocity and acceleration of the

target in dimension d, respectively. As a rule of thumb, γ = 1 and γ = 2 are suitable to model the (near)

constant velocity (CV) and constant acceleration (CA) [34], respectively. In the case that the target has

a definite originating position (denoted by p
(d)

0
in dimension d), constant velocity (v(d) in dimension d), or

constant acceleration (a(d) in dimension d), then the respective constraint c
(d)

0
= p

(d)

0
, c

(d)

1
= v(d), or c

(d)

2
= a(d)

needs to be satisfied in (5), respectively. Therefore, the parameters of the T-FoT approach are theoretically

explicable, rendering the approach analytical.

For the above linear systems, C can be calculated analytically and is unique; we will address this in

the LS error sense in Section 4.1. For a nonlinear system that corresponds to a non-convex optimization

problem, one has to resort to iterative/numerical approximation methods on the basis of an initial guess of

the parameters for iterative searching. To speed up the optimization searching, it is important to start from

the parameters Ĉ[k′−1,k−1] yielded at time k − 1 for approaching the optimal ĈK at time k. This is reasonable

since the two corresponding trajectories are actually overlapped in the piecewise [k′, k−1]. This amounts to

assuming a recursion on the latent T-FoT parameters which is critical for ensuring online implementation for

non-convex optimization. Recently, Pacholska et al. [59] relaxed the problem and addressed the sufficient

conditions for the guaranteed fitting optimality/uniqueness, where the measurement considered in particular

is the distance between the sensor and the target. Even more recently, the polynomial fitting has been used

for fitting measurement in tracking [60]. A sensor selection approach based on the T-FoT approach has

been proposed [61] for online activating a finite number of sensors in a sensor network with communication

bandwidth constraints.

As addressed so far, existing T-FoT-based approaches have not take into account false and missing data

at unknown rates/ratios, or the birth and death of the target, which are essentially lying in the core of realistic

target tracking.
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3. Model and Scenario Assumptions

There is no more than one target in the scenario. If it exists and is detected, the position measurement

yk :=

















y
(1)

k

y
(2)

k

















is given by

yk =

















px,k

py,k

















+ vk, (10)

where [px,k, py,k]T is the position of the target, and vk is the measurement noise.

We also consider the position-relevant measurements that can be converted to positions at each scan,

i.e., the measurement function is injective [62] or multiple sensors being used [63, 64]. For example, the

range-bearing measurement model can be written as follows



















rk

θk



















=





















√

p2
x,k
+ p2

y,k

tan−1
(

py,k

px,k

)





















+ vk, (11)

which can be converted to the position measurements by

yk =



















rkcos(θk)

rksin(θk)



















. (12)

The above conversion has a bias in the mean of the converted measurement, which can be removed by

multiplicating a factor either exp(−Σθ
2

) or exp(Σθ
2

) [65]. Further on, the converted covariance Σyk
can also be

calculated numerically via Monte Carlo sampling [62] for any type of noises. Discussion on the information

gain/loss due to measurement conversion can be found in [66] and the reference therein.

The measurements at time k are denoted by a set Yk which are composed of both real measurement of

the target (if detected) and clutter at time k. The following assumptions are required in our work.

A1. The measurement noise vk which might not be Gaussian has a zero-mean and variance Σvk
given

a-priori.

A2. Clutter is independently generated at different times, (near-)uniformly distributed over the surveil-

lance region and independent to the measurement of the real target;

A3. Clutter rate rc is relatively low as required by an algebraic manipulation analysis given in Appendix

Appendix A. In our simulations, rc < 5.

A4. The target detection probability pD at any time is fairly high, e.g., larger than threshold pD = 0.9.

Further on, as the particular scenario in which the T-FoT approach performs best, the trajectory of the

target is “smooth” having a minor β in (4), i.e., the target moves with relevantly insignificant acceleration and

process noise as compared with its velocity. This together with the above assumptions are representative and

match the real case of many realistic problems particularly for space target tracking (e.g., air traffic/aviation

supervision).

4. Proposal: T-FoT Initiation, Maintenance and Termination

This section addresses the details of our approach for T-FoT initiation, maintenance and termination,

respectively.
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4.1. Trajectory Initiation

The lack of a-priori information about the target birth tangled with false and missing data lead to a signif-

icant challenge for initializing the tracker. In this work, we propose to cluster the time-series measurements

of the sliding time-window K for detecting the birth of the target. This requires that the real measurements

of the target in successive scans are significantly closer to each other on average than those between differ-

ent clutter points and between the target and clutters. This is guaranteed by the above assumptions A1−A3.

To this end, the density-based clustering method called DBSCAN [67] is readily available that distinguishes

regions of high data density from low-density regions and does not need to be specified with the number

of clusters in advance. For this purpose, two key parameters are required as to be addressed next: 1) the

neighborhood radius ε: the maximum distance between two neighbor measurements in the cluster, and 2)

the minimum cluster size Ts.

In addition, the following point-target constraint needs to be followed to guide the clustering: data-

points in the cluster corresponds to different time-instants. This constraint can be formulated as a cannot

link rule [68]: the measurements generated at the same time-instant cannot not belong to the same cluster.

However, we note that, it is possible yet rare that two clusters are formed at the same time, at least one of

which must be false alarm. In this case, we increase both the minimum cluster size Ts and the length of

the time-window gradually and re-do the clustering till there is only one cluster to meet the single-target

assumption.

4.1.1. Neighborhood radius ε

The distribution of real measurements of the target depends on two factors: 1) the measurement noise;

see the analysis given in Appendix Appendix B, and 2) the velocity of the target [69, 45] to account for

the movement of the target in one sensing period. In the extreme case that both the initial speed of the

target and the statistics of the measurement noise are unknown, one have to learn ε from the data. The

problem of whether two measurements are generated by the same target can be modelled as a composite

binary-hypothesis testing problem as follows















H0 : at least one measurement is clutter

H1 : both measurements are from the target

The hypothesis testing is carried out by comparing the Mahalanobis distances between measurements

with the neighborhood radius ε, i.e.,

‖yi − y j‖
2

Σ−1
vi

H0

R
H1

ε := τ21 . (13)

Mahalanobis distance between two independently identically distributed (IID) variables is analyzed

in Appendix Appendix B. However, the target measurements at two time-instants are not IID due to the

varying of the target state. To compensate for the velocity of the target, we use a threshold τ1 in (13)

larger than necessarily required when the target is stationary as analyzed in Appendix B, e.g., τ1 = 3 in our

simulation. Obviously, this works only when the initial velocity of the target is small.

4.1.2. Minimum cluster size Ts

The proposed track initiation follows a “m out of n” logic [70, 71, 72, 73] but our approach is free of the

knowledge of the process noise statistics, i.e., a cluster/track is confirmed if and only if at least Ts detections
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are clustered over K scans. We now address the choice of Ts. First of all, it must be larger than the number

of parameters of the fitting function to avoid underfit and is no larger than the average number of detections

in the time-window, that is,

Ts ∈ [γ + 1, T pD]. (14)

Note that as long as the point-target constraint holds, target detection can be earliest made t ≥ Ts

filtering steps after the target appears. So, Ts indicates how much latency/delay we have to endure at

least for identifying the target; analytical results on the statistics of the detection delay have been given

in [70, 71, 72, 73]. Assume that the probability for all clutter points generated at a particular sampling

scan falling further than the threshold (corresponding to the radius of the cluster) to any given point in the

surveillance area is pr, c.f. (A.2); see the analysis given in Appendix A. Then, the probability for causing a

false alarm (FA) due to the clustering of at least Ts clutter points (obtained at different time-instants) can be

approximately estimated by

pFA(Ts) ≈

T
∑

t=Ts

Ct
T (1 − pr)

t pT−t
r

= C
Ts

T
(1 − pr)

Ts p
T−Ts
r + pFA(Ts + 1), (15)

where Cn
m stands for the number of combinations of n elements taken from a set of size m.

As shown, pFA(Ts) decreases with the increase of Ts, that is, larger Ts implies smaller FA rate but also

greater target-detection delay. A tradeoff is required here for which 3, 4 are our recommendation.

4.1.3. T-FoT initiation Based on Weighted LS fitting

Denote the measurements in the confirmed cluster as {yi}i∈K̃ ⊆ {Yi}
k
i=k′

where K̃ ⊆ {k′, k′ + 1, . . . , k}.

According to (9), we assume the T-FoT in each position dimension as follows

















y
(1)
i

y
(2)

i

















=

















c
(1)

0
, c

(1)

1
, · · · , c

(1)
γ

c
(2)

0
, c

(2)

1
, · · · , c

(2)
γ


















































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

1

i

· · ·

iγ













































+

















e
(1)
i

e
(2)

i

















, (16)

where e
(d)

i
is the fitting error at time i ∈ K̃ in dimension d = 1, 2; see (7) and (20).

The T-FoT parameters C
(d)

K̃
:=

[

c
(d)

0
, c

(d)

1
, · · · , c

(d)
γ

]T
, d = 1, 2 can be estimated in the LS sense, i.e.,

Ĉ
(d)

K̃
= argmin

c
(d)

0
,c

(d)

1
,··· ,c

(d)
γ

∑

i∈K̃

‖y
(d)
i
− ŷ

(d)
i
‖2
Σ−1

e
(d)
i

. (17)

Given that ATΣ−1

K̃
A is non-singular (which is easy to be satisfied when |K̃| > γ and when K̃ has no

identical elements), the exact solution to (17) is given by

Ĉ
(d)

K̃
= (ATΣ−1

K̃
A)−1ATΣ−1

K̃
Y

(d)

K̃
, (18)

where ΣK̃ = Cov
(

e
(d)

K̃

)

, e
(d)

K̃
= [e

(d)

k′
, e

(d)

k′+1
, · · · , e

(d)

k
]T and

A =















































1 k′ · · · (k′)γ

1 k′ + 1 · · · (k′ + 1)γ

...

1 k · · · (k)γ


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
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
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



,Y
(d)

K̃
=
























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






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y
(d)

k′

y
(d)

k′+1
...

y
(d)

k












































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Assume fitting errors having zero mean, namely E(e
(d)

i
) = 0,∀i ∈ K̃. Then, the Gauss-Markov theorem

[74, pp.34] [75, pp.86] indicates that the LS estimate Ĉ
(d)

K̃
as given in (18) is the best linear unbiased estimate

(BLUE) of C
(d)

K̃
, i.e., E(Ĉ

(d)

K̃
) = C

(d)

K̃
, and

Cov
(

Ĉ
(d)

K̃

)

=
(

ATΣ−1

K̃
A
)−1
. (19)

See the proof for Theorem 2.1 of [74, pp.34] and for Theorem 1 of [75, pp.86]. The BLUE is also referred

to as minimum variance unbiased estimator in [75].

The key difference between our proposed T-FoT estimator and the classic Markov-Bayes estimator can

be illustrated in Fig 1. Both approaches basically fit the real target trajectory with a prescribed model

such that the output of the model best fits a series of measurements. To this end, the T-FoT-based LS

fitting approach fits the ground truth by a continuous-time curve function while the KF assumes a Markov-

jump model. They are based on the Markov- Bayes theorem and the Gauss-Markov theorem, respectively.

Arguably speaking, they suit non-cooperative and cooperative target, respectively. More discussion on the

relationship of the LS approach and the KF-type estimator are available in [76, 77, 78, 36].

4.1.4. Approximate Fitting Error ei

Obviously, ei plays a key role in either (5) or (18). As addressed, it accounts for two sources of un-

certainties including measurement noise vi and T-FoT error ǫ(i) which, however, is generally unknown.

Since the cost function uniformly accounts for the fitting errors at different time instants in the concerning

time-window K, a reasonable assumption is that the fitting errors ǫ(i) is insensitive to time i. Then,

Σ
(d)
ei
∝ Σ

(d)
vi
. (20)

This substitution brings much convergence for calculation in either (5) or (18). If further Σvi
is time-

invariant, the weighted LS reduces to the ordinary LS.

4.2. Trajectory Maintenance

The main idea of our trajectory maintenance algorithm is to update (18) with time k increases. The key

challenge is still from the misdetection and clutter. To enable the sliding time-window fitting, one has to

identify the real measurements of the target (and their corresponding time-instants) from the clutter. To be

more specific, the proposed trajectory maintenance scheme comprises the following three steps.

4.2.1. Measurement one-step prediction

Given the identified real measurements {yi}i∈K̃ ⊆ {Yi}
k
i=k′

where K̃ = {k̃′, · · · , k̃} ⊆ {k′, k′ + 1, . . . , k}, the

measurement of the target at time k+1 can be predicted following the approach of “predictive LS” [79, 80],

if there are no missed detections. Alternatively and to accommodate potentially missed detection at any

time instant, following (8), the estimate of the state of the target at time k + 1 can be inferred by using the

T-FoT parameter ĈK̃ obtained at time k as follows

x̂k+1|k = F(k + 1; ĈK̃). (21)

Then, a pseudo measurement is calculated by using the measurement function and the predicted state (21)

by

ŷk+1 = hk+1

(

x̂k+1|k

)

+ v̄k+1. (22)
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Figure 1: Comparison between the Markov-Bayes estimator based on the SSM and the weighted LS estimator based on the T-FoT.

4.2.2. Distinguishing real measurement from clutter

Denote the measurement set with I elements received at time k + 1 as Yk+1 = {y
1
k+1
, y2

k+1
, ..., yI

k+1
}.

A potentially real measurement will be identified based on their (Mahalanobis) distance to the pseudo

measurement as follows:

ỹk+1 = argmin
yi

k+1
∈Yk+1

‖yi
k+1 − ŷk+1‖Σ−1

ek
(23)

which yields the same result as the maximal likelihood criterion when the fitting error belongs to the expo-

nential family [81].

To identify whether ỹk+1 is a real measurement of the target at time k + 1 or actually there is no real

measurement at all (namely the target is missed in detection), the Mahalanobis distance ‖ỹk+1 − ŷk+1‖
2

Σ−1
vk+1

can be used [82]. That is, if it is not larger than threshold τ2
2
, ỹk+1 will be identified as the real measurement

otherwise, misdetection is identified. That is























yk+1 := ỹk+1, if ‖ỹk+1 − ŷk+1‖
2

Σ−1
vk+1

≤ τ2
2

{yk+1} := ∅, otherwise.

(24)

However, when the target trajectory is not so smooth (corresponding to a large β in (4)), the one-step

prediction based on (21) may be inaccurate. For example, when the target makes a sudden manoeuvre and

a clutter is generated around by coincidence, the clutter which turns out to more likely from the target than

the real measurement can easily be confused with the real measurement. To address this dilemma which

challenges the traditional filter too, a potential solution is to carry out the density-based clustering scheme

on the time-series measurements {Yi}
k
i=k−Ts+1

over a sliding time window from k− Ts + 1 to the current time

k for identifying the potentially real measurements in the time window. The clustered measurements can

then be used for fitting a 2-D spatial trajectory in the format of y = f ′(x). Then, the measurement in the

11



T-FoT:

Predict the target state  , cf. (21)

Calculate predicted measurement  , cf.(22)

Identify nearest measurement  , cf. (23)

Misdetection identified.

Count no. successive misdetection: m

No

Yes

Update T-FoT 

via cf. (17)

k k+1

Detect new target and initialize its 

T-FoT from the measurements

m>Te?

Yes
Terminate the T-FoT; 

target death is identified 

k k+1

NoT-FoT unchanged at time k

Figure 2: Procedure of the proposed JDT approach

random finite set Yk that matches best y = f ′(x) will be identified as the potentially real measurement of

the target at time k, instead of using (21)-(24). However, the price that has to be paid for this is a higher

computation requirement.

4.2.3. T-FoT updating

Denote by set K′ ⊆ [k′, k] all the time instants having real measurements, where k′ = max(1, k − T ), T

is the length of the time-window. Based on these measurements yi, i ∈ K′, the parameters of T-FoT is now

ready to be updated as shown in (18) for d = 1, 2, respectively.

4.3. Trajectory Termination and Potential Re-start

If the number of successive misdetections, m, is larger than Te, target death will be declared and the tra-

jectory should be terminated. The target may re-appear in the area and so the algorithm needs to re-do target

detection (and then tracking) after terminating one T-FoT. This is also helpful when the algorithm terminates

the trajectory wrongly due to more than Te successive misdetections. Since our proposed approach does

not assume the target birth model, the target re-birth model is not needed. If the target disappears shortly, it

would be helpful to initialize the clustering procedure around the area where the target disappears. This can

speed up the clustering calculation and lead to better accuracy. However, to ensure the best generality, we

do not make such an assumption. We do not consider simultaneously detecting other targets while tracking

one since it is assumed that there is no more than one target in the scenario. We leave the more challenging

multiple target tracking issues to the future study.
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Table 1: Parameters for Our Proposed Approach

Parameters Purpose/meaning Value Used

Ts least latency for target detection 4

Te least latency for confirming target death 4

τ1 used in clustering for target detection 3

τ2 used for identifying missing detection 5

γ order of the fitting function 1

T length of the time window for fitting 10

4.4. Overview of All Parameters Needed

The whole procedure of the proposed JDT approach is given in Fig 2. In addition to the measurement

function hk(·) and the measurement noise statistics Σ
(d)
vi

which are needed in our algorithm, we summarize

all the parameters needed in our approach in Table 1 as well as the favorable value for each parameter used

in our simulation.

• Both τ1 and τ2 are Mahalanobis distance-based and reasonably related to the uncertainty of the mea-

surements, namely the magnitude of the measurement noise.

• γ depends on the “smoothness” of the trajectory [34] for which γ = 1, 2 suit CV and CA targets,

respectively.

• T, Ts, Te are determined more or less in a heuristic manner. As a rule of thumb, we specify Ts, Te in

the scope of [3, 5] and T in [8, 12].

We note that in almost all trackers, confidence-based thresholds (relative to, e.g., target existing proba-

bility in the BF [47, 48]; see also [83, Ch.2] and [84, 85, 86]) are needed, whether explicitly or implicitly,

to initialize and terminate the target track. This indicates the heuristic nature of Ts and Te, as well as the

time-window length T = 10, which depend on the practitioner. As a rule of thumb, T = 10 sensing steps

turn out to be a close-to-best choice for the length of the sliding time-window in most of the scenarios we

have tested.

5. Simulations

This section evaluates the performance of our approach and compare it with the Bayes-optimal BF

[47, 48] in two different scenarios. One uses a CV target model and a position measurement model while the

other uses a coordinated turn (CT) target model and a range-bearing measurement model. They are referred

to as linear and nonlinear systems, respectively. In each system, different parameters are used for generating

different ground truths and scenarios. The simulation for each scenario is performed for 1000 Monte Carlo

runs, each run using different target-trajectories and measurement series, all randomly generated based on

the specified statistical models and parameters. As usual, we still use the SSM for describing the kinematic

model of the target. This is necessary for running a filter but not for our approach. While our approach uses

no a-priori information about the target, the comparison BFs are provided with perfect a-priori information

about the birth, death, and dynamics of the target, for their best possible performance. That is, the target is

non-cooperative to our approach but cooperative to the BFs. This gives an edge to the latter.

13



The performance of the filter and the proposed T-FoT approach is evaluated by the optimal subpattern

assignment error (OSPA) of the position estimation with cut-off c = 1000m and order ρ=2 [87]. The OSPA

between two RFSs X̂ and X is defined as follows, for |X̂| ≥ |X|,

d
(c,p)
ospa (X̂,X) =

(

1

|X̂|

(

dLoc(X̂,X) + dCard(X̂,X)
)

) 1
p

(25)

which consists of two components accounting for the localization error and cardinality error, respectively,

i.e., dLoc(X̂,X) = min
π∈Π|X̂|

|X|
∑

i=1

d(c)(xi, x̂π(i))
p, dCard(X̂,X) = cp(|X̂| − |X|). Here, π and Πn are a permutation and

the set of all permutations on {1, . . . , n}, and d(c)(x, y) = min (d(x, y), c) is a metric between x and y cut-off

at c. If |X̂| < |X|, d
(c,p)
ospa (X̂,X) = d

(c,p)
ospa (X, X̂).

5.1. Linear System

In this simulation lasting for 100s, both the dynamic model and the measurement model are linear.

Denote the target state as xk = [pk,x, ṗk,x, pk,y, ṗk,y]T, which is composed of position [px,k, py,k]T and velocity

[ṗx,k, ṗy,k]T. The target birth Bernoulli intensity function is given as

γk(xk) = 0.01N(xk; m,P), (26)

where m= [−500m, 10m/s,−500m, 10m/s]T, P = diag(100m, 10m/s, 100m, 10m/s)2 .

The target appears at time k = 10s with a random initial state according to the above newborn target

model and disappears at time k = 80s. To model this, the target survival probability is set as 0.99. During

time k ∈ [10s, 80s], the state of the target evolve according to a nearly CV model, i.e., xk = Fxk−1 +Guk−1,

with

F = I2 ⊗

















1 ∆

0 1

















,G =

















I2 ⊗
∆2

2

I2 ⊗ ∆

















,

where ∆=1s and uk−1 is zero-mean Gaussian noise with time-invariant covariance Q of unit m2/s4.

The target detection probability denoted by pD is constant. Once the target is detected, it generates

a position measurement as in (10) with vk being a zero-mean Gaussian noise with covariance Σvk
=

diag(100 m2, 100 m2). The clutter is uniformly distributed over the planar area [−1000m, 1000m]×[−1000m, 1000m]

with an average of rc points per scan. We note here that, the target may fly out of the mentioned area in

some runs. The clutter density is rc/20002m−2 in the cluttered area [−1000m, 1000m] × [−1000m, 1000m]

and zero outside. However, the BF assumes a constant clutter intensity at rc/20002m−2. In our simulation,

we test different values for pD, rc, and Q.

Our approach uses the first order polynomial T-FoT in x− and y− dimensions, respectively, as follows

px,t = c
(1)

0
+ c

(1)

1
t + ǫ(1)(t), (27)

py,t = c
(2)

0
+ c

(2)

1
t + ǫ(2)(t), (28)

where the parameters CK′ := {c
(1)

0
, c

(1)

1
, c

(2)

0
, c

(2)

1
} are calculated by carrying out the LS optimization as in (5)

over the time window K′ ⊆ [k′, k], for d = 1, 2, respectively. Here, k′ = max(1, k−T ), T = 10s is the length

of the time-window, and K′ contains all the time-instants when there is a target detection in [k′, k].
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Figure 3: Target trajectory and measurements generated over 100 seconds in the linear system using process noise covariance

Q = I2, target detection probability pD = 0.9 and clutter rate rc = 5 in one run. The green circle and triangle indicate the start and

end of the trajectory, respectively.

Applying (20) with the time-invariant statistics of the measurement noise vk leads to the time-invariant

statistics of the fitting error et. So, Σet
can be removed from (5), i.e.,

{

c
(d)

0
, c

(d)

1

}

= argmin
{c0,c1}

∑

t∈K′

(

y
(d)
t − (c1t + c0)

)2
, (29)

Our approach does not use any mentioned target birth, death and dynamics, or clutter rate information

but only need to use Σvk
in the initial clustering operation as shown in (13) for detecting the target. The

values of all parameters needed are given in Table 1. The estimated position of the target at time k is simply

given by substituting t by k in (27) and (28).

As the comparison approach, a Gaussian mixture (GM) BF [47, 48] is designed using all the mentioned

necessary statistics information about the target, clutter, and the sensor. Furthermore, the BF used at most

50 Gaussian components (GCs), pruned GCs with weights below 10−5 and merged GCs with Mahalanobis

distance below 4.

The average results of 1000 Monte Carlo runs are shown in Fig. 4 and Fig. 6 for process noise covariance

Q = I2 and Q = 4 × I2, respectively. In each figure, the subfigures show the results for different target

detection probabilities pD = 0.9, 0.95 and different clutter rates rc = 2, 5. The tracking scenario of one run

using pD = 0.95 and rc = 5 is illustrated in Fig 3 for Q = I2 and in Fig 5 for Q = 4 × I2. The computing

time of each updating step for all scenarios is given in Table 2. These results show that our proposed T-FoT

approach computes much faster, yields higher track accuracy (when the target exists) but is less accurate in

identifying the birth and death of the target as compared with the optimal BF. In particular, we notice that

1. The T-FoT approach suffers from target detection and track termination latency more than the BF

as its OSPA reduces down to a stable low level slower than the BF does. This is mainly due to the

lack of information about target birth and death. To combat this, one may reduce τ1 for faster track

initiation and reduce Te for faster track termination. These, however, come with the price of causing

false alarms and with the risk of premature killing the track. How to better trade-off both, which

depends on the realistic need, remains an open problem.
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Figure 4: OSPA of the BF and our T-FoT approach in the linear system using Q = I2, and different target detection probabilities

pD and clutter rates rc.
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Figure 5: Target trajectory and measurements generated over 100 seconds in the linear system using process noise covariance

Q = 4 × I2, target detection probability pD = 0.9 and clutter rate rc = 5 in one run. The green circle and triangle indicate the start

and end of the trajectory, respectively.
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Figure 6: OSPA of the BF and our T-FoT approach in the linear system using Q = 4 × I2, and different detection probabilities pD

and clutter rates rc.

2. For all cases except for Q = 4 × I2, p
D = 0.95, rc = 5, our proposed T-FoT approach outperforms

the BF in mean OSPA during time k ∈ [30s, 80s]. This may be attributed to two reasons: First, the

GM implementation of the BF that unavoidably bears approximation errors prevents the BF from

achieving the theoretically best performance. To say the least, its Bayes-optimization does not equal

minimum OSPA as the latter is no more than a specific yet common point-based metric. Second,

our proposed approach is based on sliding time-window fitting which is not as sensitive to clutter

or misdetection at any particular time-instant as the filter. For the scene using Q = 4 × I2, p
D =

0.95, rc = 5, both perform similar to each other. But in all cases, the T-FoT approach has an average

OSPA varying over time in a smaller scope when the target exists and is tracked during k ∈ [30s, 80s].

3. It is obvious that the performance of the proposed T-FoT approach is much better when Q = I2 (which

corresponds to a smoother trajectory) than when Q = 4 × I2. In contrast, the performance of the BFs

does not change much with the change of Q or rc, but it becomes much better if the target detection

probability is increased from pD = 0.9 to pD = 0.95.

4. A higher clutter rate renders our approach prone to declaring appearance of the target (e.g., at time

k ∈ [85s, 100s]). This is reasonable as it used no a-priori information about the target birth and so the

algorithm can easily be misled by the locally clustered clutter in successive scans when the clutter

rate is high. In contrast, the BF has a proper target birth model to prevent it from wrongly initializing

a new track that does not match closely to the specified target-birth model.

5.2. Nonlinear System

In this simulation of a length of 150s, we consider an CT target motion model and a range-bearing

measurement model. The target state is denoted as xk = [px,k ṗx,k py,k ṗx,k ωk]T with time-varying turn rate

ωk. The target birth intensity function is given as

γk(xk) = 0.01 × N(xk; m1,P1), (30)
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Table 2: Computing Time for Each Step in Simulation 1 [second]

Scenario BF T-FoT

Q = I2, p
D = 0.9, rc = 2 0.041 0.016

Q = I2, p
D = 0.9, rc = 5 0.049 0.017

Q = I2, p
D = 0.95, rc = 2 0.039 0.016

Q = I2, p
D = 0.95, rc = 5 0.047 0.017

Q = 4I2, p
D = 0.9, rc = 2 0.043 0.017

Q = 4I2, p
D = 0.9, rc = 5 0.051 0.017

Q = 4I2, p
D = 0.95, rc = 2 0.041 0.016

Q = 4I2, p
D = 0.95, rc = 5 0.048 0.017

where m1 = [100m, 10m/s, 100m, 10m/s, 0.01rad]T and P1= diag(100m, 10m/s, 100m, 10m/s, 0.01rad).

One target appears at time k = 10s with a random initial state according to the above newborn target

model and disappears at time k = 80s. The probability of target survival is PS
k
= 0.99 for the BF. The

survival single-target movement follows a CT model with a sampling period of 1s and Markov transition

function

fk|k−1(xk |xk−1) = N(xk; F(ωk)xk,Q), (31)

where Q = diag([I2 ⊗G, σ2
u]),

F(ω) =
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with σw = 2m/s2, and σu = (π/180)rad/s.

Further, we consider the re-appearance of the target. It is simulated that the target re-appears at time

k = 90s and disappears again at time k = 110s. (Sure, this can be viewed as another new target). The

initial state x90 is given by x90 ∼ N(xk; m2,P2), where m2 = [500m, 10m/s, 500m, 10m/s, 0.01rad]T and

P2= diag(100m, 10m/s, 100m, 10m/s, 0.01rad).

The range-bearing measurement model is given as in (11) where vr,k and vθ,k are, individually, inde-

pendent identical distributed zero-mean Gaussian with standard deviation σr = 10m and σθ = (π/90)rad,

respectively.

The target detection probability is state-related as given by

pD
k (xk) = pD

max ·
N

(

µD(xk); 0, 20002I2

)

N(0; 0, 20002I2)
. (32)

Here, µD(xk) ,
[

|px,k |, |py,k |
]T

.

The clutter measurements are uniformly distributed over a disk of radius 2000m around the origin with

an average number of rc clutter measurements per time step. We considered two different clutter rates

rc = 2, 5 and two different maximal detection probabilities pD
max = 0.9, 0.95.

In our approach for T-FoT fitting, the range-bearing measurements yk are converted to position mea-

surements as in (12) and the converted noise covariances are calculated based on linearization [65]. The

only a-priori statistical information used in our approach is about σr and σθ. Then, both clustering and
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fitting can be performed over the converted position measurement as in the last simulation, cf. (27) and

(28). However, we note that, differently from the last simulation, the converted covariance Σyk
is obviously

state-related, and therefore should be explicitly taken into account in the T-FoT optimization as shown in

(5). The multi-dimensional optimization, however, is computationally much more complicated (and did

not yield obviously better results as we found). Therefore, we over this difficulty by omitting the cross-

correlation and carrying out individual dimension fitting. Furthermore, we use Σ
(d)
ei
∝ Σ

(d)
yi

. Then, we get the

following weighted LS formulation

{c
(d)

0
, c

(d)

1
} = argmin

{c0,c1}

∑

i∈K′

Σ−1

y
(d)

i

(

y
(d)

i
− (c1i + c0)

)2
. (33)

For comparison, the local GM-BFs are implemented based on either the extended KF (EKF), unscented

KF (UKF) or the particle filter (PF). In the former two cases, the filter used at most 50 GCs, pruned GCs

with weights below 10−5 and merged GCs with Mahalanobis distance below 4 while in the latter, 2000

particles are allocated to the filter and 1000 particles are assigned to the target born process; see [47, 48] for

the detail of these algorithms. Again, these filters make full use of all available models and parameters.

The target trajectory and estimates by different filters and the proposed T-FoT approach in one run

using pD = 0.95 and rc = 5 are illustrated in Fig 7. The average OSPA of these comparison filters and the

proposed T-FoT approach over 1000 Monte Carlo runs are given in Fig. 8. The computing time of each

updating step for all scenarios is given in Table 3. These results show that in this nonlinear system:

1. The T-FoT approach suffers again from target detection and track termination latency more than the

BFs, similar as in the first simulation. Also, the results after the disappearance of the second target

k > 120s show that a higher clutter rate (rc = 5) can easier lead to false alarm to the T-FoT approach

(as compared with rc = 2). The same reasons hold.

2. The accuracy of the proposed T-FoT approach is comparable to the UKF/PF BFs (and outperforms

the EKF-BF) during time k ∈ [20s, 40s] but later on its accuracy decreases much faster than the BFs

do. The accuracy decrease is due to the fact that in most runs, the target moves away from the origin

and so the converted position accuracy of the range-bearing measurement as in (11) is reducing and

also the target detection probability is reducing as indicated by (32). As can be easily illustrated,

the position error corresponding to bearing error “σθ” at range distance of 100m is almost 10 times

smaller than that at a range distance of 1000m. Moreover, the converted position cross-correlation

that we omitted in our fitting increases as the range increases. This differs from the last simulation

where the position measurements are of constant quality disregarding the state of the target and are

not cross-correlated.

3. For the second, “unexpected” target appearing at time k = 90s, all BFs that do not set a corresponding

model for it have missed it to a large degree while the T-FoT approach can quickly detect and then

track it accurately the same as the first target. Arguably, both the success (i.e., quick detection) and

failure (i.e., misdetection) of the filter depend on whether the specified models match perfectly the

truth.

4. The proposed T-FoT approach is computationally more efficient than all BFs. The T-FoT approach

only takes slightly more computation due to the measurement conversion as compared with that in the

first simulation, while the EKF/UKF BFs take almost two times computation time for each filtering
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Figure 7: Target trajectory and measurements over 150 seconds generated by the nonlinear systemusing pD
max = 0.9 and rc = 5 in

one run. Green circle and triangle indicate the start and end of the trajectory, respectively.

Table 3: Computing Time for Each Step in Nonlinear System [second]

Scenario EKF-BF UKF-BF PF-BF T-FoT

pD = 0.9, rc = 2 0.094 0.112 0.170 0.036

pD = 0.9, rc = 5 0.152 0.169 0.230 0.035

pD = 0.95, rc = 2 0.087 0.11 0.167 0.029

pD = 0.95, rc = 5 0.138 0.160 0.226 0.029

step in order to deal with the nonlinearity in filtering. The computational cost of the PF-BF is even

higher.

5.3. Discussion

We must reiterate that the scenarios we considered here are limited to (near-)uniformly distributed clut-

ter with a low rate (rc ≤ 5) and high target detection probability (pD ≥ 0.9). Relation of these limitations

is valuable and deserves to be investigated. As shown in both simulations, the proposed T-FoT approach is

comparable with, or even better than, the BFs in computing efficiency and track maintenance accuracy al-

though it suffers more from track confirmation and termination latency due to the lack of a-prior information

about the target birth and death. What are additionally notable include

1. The T-FoT approach computes efficiently thanks to the exact solution given for linear fitting as shown

in (18).

2. The fitting calculation over data of a time-window is resilience to the false/missing data at a particular

time-instant as compared with the recursive filtering.

3. The Bayes-optimization of the BF does not equal minimum OSPA. Obviously, the OSPA values

depends on the choices of the parameters c and p.

4. Although the BF is Bayes optimal, it generally has no analytic solution and has to resort to approx-

imative implementation using either GM or particles. The number of GCs or particles used and the

20



50 100 150

Time [s]

0

200

400

600

800

1000

M
ea

n 
O

SP
A

 [
m

]

p
max
D =0.9, r

c
=2

EKF-BF
UKF-BF
PF-BF
T-FoT

50 100 150

Time [s]

0

200

400

600

800

1000

M
ea

n 
O

SP
A

 [
m

]

p
max
D =0.9, r

c
=5

EKF-BF
UKF-BF
PF-BF
T-FoT

50 100 150

Time [s]

0

200

400

600

800

1000

M
ea

n 
O

SP
A

 [
m

]

p
max
D =0.95, r

c
=2

EKF-BF
UKF-BF
PF-BF
T-FoT

50 100 150

Time [s]

0

200

400

600

800

1000

M
ea

n 
O

SP
A

 [
m

]

p
max
D =0.95, r

c
=5

EKF-BF
UKF-BF
PF-BF
T-FoT

Figure 8: OSPA of BFs and our T-FoT approach in the nonlinear system using different target detection probabilities pD and clutter

rates rc.

ineluctable merging/pruning/resampling operations can all have a significant effect on the filtering

accuracy. These are attributed to the discrepancy of the realistic performance of the BF to the desired

Bayes optimality.

6. Conclusion

We have presented a Markov-free, data-driven approach to JDT of a non-cooperative target that ran-

domly appears and disappears in the presence of false and missing data. While the clutter rate is less than 5

per scan on average and the target detection probability is higher than 90%, their exact statistics, as well as

those of the birth, death, and dynamics of the target are unknown and maybe time-varying. Our approach

based on the T-FoT overcomes these challenges by only making use of measurements for joint target de-

tection and continuous-time trajectory estimation including initiation, maintenance, termination and even

re-detection. Simulation results have demonstrated that our approach performs comparable to the properly

modelled Bernoulli filter provided with all required model and scenario information and even outperforms

them in some cases while computing more efficiently. Therefore, the T-FoT approach provides a promising

alternative to the classic state space model and accommodates favorably intelligent learning methods.

The future work can be threefold: The first is to extend the T-FoT approach to the scenario of an un-

known number of targets, i.e., find multiple T-FoTs that fit best the measurement sequences over time. Such

an extension is nontrivial as measurement-to-track association is involved, which is challenging whenever

target tracks are interacting with or approaching each other. The second is to extend the T-FoT approach for

extended target or even swarm target tracking by utilizing extension/swarm feature estimation approaches.

The third is to consider a decentralized/large-scale sensor network for which an interesting issue would

be continuous-time trajectory fusion [88]. All of these aim at a systematic data-driven and self-contained

approach to multi-sensor multitarget detection and tracking.
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Appendix A. Bound on Uniformly-distributed Clutter Rate

Disregarding the boundary issue of the surveillance region, the probability for a clutter point falling

within a distance do to the target in the region (which corresponds to a circle around the target) is simply

given by

p1 = S −1πd2
o, (A.1)

where S is the area of the entire surveillance region and πd2
o gives the area of the circle with radius do.

Now, consider rc clutter points that are independently, uniformly generated over the region. The proba-

bility for all clutter points falling further than do to the target is given by

pr = (1 − p1)rc = (1 − S −1πd2
o)rc . (A.2)

To ensure no clutter generated within a distance do to the target in order to avoid a FA within clustering

under the confident probability pr, the clutter rate needs to satisfy

rc ≤ log1−S −1πd2
o
(pr). (A.3)

For instance, if pr = 0.95, p1 = 0.01 (corresponding to an area that is 1% of the whole area), then

log0.99(0.95) ≈ 5.10. That is, we have 95% confidence that uniformly-distributed clutter points should not

lie in any region whose area is 1% of the whole area, when the clutter rate rc < 5.1.

Appendix B. Probabilistic Distance between IID Variables

For D-dimensional Gaussian-random variables a and b which are independently identically distributed

with covariance R. The probability that they have distance within τ times the standard deviation of their

distribution is given by [89]

Pr
[

(a − b)TR−1(a − b) ≤ τ2
]

≤ γ
(D

2
,
τ2

2

)

, (B.1)

where γ(a, b) :=
∫ b

0
ta−1e−tdt is the lower incomplete Gamma function.

When the variables are distribution free (i.e., unknown and probably non-Gaussian) then the probability

that the variable lies within the standard deviation of the state estimate can still be bounded using, for

example, the Chebyshev inequality as follows

Pr
[

(c)T(c) ≥ ǫ
]

≤
Σc

ǫ2
, (B.2)

where c is a zero-mean random variable with variance Σc and ǫ > 0.

A tighter bound is given by the Chebyshev-type inequality, Vysochanskiı̈-Petunin inequality [90], when

it is known that the distribution is unimodal, i.e.,

Pr
[

(a − b)TR−1(a − b) ≤ τ2
]

≥ 1 −
4D

9τ2
. (B.3)
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[53] F. Tobar, P. M. Djurić, D. P. Mandic, Unsupervised state-space modeling using reproducing kernels, IEEE Trans. Signal

Process. 63 (2015) 5210–5221.

[54] X. R. Li, V. P. Jilkov, Survey of maneuvering target tracking. Part I. Dynamic models, IEEE Trans. Aerosp. Electron. Syst.

24



39 (2003) 1333–1364.

[55] X. R. Li, V. P. Jilkov, Survey of maneuvering target tracking. part v. multiple-model methods, IEEE Trans. Aerosp. Electron.

Syst. 41 (2005) 1255–1321.

[56] J. Zhou, T. Li, X. Wang, L. Zheng, Target tracking with equality/inequality constraints based on trajectory function of time,

IEEE Signal Processing Letters 28 (2021) 1330–1334.

[57] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2014.

[58] B. Gao, G. Hu, Y. Zhong, X. Zhu, Cubature rule-based distributed optimal fusion with identification and prediction of

kinematic model error for integrated uav navigation, Aerospace Science and Technology 109 (2021) 106447.
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