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Abstract

This paper considers the optimal training design for broadband generalized
spatial modulation systems over frequency-selective channels using a novel
class of code sets introduced, called “symmetrical Z-complementary code set-
s”, whose aperiodic auto- and cross- correlation sums exhibit zero-correlation
zones at both the front-end and tail-end of the entire correlation window. T-
wo constructions of (optimal) symmetrical Z-complementary code sets based
on generalized Boolean functions are presented. Numerical evaluations indi-

cate that the proposed training sequences for generalized spatial modulation
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can achieve optimal channel estimation performance and outperform other
classes of sequences.
Keywords: Complementary code set, channel estimation, training sequence

design, generalized spatial modulation, frequency-selective channels

1. Introduction

Spatial modulation (SM) is a multiple-input multiple-output (MIMO)
technique which enjoys zero inter-channel interference over flat fading chan-
nels, low hardware complexity and low energy consumption. In SM, infor-
mation is transmitted over two parts: 1) spatial dimension, coordinated by
antenna indices, and 2) the conventional signal constellation of a modulation
scheme[l]. That is, information bits are conveyed through not only modu-
lation symbols, but also the index of the active transmit antenna (TA) [2].
Unlike SM system equipped with multiple TA elements but only a single
radio-frequency (RF) chain, two or more TAs are activated in generalized
spatial modulation (GSM) at each symbol slot and the specific activated
pattern itself conveys useful but implicit information [3]. Therefore, GSM
can achieve higher spectral efficiency than SM systems while maintaining
major advantages of SM [4, 5]. As a result, GSM strikes a flexible trade-off
among spectral efficiency, cost of RF chains and energy efficiency by varying
the number of RF chains[6, 7]. These advantages make GSM a competitive
candidate for the next generation wireless networks [8].

There have been many iterative and non-iterative detector designs for
GSM systems [9]. However, most of these detectors, e.g., the tree-search

based detector [10] and the near-ML-detector [11], consider narrow-band s-



cenarios where GSM symbols are transmitted over flat-fading channels. This
is different from practical wireless channels which may exhibit frequency se-
lective properties. In recent years, various types of GSM detectors have been
proposed for broadband GSM to combat the effects of inter-symbol interfer-
ence imposed by frequency-selective fading channels [12, 13, 14]. For exam-
ple, a novel soft-decision feedback aided time-domain turbo equalizer based
on the minimum mean-square error criterion [14] was proposed for broad-
band GSM systems. In [15], a frequency-domain based turbo equalizer was
developed for GSM under dispersive channels. In these works, perfect chan-
nel state information at the receiver was assumed. Recently, there appeared
some literature on the channel estimators in GSM systems. For example,
a channel estimation scheme based on block pilot pattern and a interpola-
tion method was proposed in [16], which is designed for the GSM-orthogonal
frequency-division multiplexing system on high-speed railways. In [17], they
proposed pilot-assisted and data-aided super-resolution MIMO channel es-
timators for GSM-based millimeter-wave systems. Message-passing based
blind channel-and-signal estimation and semi-blind channel-and-signal esti-
mation algorithms were developed for massive MIMO systems with GSM
[18], which utilize the channel sparsity of the massive MIMO channel and
the signal sparsity of GSM. However, to the best of our knowledge, all the
existing methods for channel estimation in GSM systems are about the blind
and semi-blind estimation algorithms, which usually have high computation-
al complexity, and can not attain optimal estimation in theory.

A major concern of this work is how to attain optimal estimation of chan-

nel state information in broadband GSM systems. A common means of ob-



taining channel state information is by sending properly designed preamble
sequences at the transmitter, followed by correlating the known preamble
sequences at the receiver. It is noted that optimal channel estimation re-
quires preamble sequences with zero nontrivial auto- and cross-correlations.
However, the employment of conventional preamble sequences in GSM is not
straightforward. Since only a few RF chains whose number is less than that
of TAs are activated at each GSM time-slot and hence the transmit signal of
GSM is sparse, it is hard to adopt those training sequences which are dense
for traditional MIMO systems [19, 20, 21]. On the other hand, when the
number of RF chains is greater than one, training sequences designed for SM
systems [22] are also inapplicable. To attain optimal training in GSM sys-
tems, we propose and construct a novel class of code sets called symmetrical
Z-complementary code set (SZCCS). In the sequel, we overview a number of

code sets followed by our major contributions of this work.

1.1. Complementary Code Sets

Sequence sets with good correlation properties play an instrumental role
in almost every communication system. For example, they can be used for
localization [23], synchronization, channel estimation [24, 25|, and interfer-
ence suppression/mitigation in multiuser systems [26, 27, 28]. An interesting
sequence family is called “complementary code” which was proposed by T-
seng and Liu in [29], where the aperiodic auto-correlation sum of all the
constituent sequences equals zero at any nonzero time-shift. A special case
of complementary code is Golay complementary pairs (GCPs) which were
first found by Golay [30] and each GCP consists of only two sequences.

Extensive research attempts have been made concerning the constructions
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and applications of complementary codes and GCPs. A remarkable work
was contributed by Davis and Jedwab [31] who constructed polyphase GCPs
[32] using the algebraic tool of generalized Boolean functions. Subsequently,
representative constructions of complementary codes were proposed in [33,
34, 35, 36]. To obtain more flexible parameters,“ complementary code” was
extended to Z-complementary code (ZCC) in [37], where the aperiodic auto-
correlation sum is zero when the time-shift falls into a region around the
in-phase position called zero-correlation zone (ZCZ).

Besides, Tseng and Liu studied in [29] “mutually orthogonal comple-
mentary code set (MOCCS)”, which refers to a set of complementary codes
with zero aperiodic cross-correlation sums between different complementary
codes. Further developments of MOCCSs were reported in [38, 39, 40, 41, 42].
However, MOCCS suffers from limited set size which is upper bounded
by the number of constituent sequences (i.e., the flock size) in each code.
To overcome this weakness, the concept of MOCCS was extended to Z-
complementary code sets (ZCCSs) for higher set sizes [37].

So far, the existing known constructions of ZCCSs only consider the
front-end! ZCZ of the aperiodic auto-correlation sums and aperiodic cross-
correlation sums. Unlike the state-of-the-art works, we consider a specific
subclass of ZCCSs named SZCCSs which exhibit both the front-end ZCZ
and tail-end ZCZ properties. In practice, a front-end ZCZ and a tail-end
ZC7Z have particular interest for mitigating interference with small and large

delays, respectively. We will show in Section 3 that the properties of SZCCSs

Lwith respect to the entire correlation window.



are useful for mitigating multipath interference and multi-antenna interfer-

ence in GSM systems.

1.2. Nowelty and Contributions of This Paper

The main contributions and novelty of this paper are summarized as

follows.

1) We present a generic training framework for optimal GSM training over
frequency selective channels. The most distinctive feature of the pro-
posed generic training framework (compared that for conventional MI-
MO systems) is that the training matrix should be sparse owing to the
sparsity of the GSM transmit signals. Based on this framework, we
derive the optimal GSM training criteria under least square channel

estimator.

2) According to the derived the optimal GSM training criteria, we introduce
a novel class of ZCCSs called SZCCSs, each of which displaying zero
tail-end auto/cross-correlation sums symmetrical to that of the front-
end ones. More restrictive than the conventional ZCCSs, the design
challenge of SZCCSs stems from the additional correlation properties
associated to the tail-end ZCZ, and show that SZCCS plays a pivotal
role in the design of optimal GSM training sequences. Then, we pro-
pose two systematic constructions of SZCCS with different set sizes and
sequence lengths using generalized Boolean functions. Especially, the
SZCCSs generated from the first construction is optimal with power-of-
two lengths, and the SZCCSs of non-power-of-two lengths constructed

in the second construction have larger zero-correlation ratio than the



former with specific parameters, which means that its sequence length
can be smaller than the former when the maximum number of mul-
tipaths is same, so as to improve spectral efficiency. To the best of
our knowledge, this paper is the first to consider the sequence design
for the channel estimation in GSM systems. Numerical evaluations
indicate that the proposed GSM training sequences lead to minimum
channel estimation mean-square error and significantly outperform oth-
er classes of sequences (e.g., Zadoff-Chu sequences and binary random
sequences) with different settings of activated transmit antennas and

signal-to-noise ratios.

1.8. Organization of This Paper

The remainder of this paper is organized as follows. Section 2 introduces
some notations, ZCCSs and the mathematical tools used in the paper fol-
lowed by a sketch of the basic principle of GSM. In Section 3 , first, we
present a generic training framework for GSM training over frequency se-
lective channels. Then, we derive the optimal GSM training criteria under
LS channel estimator. In Section 4, we first present SZCCSs which play an
instrumental role in the design of optimal GSM training sequences, and show
an upper bound of the size of SZCCSs. Then, we give two constructions of
SZCCSs with different set sizes based on generalized Boolean functions where
one is optimal. Section 5 shows some numerical evaluations of the proposed
GSM training sequences. Finally, Section 6 concludes this paper with some
remarks.

For readability, we summarize in Table 1 all the acronyms which are used

in this paper.



Table 1: List of acronyms

Acronyms Descriptions
CPp cyclic prefix
CZCP cross Z-complementary pair
GCP Golay complementary pair
GSM generalized spatial modulation
LS least square
MIMO multiple-input multiple-output
MOCCS | mutually orthogonal complementary code set
MSE mean-square error
RF radio-frequency
SM spatial modulation
SZCCS symmetrical Z-complementary code set
TA transmit antenna
7CC Z-complementary code
7CCS Z-complementary code set
72C7 zero-correlation zone
7P zero prefix

2. Preliminaries

2.1. Notations

The following notations will be used throughout this paper.

e 7T7(X) denotes the right-cyclic-shift of matrix X for 7 (non-negative

integer) positions over rows;



e 0,,., denotes an all-0 matrix of order m x n;

e |j|; denotes the modulo J operation of integer j;.

Let a = (a(0),a(1),--- ,a(L — 1)) and b = (b(0),b(1),--- ,b(L — 1)) be
two complex-valued sequences of length L. The aperiodic cross-correlation
function between a and b at a time shift u is defined by

S e (i +u), 0<u<L—1;
pap(t) =4 S ali —w)b* (i), —(L—1) <u< -1
0, lu] > L.

It is easy to verify that

pab(t) = pha(—u). (1)

If a = b, pap is called the aperiodic auto-correlation function, denoted by pa
for simplicity.
Also, denote by ¢ap(u) the periodic cross-correlation between a and b,

ie.,

h
L

dap(u) = _a(b™([i+uls).

In particular, let A = {a;,as,...,ay } and B = {by, bs, ..., by} be two se-

I
=)

quence sets of size M and length L. The aperiodic cross-correlation function
} ) ) M

between A and B at a time shift u is defined by Cap(u) = > _| pa.b. (1)

Similarly, if A = B, C 4 is called the aperiodic auto-correlation function of

sequence set A, denoted by C 4 for simplicity.

2.2. Generalized Boolean Functions
Let ¢ be a positive integer, for x = (x1,x9, -+ ,x,,) € ZY', a generalized

Boolean function f(x) is defined as a mapping f from {0,1}" to Z,. Given
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f(x), define

f=(f0), f(1), ... F(2" = 1)), (2)

where f(i) = f(i1,19, -+ ,im), and (i1, 42, - - , iy,) is the binary representation
of i =Y 1" 128! with i, denoting the most significant bit.

In this paper, we consider truncated versions of the sequence f of (2).
Specifically, let f() be a sequence of length L obtained from f by ignoring the
last 2™ — L elements of the sequence f. That is, f%) = (£(0), f(1),--- , f(L—
1)) is a sequence of length L. Let & = exp(2my/—1/q) be a primitive g-
th complex root of unity. One can naturally associate a complex-valued

sequence ¥ (f1) of length L with %) as

w<f(L)) — (55(0)7 55(1), o ’55@71)). (3)

From now on, whenever the context is clear, we ignore the superscript of f(*)

unless the sequence length is specified.

2.3. Introduction to ZCCS

Definition 1. Let A= {a,,}_, be a set of M complez-valued sequences of
length L. It is said to be a (aperiodic) (M, L, Z)-ZCC of size M if Cx(u) =0
for any 0 < |u| < Z where Z is a positive integer with 1 < Z < L —1. In
particular, when Z = L — 1, the set is called a (aperiodic) complementary

code, and when M = 2 it is called a (aperiodic) GCP.

The following lemma shows a construction of GCPs, which will be used

in the sequel.
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Lemma 1 (Corollary 11 of [33], Theorem 3.3 of [43]). Let ¢ be an even

integer and m be a positive integer. Let

m—1 m
a(x) = g Tr(k)Lr(k+1) T Z CrTk + C,
k=1 k=1
q q
b(x) = a(x) + S Tn(1); c(x) = a(x) + o %m,
where m is a permutation of {1,2,--- ,m} and x € ZY cx,c € Z,. Then

(¢¥(a), (b)) and (v(a),(c)) are GCPs of length 2™.

Definition 2. Let S = {S1,Ss, - -+ , Sk}, where each S, = {Sk.1,Sk2, .-, Sk.m}
(1 <k < K) be a ZCOC consisting of M length-L sequences. S is called a
(K,M,L,Z)-ZCCS if Cs,;5,(u) =0, V 1 <i#k <K and|ul < Z. In
particular, when Z = L, it is called a (K, M, L)-MOCCS.

The following lemma is about the upper bound of the size of ZCCS, which

was proposed in [37].

Lemma 2. ([37], [44]) Any unimodular (K,M,L,Z)-ZCCS S = {S1,Ss,

., Sk} satisfies K < Lg[—flj , where S = {Sk1,8k2, ., Spm} and S, =
(Skm(0), Skm(1), -+ spm(L—1)) (1 <k <K,1<m<M). In particular,

when K = Ly—flj, S is called an optimal (K, M, L, Z)-ZCCS.

2.4. Introduction to GSM
We consider a single-carrier GSM (SC-GSM) system with N; TA elements,

N, receive antennas and N.ve transmit RF chains over frequency-selective
channels. Moreover, we consider a QAM/PSK modulation with constellation
size of Mgsm. An Nactive X N; switch connects the RF chains to the TAs.

In a given channel use, each user selects Ng.ive in IV; TAs, and transmit
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Nactive symbols from a QAM/PSK modulation alphabet A on the selected
antennas. The remaining Ny — Nactive antennas remain silent. Fig. 1 shows

the GSM transmitter at the user terminal. Over each time-slot k, there are

( \
1 |
| e
| : B
- B, | i1> \
i Add i
. E Modulation symbol ‘ o |
Information = mapper : \\7 |
bits s | e i, \
8 A
| B |
Antenna activation | iNW\ |
b, pattern selector S=(0-+1::0-+1-:0:- 1 ---0)7 : : }
i i i, i \ jN, )
H N ~
N
between i ion bits
and antenna activation patterns in GSM for
N, =5,N e =2
Information Bits-to-Active Antennas
Information | Antenna Activation Active
Bits Pattern Antennas
000 (1,1,0,0,0)" 1,2
001 (0,0,1,1,0)" 3,4
010 (1,0,1,0,0)" 1,3
011 (0,,0,1,0)" 2,4
100 (1,0,0,1,0)" 1,4
101 (0,1,1,0,0)" 2,3
110 (0,0,0,1,1)" 4,5
111 (1,0,0,0,2)" 1,5
Figure 1: The structure of a GSM transmitter, where {i1,ia, -+ ,in, .} denotes the

index set of activated TAs.

active

{log2 ( NNt )J + [log, |A|] bits, denoted by b, conveyed by a GSM transmit-
ter. Specially, the first Llog2 ( N::[ttive)J bits, denoted by by, are used to active
the 41th, isth, ..., in,,,. . th TAs through a antenna activation pattern selector,
which is determined by the mapping between information bits and antenna
activation patterns. The table in Fig. 1 gives an example of that mapping for

N; = 5 and Nuive = 2. Suppose the selected antenna activation pattern is

denoted by s, where “1” in s indicates that the antenna corresponding to that

12



coordinate is active and silent otherwise. The last |log, |A|] bits, denoted
by bq, are used to select Nyciive “constellation symbols” By, Ba, -+ ,Bn_,...
through a modulation symbol mapper, conveyed through the N, activat-
ed antennas after adding zero prefix (ZP) or cyclic prefix (CP) to combat
dispersive GSM channels, respectively. Details of GSM transmit principle

can be found in [2].

Example 1. Consider an SC-GSM system with Nyeive = 2 RE chains and
Ny =5 TAs using BPSK modulation M ggy = 2. Specifically, two out of the
five transmit antennas are activated at each time-slot using L10g2 (S)J =3 in-
formation bits. In total, there are only oliea2(3)] — 8 activation patterns for
signaling. The mapping of information bits to an activation pattern in GSM
refers to the table in Fig. 1. For illustration purpose, we consider natural
mapping for BPSK modulation over each activated TA. Suppose each SC-
GSM block constitutes 4 GSM symbols. Suppose further these symbols corre-
spond to 16 message bits (1001111011000100), with symbols b(1) = (1001),
b(2) = (1110), b(3) = (1100) and b(4) = (0100). Taking the first GSM
symbol for example, we have b(1) = (by(1),bs(1)) where by(1) = (100) s-
elects the antenna activation pattern s = (1,0,0,1,0)7, and by(1) = (1)
which implies that the modulated symbols By = By = £ = —1. This means
that during the first time-slot, the first and fourth TAs are activated for the
sending of BPSK symbol —1. Then, the first GSM symbol can be written as
d; = (—1,0,0,—1,0)T. The entire SC-GSM block can be expressed by the

13



sparse matriz:

-1 101
0 000
(di,dg,d3,dg) =] 0 0 0 1
-1 010
0 110

Note that if SM is used instead with the same modulation order, the number

of transmit antennas must be increased to eight to maintain the same spectral

efficiency.

3. Training Framework for Broadband GSM Systems

In this section, based on the generic training-based SC-MIMO transmis-
sion structure as shown in [22], we present a GSM training framework using
sparse matrices and derive the correlation properties of the row sequences of
such a sparse matrix.

We consider the training setting with a length-A CP and N; TAs over
quasi-static frequency-selective channel. We denote the channel impulse re-
sponse (CIR) from the n-th (1 < n < N;) transmit antenna to the receiver
as hy, = (hno, bty oy Bun)? where by, (0 <1< \) is the channel coefficient
of the [-th path. Note that there is a training sequence followed by data
payload in each block at a TA and CP is placed at the front of the training
sequence [22]. Let x,, = (20, Zn 1, ..., Tn,r—1) be the training sequence trans-
mitted over the n-th TA. We assume that all the training sequences have

identical energy of E. Then, the minimum MSE under LS channel estimator

14



is achieved if and only if

E, ifi=j, u=0,
Oxix; (W) = ¢ 0, ifi#j 0<u<A, (4)
0, ifi=j, 1<u<A,

with

2
minimum MSE = %’U (5)

where o2 is the variance of the white complex Gaussian noise [22].

Definition 3. For training sequences {x,}2*, where the sequences have i-
dentical energy of E, they are called optimal training sequences of SC-MIMO
systems under LS channel estimator if and only they satisfy (4).

3.1. Proposed Training Framework For Broadband GSM Systems

We define the training matrix 2 as

X1 Tio 11 T1L-1

X2 Tao L2101 - T2L-1
Q = =

XNy TN 0 TNl o TNy L-1

NixL

Note that in GSM system, there are N,.ive TAs activated over every time-
slot. Hence, 2 should be a sparse matrix where each training sequence x,
(1 <n < Ng) has Q = L/ [N¢/Naetive| non-zero entries. In this paper, for
simplicity, we suppose N,cive divides N;. We consider the non-zero entries

having identical magnitude of 1, and each training sequence has energy of

E=Q.
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Let Ny = nNqctive where n is an integer with 0 < n < D = N;/Nyctive- Let
S = {51,82, ...,SN

active

} be a set of sequence sets, where Sy = {Si.1,Sk2, ..., Sk.0}
and sg.m = (Skm(0), Skm (1), .oy SEm(Q — 1)) for 1 <k < Naegive and 1 < m <
Sl,m

SQ,m

D. For 1 <m < D, define X,, = and

SN. ..
active,T
Nactive X Q

T° (X10N, e x(D-1)Q)
TQ (XQONactiveX (Dfl)Q)

Q:

TP (XpOy, .ux(D-1)0)

An example of training matrix 2 having Ny = 4, Nactive = 2 and L = 2Q)

NtXL

is shown below,

X1 S1,1 0
X9 8271 0
Q p— pu— y
X3 0 S1,2
X4 0 S22

4x2Q

where 0 denotes O1xq. Clearly, ¢y, x,(u) = ps; s, (u) and ¢y, x () =
Py s, (@ —u) for 0 < u < Q—1, and there are no unimodular sequences
having aperiodic zero-correlation zones. This implies that ) cannot satis-
fy the optimal condition of GSM training sequences as (4). Note that the
good correlation properties of traditional MIMO training sequences may not
be maintained due to the sparsity of active antennas, meaning that optimal
performance under LS estimator by traditional MIMO training sequences

may not be attainable.
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To solve this problem, we consider &7 = {S{,Sg, ...,S]{,

active

1<y <

J) be J sets of sequence sets, where S = {s@l,s{;’Q,...,si’M} and sf;m =
(si’m(O), sim(l), o sim(ﬁ — 1)) is an unimodular sequence of length 6 for
1 <k < Native and 1 < m < M, and the training matrix 2 with the

following structure,

Q = (21,0n5,xx, Q2,085,x2, -5 27, 0N, x0), (6)
To (XijONactiveX(D_l)e)
Ta (XgONactiveX(D_l)e)

J . ’

T(D_l)e (le)ONactiveX(D_l)e) Nix DO

where for 1 <n < D,

Nactivean Nactive X0

with J > 2 is a positive integer and Oy, in (6) is called the A-length zero-
time slot of €2. Note that DJO + A\J = L and JO = (). In the sequel, we

sometimes write the training matrix Q as (N¢, Nactive, A, J, 6) — Q.

Example 2. Training matriz (4,2, A, 2,60)—Q for channel estimation in GSM

17



1s shown in Fig. 2 with

X1
X9
X3

X4

02x6

Note that ¢x, x,(u) = 'OS%,uS%,l(u) + pSil’Sg’l(u) and Px, x;(u)
> (0 —w) for 0 < u <0 —1, which implies that the periodic zero

W+ rg,

ST

correlation of the training sequences can be obtained from the complemen-

tary aperiodic correlation of the short unimodular sequences in these training

sequences.

2]

ﬁf‘ 02x0
Xy

1
511
1
Sa5.1
lee

le@

OZXA

O1x9 O1xx S%1 O1x0
lee leA 531 lee
Sig O1xx Oixe Siz
552 O1xxn Oixe Siz

QYE O2x9 OQXA

O2sn O2xp  XF 02y

Sia

Figure 2: Training matrix with Ny = 4, Nactive = 2,J = 2, L = 46 + 2\

According to (4), the optimal GSM training criteria under the proposed

structure of training matrix in (6) can be concluded in the following lemma.

20

18
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Lemma 3. Q is called an optimal GSM training sequence matriz in (6) if

and only if it satisfies the following three equations:

J
S oy () =0, for 1 <u<A1<k< Noe

1 <n < Ny/Nactive; (7)
Zpsk s/ —0 f0T0<| |< A,lgk#k’/SNactivea
smn’ k’n
and 1 S n S Nt/Nactive; (8>
J
Zp o —U)ZO, forlgug)\, andlgk?ék/SNactivm
= kn+1 k: \n
1 SnSNt/Nactive_l' (9)

It can be easily verified that the following remark proposed in [22] is also

valid for our proposed structure.

Remark 1. (Remark 5 of [22]) For any training matriz with q-ary matrix

X (1<n<D,1<j<.J) whereq is even, J should be even.

Proposed Construction: Consider a (Ng, Nactive, A, J,0) — € training

matrix as follows.

Q:(Ql,ONtX)\,QQ,ONtXA,...,QJ7ONt><>\), (10)
TO (XjONactiveX(D_l)e) al"]
T (X:0p. . , a
where ; = ( J Nac‘tIVCX(D 1)9) and X, = ?,]
T(D-1)6 ()(jONaCmex(D—l)e) Nyx D6 AN, iive,
for 1 <j < J.

The following lemma is straightforward from (7)-(9) in Lemma 3.

19

Nactivc x6



Lemma 4. The training matriz in (10) is optimal if and only if { A1, Ao, ...,
Ay,

} satisfies the following two equations.

active

J
> pa, W) =0, forue{l, M JO-A.0-1}
j=1

1 S k S Nactive; (11)
J
Zpak’j,ak,d (u) =0,  forue {0} U{l, cy A} U{9 — A, 0—1}
j=1
1 S k 7é k, S Nactive- (12>

The training matrix €2 can be enlarged when J’ is a multiple of J, i.e.,

J' = tJ for some integer t, Q) can be enlarged to (Ny, Nactive, J',0) — Q' as

Q=10 - Q

[ J/

10 NixtJ(DO4X)
3.2. Minimum MSE for the Proposed Training Framework
In this subsection, we show the minimum MSE related to the sequence
length of S, Ej/Ny and the numbers of transmit antennas and activated
antennas and multi-paths which are denoted by Ny, Nctive and A + 1, re-
spectively, under the training framework proposed in Subsection A with each
training sequence having energy F.

Note that the sequence length of training sequence is L = Ny/Nyctive X

E

Nt/Nactivc X (A+9) ) Where

(A+6). Then, the energy per bit is E, = £ =
E FE
N~ , (13)

NO QUU%Nt/Nactive X ()\“‘9)

Ny = 202 is the power spectral density of the white complex Gaussian noise.

Combining (5) and (13), we have that
minimum MSE = (2 (N;/Nactive) (A + 6) Ey/No) . (14)
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Therefore, for given E,/Ny and Ny, the minimum MSE decreases with A and

0, and increases with N,ctive-

4. Symmetrical Z-complementary code set (SZCCS): Properties

And Constructions

This section presents the properties and constructions of SZCCSs. The

definition and some properties of SZCCSs are as follows.

Definition 4. For a positive integer Z, S = {S1,Ss,...,Sk} is called a
(K, M, L, Z)-SZCCS where Sk = {sk,l,sk,g,...,sk,M} CLTLd Sk,m = (Sk,m(0)7
Skm(1), oy skm(L—1)) 1<k <K, 1 <m < M), ifS satisfies the following

conditions:

C1: Cs,(u) =0, for |ul € T JTz;

C2: Cs,.5,(u) =0, for k # j and |u| € T1UT2U{0};

where Ty ={1,2,...Z} and T, ={L—-Z,L+1—-Z,..., L —1}.

According to Definition 4, Lemma 4 can be further expressed as the

following theorem.

Theorem 1. The training matriz in (10) is optimal if and only if { A, As, ...,
AN} 15 @ (Nactive, J, 0, X)-SZCCS, where Ay, = {ag1,a52,...,as} (1 <
k S Nactive)-

Remark 2. Note that SZCCS considers the cross-correlation function sum
between the different ZCCs, whereas, CZCP proposed in [22] is characterized

by the cross-correlation function sum of the sequences in a same ZCP.
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Figure 3: The correlation properties of (K, M, L, Z)-SZCCS

Fig. 3 illustrates the correlation properties of (K, M, L, Z)-SZCCS which
shows that there are ZCZs at both the front and tail of auto- or cross- cor-

relation sums. Note that when Z > %, a (K, M, L, Z)-SZCCS reduces to
a (K, M, L)-MOCCS defined in Definition 2. Hence, the following theorem

is straightforward from Lemma 2.

Theorem 2. Any unimodular (K, M, L, Z)-SZCCS S = {51, Sa, ..., Sk } sat-
isfies K < [y—flj L where S, = {Sk1,8k2, -+ »Skar} @nd Sk = (Sk.m(0), Sp.m (1),
sem(L—1)) (1 <k < K,1<m<M). In particular, when K = | 22& |,

Z+1
S is called an optimal (K, M, L, Z)-SZCCS.

Corollary 1. For any (K,M,L,Z)-SZCCS § = {51,8s, -+, Sk} where

Sk = {sk,l,sm, ...,Sk’M} and Sk,m = (Sk,m<0)7 5k,m<1); -u,Sk,m(L — 1)) (1 S
k<K, 1<m< M), it satisfies the following properties:

P1: S = {181,628y, ..., xSk} is also a (K, M, L, Z)-SZCCS, where ¢, € C
(

1 <k < K) is nonzero and ¢Sy = {CkSk.1, CkSk2 -+, CkSk.M )5
= —
P2: = {Sl,gg, oy Sk Yisalso a (K, M, L, Z)-SZCCS, wheregk = {%,%,
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coSian} and 8 = (Skm(L = 1), sgm(L = 2), ... s5.m(0) (1 < m <
M).

. =
Note that if S is optimal, S and S are also optimal.

Proof. The proof is straightforward according the definitions of aperiodic

auto-correlation, aperiodic cross-correlation and SZCCS, so we omit it here.

m
4.1. Proposed construction of optimal SZCCS
Theorem 3. Let q be an even integer, m > 4 and L = 2™, and let
q m—2 m
F0) =37 waatoin + Y e+
s=1 s=1
. I q
ax (%) =f () + &} ($250n-2) + Tan-2Te(m))
+ dg <gxﬂ'(mfl) + gl‘ﬂ'(ﬂ’L72)xﬂ'(m)> + dl?f <g$7r(m) + gxﬂ'(mfl)xﬂ'(m)>

q q a
+df (G2n1) 5 2)Tat) G Tnlm0Tr())

bk’(x) :ak(X) + gxﬂ’(l)a

where x € 75, p,pus are any given elements in Zg, 7 is a permutation
of the symbols {1,2,--- m} with {w(m — 1),7(m)} = {m — 1,m} and
(Dy = (d’f,d’g,d’g,d’j))izl =((0,0,0,0),(1,0,1,0),(1,1,0,0), (0,1,1,0),
(0,0,0,1),(1,0,1,1),(1,1,0,1),(0,1,1,1)). Then, the set

§= {Sk = {lp(ak)aw(bk)} k€ {1727 e 78}}
is an optimal (8,2,2™, 2m~% —1)-SZCCS.
Proof of Theorem 3: See Appendix A.
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Example 3. For ¢ = 2 and m = 4, let m be an identical permutation of
2

{1,2,3,4} with w(i) =i for 1 <i <4, and f(x) = > xpxpy1. Then,
k=1

S = {Sk = {w<ak)7w(bk)} ke {1727 T 78}}

is an optimal (8,2,16,3)-SZCCS, where

15 15 ..
(ICs.s,(w)) g = (IPo@nian (W) + Pumowmy @)~y (1 <i,j <8)

can be found in Table 2.

Remark 3. The significance of Theorem 3 is reflected in the following
aspects.

For sequence design:

o [t provides an infinite class of optimal SZCCSs, which means that it

can generate optimal SZCCSs for infinite groups of parameters.

o This construction s interesting since it is based on two facts we ob-

served.

1. For the aperiodic correlation sum of sequence pairs in Lemma 1,
the width of ZCZ Z can be controlled by the permutation m, which
means that if {w(1),7(2),--- ,7(v)} ={1,2,--- v} for a positive
v where 1 < v <m — 1, then, we have Z = 2" — 1.

2. The orthogonality of different sequence pairs in Lemma 1 can be

guaranteed by some offsets composed of some linear functions.

o The (8,2,2m 2m=2%)_.SZCCS constructed in Theorem 3 achieves the

theoretical upper bound on the size of the SZCCS proposed in Theorem
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3, which implies that for any K, if there exists a (K,2,2™,2™"% —1)-
SZCCS, then, we have K < 8. Furthermore, a (K,2,2™,2m"2 — 1)-
SZCCS can be obtained by selecting any K codes from an (8,2,2™,2m2)-
SZCCS.

For application in GSM systems:

o Fora(K,M,L,7Z)-SZCCS, K represents the maximum number of RF
chains that can be supported, Z+1 represents the number of multi-paths,
M(L+Z) represents the length of training sequences under the proposed
training framework in the sequel. Hence, for fized number of multi-
path and training sequence length, the bigger the K, the better. Note
that (8,2,2™, 2m=2)-SZCCS constructed in Theorem 3 is optimal, so
K = 8 is the best for the GSM systems under the proposed training
framework in the sequel with 2™~2 multi-paths and training sequence

length 2(2™ + 2m~2 —1).

However, the sequence length of the proposed optimal SZCCS is limited
to a power-of-two. The following subsection shows a construction of SZCCSs,

which are not optimal but with non-power-of-two sequence length.

4.2. Proposed construction of SZCCS with non-power-of-two lengths

Theorem 4. Let g be an even integer, m > 3, 1 < v < m—1 and L =

2m=1 L 9v and let

m—2 m—1
g(X) :g Zl‘ (s)Tr(s+1) + Z A sTr(s)Tm + Z/‘Lsms + i,
s=1 s=1 s=1

ax(x) =g(x) + g(/f — 1) (Tt + TnTa()) ,  bi(x) = ar(x) + d

2$7r(1)7
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where x € Z5', k € {1,2}, s, p, s are any given elements in Z,, and
is a permutation of the symbols {1,2,--- ,m} with {w(1),7(2),--- ,7(v)} =
{1,2,---,v} and m(m) =m. Then, S = {Sk = {Y(a),¥(bg)} : k=1,2} is
a (2,2,2m1 +2v, 2 — 1)-SZCCS.

Proof. The proof of Theorem 4 is similar with that of Theorem 3, so we

omit it here. O

Remark 4. When v =m—2 in Theorem 4, one can generate (2,2,2™ ! +
2m=2 9m=2_1).S7CCSs. However, to obtain SZCCSs with same Z = 2™ 2 —
1 using Theorem 3, the sequence length needs to be L = 2™, which is larger
than that of SZCCSs generated from Theorem 4. That means that when
the numbers of activated antennas and multi-paths are 2 and a power-of-two,
respectively, the SZCCS generated from Theorem 4 is a better choice than

that from Theorem 3 because of higher spectral efficiency.

5. Numerical Evaluation

In this section, we analyse the performance of the proposed SZCCSs in
Therorem 3 and Theorem 4 as the training sequences for GSM systems
over frequency-selective channels, based on the framework proposed in the
Subsection 3.1 for different settings of Ej,/Ny, number of multi-paths \ +
1, number of activated antennas Nu.ive and number of zero time-slots 6.
Consider the same frequency-selective channel in [22], where the A + 1-path
channel (separated by integer symbol durations) has uniform power delay
profile as Aft] = S°)_ hi6[t — nT] where h;’s are complex-valued Gaussian

random variables with zero mean and E (|hl|2) =1
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5.0.1. MSE comparison with the change of Ey/Ny
We consider a generic training-based single carrier GSM transmission
structure with IN; = 4 TAs, one receive antenna and N,.jve = 2 RF chains,
and a 6-path channel. Let the training matrix of the random binary se-
Sr1 0Oix32 Oixs  Sp2 Oixzz Oixs
quences for J = 2 be Q, = Sr3  Oixs2 Oixs  Sra Oixszz Oixs 7

O1x32 Sr1 Oixs  O1xa2 Sr2 Oixs

Oix32  Sr3  Oixs Oix32 spa Oixs
where s,.1,8,2,8,3,8,4 are randomly generated binary sequences of length

32. The aperiodic correlation sums of {s, 1,8,2,8,3,8,4} is presented in Fig.
4. Tt can be observed that there is no ZCZ in the these correlation sum-
s, which implies €, can not satisfy the optimal conditions in (7)-(9). Let
Qs be the training matrix of the proposed SZCCSs for J = 2, which can
be generated by replacing s, 1,8,.2,5:3,5:4 by Ss.1,852,8s 3,854, respectively,
where s, 1,852, 85,3, Ss 4 are the sequences in the first two sequence sets of the

proposed optimal (8, 2,32, 7)-SZCCS generated in Example 3, where

Ss,l - (+7+7+7_a+7+7_7+a+7+7+7_7_7_a+7_7+7+a+7_7+7+a_7
_'_7 +7 +7 +7 RN +7 _>7
SS,Z = (+7_7+7+7+7_7_7_>+7_7+7+7_7+7+7+7+7_7+7+7+7_a_7

) +7 ) +7 +7 _7+a +7 +)7

$s3 = (H++———+————+ -+ —+++-— -+
— == mh o o),

Ssa = (+,—+,+—+++—+—— =+ ++,+—++ =+,
+, =+, ===+, 1)
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The aperiodic correlation sums of {s,1,852,853,Ss4} is presented in Fig. 5,
where shows that there are symmetric ZCZs of width greater or equal to
7 in these aperiodic correlation sums. Hence, {ss1,Ss2,Ss3, Ss4} satisfies
the optimal conditions in (7)-(9) when A < 7. The argument for the cases
that J = 6,18 are the same. In Fig. 6 we evaluate the channel estimation
MSE performances of €2, and €25 when J = 2,6,18 and the E,/Ny runs
over {0,2,...,20}. Tt can be observed that when the number of multi-paths
is 6, the proposed (8,2,32,7)-SZCCS can be used to design optimal GSM
training matrix which attains the MSE lower bound, which outperforms that
of random binary sequences. Those performances are consistent with the
discussions of Figs. 4 and 5 above. Moreover, the MSE decreases when J

increases, which can be seen as the length of training sequences increases.

5.0.2. MSE comparison with the change of the number of multi-paths

We evaluate the channel estimation MSE performances for different values
of multi-paths for E,/Ny = 16 dB with 4 transmit antennas and 2 RF chains
in Fig. 9. We employ the first two sequence sets of the optimal (8,2,32,7)-
SZCCS constructed through Theorem 3 and the (2,2,24,7)-SZCCS in The-
orem 4 to generate our GSM training matrices. We compare their channel
estimation performances with those of the (16,8)-CZCP given in [22], the
Zadoff-Chu sequences of length 32 and binary random sequences of length
32. Let the training matrix of (16,8)-CZCP {a,b} be

a  Oixi6 O1xx b 016 01
b O1x16 O1xa a O1x16 O1xn
O1x16 a O1xxn Oixi6 b 015

Oix16 b O1xx Oixi6 a 015
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Figure 6: MSE comparison, for (8,2, 16,7)-
SZCCS , where the number of multi-paths
is 6, Ny =4, Nactive = 2 and J € {2,6, 18}

Figure 7: Aperiodic correlation sums of the

training matrix of (16,8)-CZCP

where a = (1,1,1,—1,1,1,-1,1,1,—1,1,1,1,—-1,~1,—1),b = (1,1,1, -1,
1,1,-1,1,—-1,1,—1,—1,—1,1,1, 1). The aperiodic correlation sums of {a, b}
is shown in Fig. 7, it can be observed that {a, b} satisfies optimal conditions

in (7) and (9) without satisfying (8) when A < 8. Let the training matrix of
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four Zadoff-Chu sequences s.. 1,52, Szc,3, Szca b€

Sze,1 O1x32 O1xa Sze,2 O1x32 O1x
0. — Sze3  Oixz2 Oixn Szea Oixza O1xy |

O1x32  Sze1 Oixn Oixzz S.co2 O

0132 Sz¢,3 O1xn Oixa2 Sze,4 015
where S..1,8.¢,2, 523, Szc4 are Zadoff-Chu sequences of length 32 generated
with roots being 1, 3, 5, 7, respectively. The aperiodic correlation sums of
{S2c1:82¢2:S2¢3, Sz} 1s shown in Fig. 8, which implies that {s..1,S.c2, Szc3,
S:c4} has no ZCZs and can not satisfy optimal conditions in (7)-(9) for any
A > 0. Fig. 9 shows that the proposed SZCCSs lead to optimal GSM training
matrices which attain the MSE lower bound when the number of multi-paths
A+ 1 is less than or equal to Z + 1. Note that the minimum MSE decreases
with the number of multi-paths A + 1, which is consistent with (14). It is
noted that the MSE performance corresponding to CZCP, which is proposed
in [22] for optimal training of SM systems, is close to that of the Zadoff-Chu
sequence and binary random sequence, indicating that CZCP may not be

suitable for training matrix design in GSM systems.

5.0.3. MSE comparison with the change of the number of activated antennas

Fig. 10 shows that every GSM training matrix corresponding to the
proposed SZCCSs attains the MSE lower bound when the number of the
activated antennas N,.ive 18 less than or equal to the size K of the SZCCS,
and the minimum MSE increases with the number of activated antennas
Nactive- Note that when N,.ive = 1, the system is an SM system, which
implies that the proposed training framework and SZCCSs are also applicable

for the optimal training in SM systems.
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15.

posed proposed SZCCSs for various Nactive
with Ey/Ny=16 dB and A\ = 3.

5.0.4. MSE comparison with the change of the number of zero time-slots

Finally, we evaluate the channel estimation MSE performances of the
proposed (8, 2,64, 15)-SZCCS and (2, 2,48, 15)-SZCCS for different values of
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zero-time slots with fixed A = 15 in Fig. 11. One observes that reducing
or removing the zero-time slot has little influence on the performance of
the proposed GSM training matrices. Hence, in practical application, the

zero-time slot may be removed to improve the spectral efficiency.

6. Concluding Remarks

In this paper, we have proposed an optimal training design for the op-
timal channel estimation in broadband generalized spatial modulation sys-
tems using a new class of code sets called symmetrical Z-complementary
code sets which represents a stringent subclass of Z-complementary code set-
s. We point out that the training sequences for conventional multiple-input
multiple-output systems where the number of radio-frequency chains equals
that of transmit antennas is inapplicable in generalized spatial modulation.
The same may be said for spatial modulation systems with a single radio-
frequency chain. We have introduced a generic design of optimal general-
ized spatial modulation training matrix using symmetrical Z-complementary
code sets, where the inter-symbol interference and inter-channel interference
can be minimized by the zero aperiodic auto-correlation sums and aperi-
odic cross-correlation sums in front-end and tail-end zero-correlation zones.
Note that the number of radio-frequency chains that can be supported is
limited by the size of the applied symmetrical Z-complementary code sets,
and the maximum tolerable number of multi-paths depends on the width
of zero-correlation zones of aperiodic correlation sums for that symmetrical
Z-complementary code set. With the aid of generalized Boolean function,

we have constructed two classes of symmetrical Z-complementary code set-
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s including an optimal one with respect to the set size upper bound. We
have shown that the designed training matrix leads to minimum channel es-
timation mean-squared-error in frequency-selective channels, which are also

applicable to SM and traditional MIMO systems.

Appendix A. Proof of Theorem 3

Proof. According to (1) and Definition 4, this proof can be divided into

two steps. In the first step, it should be demonstrated that
Cs, (1) = py(an) (1) + pypwy(u) =0,  forue Ti| Tz, 1 <k < 8(A1)

where 7; = {1,2,--- ,2"2-1} and T5 = {2m+41—2m"2 2m42_2m=2 ... om_

1}. In the second step, it needs to prove that

Cs,.5. (1) = py(an)ian (1) + Puwwmn (W) =0, for ue {0} T[T
1<k#n<8 (A2

For any integers i and u, let j = i4u; also let (i1, 42, -+ , i) and (j1, jo, "+, Jm)
be the binary representations of ¢ and j, respectively. Without loss of gener-

ality, we only discuss the cases when k,n = 1,2 here.

Step 1 : When D; = (0,0,0,0), it is clear that a;(x) = f(x), then, by
Lemma 1, we have that S; = {¢(a;),?(b;)} is a GCP of 2™ and

putan) (1) + puoy(u) = 0, for [u € {1,2,--- 2" =1} DT | J .
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When Dy = (1,0, 1,0), then, we have

m—2 m
q q q
az(x) =5 z; Tr(s)Tr(s+1) T ;Ms% +p+ (51'71’(17172) + §xﬂ(m72)$ﬂ'(m)>
q q
+ (5 m(m) + él'ﬂ(mfl)xﬂ'(m)) )
q
ba(x) =az(x) + S Tr).

For uw € T1 |73, (A.1) can be further expressed as

2Mm—1—u
S (enl-ml) 4 gh)-n) _ g (A.3)
=0
where
N o ~
a2( - CL2 :é Z ZW(S Z7r s+1) jTr(s)]ﬂ'(s-l—l)) + Z Hs (Zs - js)
s=1 s=1
4q q,. . . .
+ §(Z7r(m 2) — ]7r(m 2)) + é(zw(m—Q)Zw(m) - JW(m—Z)]W(m))
q . q,. . ) .
+ §(Z7r(m) - jw(m)) + é(zw(m—l)lw(m) - Jw(m—l)jﬂ'(m))a

bai) = ba(j) =ax(d) = a2(j) + 5 (i) = Juy) -

If ir(1) # Jr(), it is straightforward that o220 = —¢b2(0=b20) and
ga2()=a2(j) 4 ¢b2()=b205) — (.

If iz1) = Jr(1), We have as(i) —as(j) = ba(i) —b2(j). Let ¢ be the smallest
integer such that i ) # jr), obviously, 2 < t < m — 2, otherwise,
since {m(1),7(2),--- ,7(m —2)} = {1,2,--- ,;m — 2}, then, we have
w € {2m2 gm~1 gm=1 4 9m=2} "which is contradict with u € 71| 7z.
Let i and j' be integers which are different from 7 and j in only one

position 7(t — 1), i.e., z';(t_l) = 1 —irq-1) and j;(t_l) =1— Jru-1
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respectively, and so j' = ¢ +u, 0 < 4,5/ < 2™ —1 and i;g) = j;(1)~
Note that

. . . N q . . q . .
as(i') — as(j') =az(i) — as(j) + 5(1 — 2in(—1))lin(t) — 5(1 — 2Jn(t—1))J=(t)

. . q
=a(i) — az(j) + 5 (mod q).
This implies £22(0-20) 4 goa)=ax(’) — ¢ba(@D=bai) 4 ehali)=bali) — (.

Combining these cases above, we have (A.3) holds.

Step 2 : Eq. (A.2) can be further expressed as

i 21: ' (fal(i)—@(j) + gbl(i)—lm(j)) =0, (A.4)
=0
where
m—2
ay (i) — as(j) :g (in(s)in(st1) = Jn(s)dn(s 1)) = %Jﬂm—z) - gﬂ'ﬂm)
s=1

q . . q . ‘ =
- 5]#(m—2)]7r(m) - §]ﬂ(m—l)]7r(m) + Z s (ls - ]s) )
s=1
. . . . q . .
bi(i) — ba(j) =a1(i) — az(j) + 5 (%(1) - ]ﬂ(l)) .
For uw = 0, then, we have ¢+ = 5 and

aq (Z) — ag(’i) = bl(Z) — bg(l)

_giw(me) — giw(mfZ)Z-w(m) — giw(m) — giw(mq)iw(m)-
2 2 2 2

So, (A.4) can be reduced as

2m_1—u om—1_1 2m_1
2 3 (g ( ST <>>
i=0 =0 i=2m—1
=2(040)=0



For u € T1|J 72, under the same way of the proof of Step 1, we arrive

at
2m_1—y

Z (faQ(i)—al(j) + 662(i)—b1(j)) =0. (A.5)
i=0
Combining the cases above, we can conclude that

Cs, (1) = py(an) (1) + pywy(w) =0, for jul € Ti| T, 1<k <2,

and

031,52 (u) = p¢(al)7w(32)(u) + de(bl),I/)(bQ)(u) = O? for |U| € {0} U 71 L_J7d2

The proof is completed. n
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