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Abstract

This paper considers the optimal training design for broadband generalized

spatial modulation systems over frequency-selective channels using a novel

class of code sets introduced, called “symmetrical Z-complementary code set-

s”, whose aperiodic auto- and cross- correlation sums exhibit zero-correlation

zones at both the front-end and tail-end of the entire correlation window. T-

wo constructions of (optimal) symmetrical Z-complementary code sets based

on generalized Boolean functions are presented. Numerical evaluations indi-

cate that the proposed training sequences for generalized spatial modulation
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can achieve optimal channel estimation performance and outperform other

classes of sequences.

Keywords: Complementary code set, channel estimation, training sequence

design, generalized spatial modulation, frequency-selective channels

1. Introduction

Spatial modulation (SM) is a multiple-input multiple-output (MIMO)

technique which enjoys zero inter-channel interference over flat fading chan-

nels, low hardware complexity and low energy consumption. In SM, infor-

mation is transmitted over two parts: 1) spatial dimension, coordinated by

antenna indices, and 2) the conventional signal constellation of a modulation

scheme[1]. That is, information bits are conveyed through not only modu-

lation symbols, but also the index of the active transmit antenna (TA) [2].

Unlike SM system equipped with multiple TA elements but only a single

radio-frequency (RF) chain, two or more TAs are activated in generalized

spatial modulation (GSM) at each symbol slot and the specific activated

pattern itself conveys useful but implicit information [3]. Therefore, GSM

can achieve higher spectral efficiency than SM systems while maintaining

major advantages of SM [4, 5]. As a result, GSM strikes a flexible trade-off

among spectral efficiency, cost of RF chains and energy efficiency by varying

the number of RF chains[6, 7]. These advantages make GSM a competitive

candidate for the next generation wireless networks [8].

There have been many iterative and non-iterative detector designs for

GSM systems [9]. However, most of these detectors, e.g., the tree-search

based detector [10] and the near-ML-detector [11], consider narrow-band s-
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cenarios where GSM symbols are transmitted over flat-fading channels. This

is different from practical wireless channels which may exhibit frequency se-

lective properties. In recent years, various types of GSM detectors have been

proposed for broadband GSM to combat the effects of inter-symbol interfer-

ence imposed by frequency-selective fading channels [12, 13, 14]. For exam-

ple, a novel soft-decision feedback aided time-domain turbo equalizer based

on the minimum mean-square error criterion [14] was proposed for broad-

band GSM systems. In [15], a frequency-domain based turbo equalizer was

developed for GSM under dispersive channels. In these works, perfect chan-

nel state information at the receiver was assumed. Recently, there appeared

some literature on the channel estimators in GSM systems. For example,

a channel estimation scheme based on block pilot pattern and a interpola-

tion method was proposed in [16], which is designed for the GSM-orthogonal

frequency-division multiplexing system on high-speed railways. In [17], they

proposed pilot-assisted and data-aided super-resolution MIMO channel es-

timators for GSM-based millimeter-wave systems. Message-passing based

blind channel-and-signal estimation and semi-blind channel-and-signal esti-

mation algorithms were developed for massive MIMO systems with GSM

[18], which utilize the channel sparsity of the massive MIMO channel and

the signal sparsity of GSM. However, to the best of our knowledge, all the

existing methods for channel estimation in GSM systems are about the blind

and semi-blind estimation algorithms, which usually have high computation-

al complexity, and can not attain optimal estimation in theory.

A major concern of this work is how to attain optimal estimation of chan-

nel state information in broadband GSM systems. A common means of ob-
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taining channel state information is by sending properly designed preamble

sequences at the transmitter, followed by correlating the known preamble

sequences at the receiver. It is noted that optimal channel estimation re-

quires preamble sequences with zero nontrivial auto- and cross-correlations.

However, the employment of conventional preamble sequences in GSM is not

straightforward. Since only a few RF chains whose number is less than that

of TAs are activated at each GSM time-slot and hence the transmit signal of

GSM is sparse, it is hard to adopt those training sequences which are dense

for traditional MIMO systems [19, 20, 21]. On the other hand, when the

number of RF chains is greater than one, training sequences designed for SM

systems [22] are also inapplicable. To attain optimal training in GSM sys-

tems, we propose and construct a novel class of code sets called symmetrical

Z-complementary code set (SZCCS). In the sequel, we overview a number of

code sets followed by our major contributions of this work.

1.1. Complementary Code Sets

Sequence sets with good correlation properties play an instrumental role

in almost every communication system. For example, they can be used for

localization [23], synchronization, channel estimation [24, 25], and interfer-

ence suppression/mitigation in multiuser systems [26, 27, 28]. An interesting

sequence family is called “complementary code” which was proposed by T-

seng and Liu in [29], where the aperiodic auto-correlation sum of all the

constituent sequences equals zero at any nonzero time-shift. A special case

of complementary code is Golay complementary pairs (GCPs) which were

first found by Golay [30] and each GCP consists of only two sequences.

Extensive research attempts have been made concerning the constructions
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and applications of complementary codes and GCPs. A remarkable work

was contributed by Davis and Jedwab [31] who constructed polyphase GCPs

[32] using the algebraic tool of generalized Boolean functions. Subsequently,

representative constructions of complementary codes were proposed in [33,

34, 35, 36]. To obtain more flexible parameters,“ complementary code” was

extended to Z-complementary code (ZCC) in [37], where the aperiodic auto-

correlation sum is zero when the time-shift falls into a region around the

in-phase position called zero-correlation zone (ZCZ).

Besides, Tseng and Liu studied in [29] “mutually orthogonal comple-

mentary code set (MOCCS)”, which refers to a set of complementary codes

with zero aperiodic cross-correlation sums between different complementary

codes. Further developments of MOCCSs were reported in [38, 39, 40, 41, 42].

However, MOCCS suffers from limited set size which is upper bounded

by the number of constituent sequences (i.e., the flock size) in each code.

To overcome this weakness, the concept of MOCCS was extended to Z-

complementary code sets (ZCCSs) for higher set sizes [37].

So far, the existing known constructions of ZCCSs only consider the

front-end1 ZCZ of the aperiodic auto-correlation sums and aperiodic cross-

correlation sums. Unlike the state-of-the-art works, we consider a specific

subclass of ZCCSs named SZCCSs which exhibit both the front-end ZCZ

and tail-end ZCZ properties. In practice, a front-end ZCZ and a tail-end

ZCZ have particular interest for mitigating interference with small and large

delays, respectively. We will show in Section 3 that the properties of SZCCSs

1with respect to the entire correlation window.

5



are useful for mitigating multipath interference and multi-antenna interfer-

ence in GSM systems.

1.2. Novelty and Contributions of This Paper

The main contributions and novelty of this paper are summarized as

follows.

1) We present a generic training framework for optimal GSM training over

frequency selective channels. The most distinctive feature of the pro-

posed generic training framework (compared that for conventional MI-

MO systems) is that the training matrix should be sparse owing to the

sparsity of the GSM transmit signals. Based on this framework, we

derive the optimal GSM training criteria under least square channel

estimator.

2) According to the derived the optimal GSM training criteria, we introduce

a novel class of ZCCSs called SZCCSs, each of which displaying zero

tail-end auto/cross-correlation sums symmetrical to that of the front-

end ones. More restrictive than the conventional ZCCSs, the design

challenge of SZCCSs stems from the additional correlation properties

associated to the tail-end ZCZ, and show that SZCCS plays a pivotal

role in the design of optimal GSM training sequences. Then, we pro-

pose two systematic constructions of SZCCS with different set sizes and

sequence lengths using generalized Boolean functions. Especially, the

SZCCSs generated from the first construction is optimal with power-of-

two lengths, and the SZCCSs of non-power-of-two lengths constructed

in the second construction have larger zero-correlation ratio than the
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former with specific parameters, which means that its sequence length

can be smaller than the former when the maximum number of mul-

tipaths is same, so as to improve spectral efficiency. To the best of

our knowledge, this paper is the first to consider the sequence design

for the channel estimation in GSM systems. Numerical evaluations

indicate that the proposed GSM training sequences lead to minimum

channel estimation mean-square error and significantly outperform oth-

er classes of sequences (e.g., Zadoff-Chu sequences and binary random

sequences) with different settings of activated transmit antennas and

signal-to-noise ratios.

1.3. Organization of This Paper

The remainder of this paper is organized as follows. Section 2 introduces

some notations, ZCCSs and the mathematical tools used in the paper fol-

lowed by a sketch of the basic principle of GSM. In Section 3 , first, we

present a generic training framework for GSM training over frequency se-

lective channels. Then, we derive the optimal GSM training criteria under

LS channel estimator. In Section 4, we first present SZCCSs which play an

instrumental role in the design of optimal GSM training sequences, and show

an upper bound of the size of SZCCSs. Then, we give two constructions of

SZCCSs with different set sizes based on generalized Boolean functions where

one is optimal. Section 5 shows some numerical evaluations of the proposed

GSM training sequences. Finally, Section 6 concludes this paper with some

remarks.

For readability, we summarize in Table 1 all the acronyms which are used

in this paper.
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Table 1: List of acronyms

Acronyms Descriptions

CP cyclic prefix

CZCP cross Z-complementary pair

GCP Golay complementary pair

GSM generalized spatial modulation

LS least square

MIMO multiple-input multiple-output

MOCCS mutually orthogonal complementary code set

MSE mean-square error

RF radio-frequency

SM spatial modulation

SZCCS symmetrical Z-complementary code set

TA transmit antenna

ZCC Z-complementary code

ZCCS Z-complementary code set

ZCZ zero-correlation zone

ZP zero prefix

2. Preliminaries

2.1. Notations

The following notations will be used throughout this paper.

• T τ (X) denotes the right-cyclic-shift of matrix X for τ (non-negative

integer) positions over rows;
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• 0m×n denotes an all-0 matrix of order m× n;

• bjcJ denotes the modulo J operation of integer j;.

Let a = (a(0), a(1), · · · , a(L − 1)) and b = (b(0), b(1), · · · , b(L − 1)) be

two complex-valued sequences of length L. The aperiodic cross-correlation

function between a and b at a time shift u is defined by

ρa,b(u) =


∑L−1−u

i=0 a(i)b∗(i+ u), 0 ≤ u ≤ L− 1;∑L−1+u
i=0 a(i− u)b∗(i), −(L− 1) ≤ u ≤ −1;

0, |u| ≥ L.

It is easy to verify that

ρa,b(u) = ρ∗b,a(−u). (1)

If a = b, ρa,b is called the aperiodic auto-correlation function, denoted by ρa

for simplicity.

Also, denote by φa,b(u) the periodic cross-correlation between a and b,

i.e.,

φa,b(u) =
L−1∑
i=0

a(i)b∗(bi+ ucL).

In particular, let A = {a1, a2, ..., aM} and B = {b1,b2, ...,bM} be two se-

quence sets of size M and length L. The aperiodic cross-correlation function

between A and B at a time shift u is defined by CA,B(u) =
∑M

m=1 ρam,bm(u).

Similarly, if A = B, CA,B is called the aperiodic auto-correlation function of

sequence set A, denoted by CA for simplicity.

2.2. Generalized Boolean Functions

Let q be a positive integer, for x = (x1, x2, · · · , xm) ∈ Zm2 , a generalized

Boolean function f(x) is defined as a mapping f from {0, 1}m to Zq. Given
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f(x), define

f = (f(0), f(1), ..., f(2m − 1)), (2)

where f(i) = f(i1, i2, · · · , im), and (i1, i2, · · · , im) is the binary representation

of i =
∑m

k=1 ik2
k−1 with im denoting the most significant bit.

In this paper, we consider truncated versions of the sequence f of (2).

Specifically, let f (L) be a sequence of length L obtained from f by ignoring the

last 2m−L elements of the sequence f . That is, f (L) = (f(0), f(1), · · · , f(L−

1)) is a sequence of length L. Let ξq = exp(2π
√
−1/q) be a primitive q-

th complex root of unity. One can naturally associate a complex-valued

sequence ψ(f (L)) of length L with f (L) as

ψ(f (L)) := (ξf(0)
q , ξf(1)

q , · · · , ξf(L−1)
q ). (3)

From now on, whenever the context is clear, we ignore the superscript of f (L)

unless the sequence length is specified.

2.3. Introduction to ZCCS

Definition 1. Let A = {am}Mm=1 be a set of M complex-valued sequences of

length L. It is said to be a (aperiodic) (M,L,Z)-ZCC of size M if CA(u) = 0

for any 0 < |u| ≤ Z where Z is a positive integer with 1 ≤ Z ≤ L − 1. In

particular, when Z = L − 1, the set is called a (aperiodic) complementary

code, and when M = 2 it is called a (aperiodic) GCP.

The following lemma shows a construction of GCPs, which will be used

in the sequel.
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Lemma 1 (Corollary 11 of [33], Theorem 3.3 of [43]). Let q be an even

integer and m be a positive integer. Let

a(x) =
q

2

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑
k=1

ckxk + c,

b(x) = a(x) +
q

2
xπ(1), c(x) = a(x) +

q

2
xm,

where π is a permutation of {1, 2, · · · ,m} and x ∈ Zm2 , ck, c ∈ Zq. Then

(ψ(a), ψ(b)) and (ψ(a), ψ(c)) are GCPs of length 2m.

Definition 2. Let S = {S1,S2, · · · ,SK}, where each Sk = {sk,1, sk,2, ..., sk,M}

(1 ≤ k ≤ K) be a ZCC consisting of M length-L sequences. S is called a

(K,M,L, Z)-ZCCS if CSi,Sk(u) = 0, ∀ 1 ≤ i 6= k ≤ K and |u| ≤ Z. In

particular, when Z = L, it is called a (K,M,L)-MOCCS.

The following lemma is about the upper bound of the size of ZCCS, which

was proposed in [37].

Lemma 2. ([37], [44]) Any unimodular (K,M,L, Z)-ZCCS S = {S1,S2,

...,SK} satisfies K ≤
⌊
ML
Z+1

⌋
, where Sk = {sk,1, sk,2, · · · , sk,M} and sk,m =

(sk,m(0), sk,m(1), · · · , sk,m(L− 1)) (1 ≤ k ≤ K, 1 ≤ m ≤M). In particular,

when K =
⌊
ML
Z+1

⌋
, S is called an optimal (K,M,L, Z)-ZCCS.

2.4. Introduction to GSM

We consider a single-carrier GSM (SC-GSM) system withNt TA elements,

Nr receive antennas and Nactive transmit RF chains over frequency-selective

channels. Moreover, we consider a QAM/PSK modulation with constellation

size of MGSM. An Nactive × Nt switch connects the RF chains to the TAs.

In a given channel use, each user selects Nactive in Nt TAs, and transmit
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Nactive symbols from a QAM/PSK modulation alphabet A on the selected

antennas. The remaining Nt − Nactive antennas remain silent. Fig. 1 shows

the GSM transmitter at the user terminal. Over each time-slot k, there are
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Figure 1: The structure of a GSM transmitter, where {i1, i2, · · · , iNactive} denotes the

index set of activated TAs.⌊
log2

(
Nt

Nactive

)⌋
+ blog2 |A|c bits, denoted by b, conveyed by a GSM transmit-

ter. Specially, the first
⌊
log2

(
Nt

Nactive

)⌋
bits, denoted by b1, are used to active

the i1th, i2th, ..., iNactive
th TAs through a antenna activation pattern selector,

which is determined by the mapping between information bits and antenna

activation patterns. The table in Fig. 1 gives an example of that mapping for

Nt = 5 and Nactive = 2. Suppose the selected antenna activation pattern is

denoted by s, where “1” in s indicates that the antenna corresponding to that
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coordinate is active and silent otherwise. The last blog2 |A|c bits, denoted

by b2, are used to select Nactive “constellation symbols” B1,B2, · · · ,BNactive

through a modulation symbol mapper, conveyed through the Nactive activat-

ed antennas after adding zero prefix (ZP) or cyclic prefix (CP) to combat

dispersive GSM channels, respectively. Details of GSM transmit principle

can be found in [2].

Example 1. Consider an SC-GSM system with Nactive = 2 RF chains and

Nt = 5 TAs using BPSK modulation MGSM = 2. Specifically, two out of the

five transmit antennas are activated at each time-slot using
⌊
log2

(
5
2

)⌋
= 3 in-

formation bits. In total, there are only 2blog2(
5
2)c = 8 activation patterns for

signaling. The mapping of information bits to an activation pattern in GSM

refers to the table in Fig. 1. For illustration purpose, we consider natural

mapping for BPSK modulation over each activated TA. Suppose each SC-

GSM block constitutes 4 GSM symbols. Suppose further these symbols corre-

spond to 16 message bits (1001111011000100), with symbols b(1) = (1001),

b(2) = (1110), b(3) = (1100) and b(4) = (0100). Taking the first GSM

symbol for example, we have b(1) = (b1(1),b2(1)) where b1(1) = (100) s-

elects the antenna activation pattern s = (1, 0, 0, 1, 0)T , and b2(1) = (1)

which implies that the modulated symbols B1 = B2 = ξ1
2 = −1. This means

that during the first time-slot, the first and fourth TAs are activated for the

sending of BPSK symbol −1. Then, the first GSM symbol can be written as

d1 = (−1, 0, 0,−1, 0)T . The entire SC-GSM block can be expressed by the
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sparse matrix:

(d1,d2,d3,d4) =



−1 1 0 1

0 0 0 0

0 0 0 1

−1 0 1 0

0 1 1 0


.

Note that if SM is used instead with the same modulation order, the number

of transmit antennas must be increased to eight to maintain the same spectral

efficiency.

3. Training Framework for Broadband GSM Systems

In this section, based on the generic training-based SC-MIMO transmis-

sion structure as shown in [22], we present a GSM training framework using

sparse matrices and derive the correlation properties of the row sequences of

such a sparse matrix.

We consider the training setting with a length-λ CP and Nt TAs over

quasi-static frequency-selective channel. We denote the channel impulse re-

sponse (CIR) from the n-th (1 ≤ n ≤ Nt) transmit antenna to the receiver

as hn = (hn,0, hn,1, ..., hn,λ)
T where hn,l (0 ≤ l ≤ λ) is the channel coefficient

of the l-th path. Note that there is a training sequence followed by data

payload in each block at a TA and CP is placed at the front of the training

sequence [22]. Let xn = (xn,0, xn,1, ..., xn,L−1) be the training sequence trans-

mitted over the n-th TA. We assume that all the training sequences have

identical energy of E. Then, the minimum MSE under LS channel estimator
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is achieved if and only if

φxi,xj(u) =


E, if i = j, u = 0,

0, if i 6= j, 0 ≤ u ≤ λ,

0, if i = j, 1 ≤ u ≤ λ,

(4)

with

minimum MSE =
σ2
w

E
(5)

where σ2
w is the variance of the white complex Gaussian noise [22].

Definition 3. For training sequences {xn}Ntn=1 where the sequences have i-

dentical energy of E, they are called optimal training sequences of SC-MIMO

systems under LS channel estimator if and only they satisfy (4).

3.1. Proposed Training Framework For Broadband GSM Systems

We define the training matrix Ω as

Ω =


x1

x2

...

xNt

 =


x1,0 x1,1 · · · x1,L−1

x2,0 x2,1 · · · x2,L−1

...
...

. . .
...

xNt,0 xNt,1 · · · xNt,L−1


Nt×L

.

Note that in GSM system, there are Nactive TAs activated over every time-

slot. Hence, Ω should be a sparse matrix where each training sequence xn

(1 ≤ n ≤ Nt) has Q = L/ dNt/Nactivee non-zero entries. In this paper, for

simplicity, we suppose Nactive divides Nt. We consider the non-zero entries

having identical magnitude of 1, and each training sequence has energy of

E = Q.
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Let Nt = nNactive where n is an integer with 0 ≤ n ≤ D = Nt/Nactive. Let

S = {S1,S2, ...,SNactive
} be a set of sequence sets, where Sk = {sk,1, sk,2, ..., sk,D}

and sk,m = (sk,m(0), sk,m(1), ..., sk,m(Q− 1)) for 1 ≤ k ≤ Nactive and 1 ≤ m ≤

D. For 1 ≤ m ≤ D, define Xm =


s1,m

s2,m

...

sNactive,m


Nactive×Q

and

Ω =


T 0
(
X10Nactive×(D−1)Q

)
TQ
(
X20Nactive×(D−1)Q

)
...

T (D−1)Q
(
XD0Nactive×(D−1)Q

)


Nt×L

.

An example of training matrix Ω having Nt = 4, Nactive = 2 and L = 2Q

is shown below,

Ω =


x1

x2

x3

x4

 =


s1,1 0

s2,1 0

0 s1,2

0 s2,2


4×2Q

,

where 0 denotes 01×Q. Clearly, φx1,x2(u) = ρs1,1,s2,1(u) and φx1,x3(u) =

ρ∗s1,2,s1,1(Q − u) for 0 ≤ u ≤ Q − 1, and there are no unimodular sequences

having aperiodic zero-correlation zones. This implies that Ω cannot satis-

fy the optimal condition of GSM training sequences as (4). Note that the

good correlation properties of traditional MIMO training sequences may not

be maintained due to the sparsity of active antennas, meaning that optimal

performance under LS estimator by traditional MIMO training sequences

may not be attainable.
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To solve this problem, we consider Sj = {Sj1 ,S
j
2 , ...,S

j
Nactive

}(1 ≤ j ≤

J) be J sets of sequence sets, where Sjk = {sjk,1, s
j
k,2, ..., s

j
k,M} and sjk,m =(

sjk,m(0), sjk,m(1), ..., sjk,m(θ − 1)
)

is an unimodular sequence of length θ for

1 ≤ k ≤ Nactive and 1 ≤ m ≤ M , and the training matrix Ω with the

following structure,

Ω = (Ω1,0Nt×λ,Ω2,0Nt×λ, ...,ΩJ ,0Nt×λ), (6)

Ωj =


T 0
(
X j

1 0Nactive×(D−1)θ

)
T θ
(
X j

2 0Nactive×(D−1)θ

)
...

T (D−1)θ
(
X j
D0Nactive×(D−1)θ

)


Nt×Dθ

,

where for 1 ≤ n ≤ D,

X j
n =


sj1,n

sj2,n
...

sjNactive,n


Nactive×θ

with J ≥ 2 is a positive integer and 0Nt×λ in (6) is called the λ-length zero-

time slot of Ω. Note that DJθ + λJ = L and Jθ = Q. In the sequel, we

sometimes write the training matrix Ω as (Nt, Nactive, λ, J, θ)− Ω.

Example 2. Training matrix (4, 2, λ, 2, θ)−Ω for channel estimation in GSM
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is shown in Fig. 2 with

Ω =


x1

x2

x3

x4

 =


s1

1,1 01×θ 01×λ s2
1,1 01×θ 01×λ

s1
2,1 01×θ 01×λ s2

2,1 01×θ 01×λ

01×θ s1
1,2 01×λ 01×θ s2

1,2 01×λ

01×θ s1
2,2 01×λ 01×θ s2

2,2 01×λ


=

 X 1
1 02×θ 02×λ X 2

1 02×θ 02×λ

02×θ X 1
2 02×λ 02×θ X 2

2 02×λ

 .

Note that φx1,x2(u) = ρs11,1,s12,1(u) + ρs21,1,s22,1(u) and φx1,x3(u) = ρ∗
s11,2,s

1
1,1

(θ −

u) + ρ∗
s21,2,s

2
1,1

(θ − u) for 0 ≤ u ≤ θ − 1, which implies that the periodic zero

correlation of the training sequences can be obtained from the complemen-

tary aperiodic correlation of the short unimodular sequences in these training

sequences.

Figure 2: Training matrix with Nt = 4, Nactive = 2, J = 2, L = 4θ + 2λ

According to (4), the optimal GSM training criteria under the proposed

structure of training matrix in (6) can be concluded in the following lemma.
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Lemma 3. Ω is called an optimal GSM training sequence matrix in (6) if

and only if it satisfies the following three equations:

J∑
j=1

ρsjk,n
(u) = 0, for 1 ≤ u ≤ λ, 1 ≤ k ≤ Nactive,

1 ≤ n ≤ Nt/Nactive; (7)

J∑
j=1

ρsjk,n,s
j

k′,n
(u) = 0, for 0 ≤| u |≤ λ, 1 ≤ k 6= k′ ≤ Nactive,

and 1 ≤ n ≤ Nt/Nactive; (8)

J∑
j=1

ρsjk,n+1,s
j

k′,n
(θ − u) = 0, for 1 ≤ u ≤ λ, and 1 ≤ k 6= k′ ≤ Nactive,

1 ≤ n ≤ Nt/Nactive − 1. (9)

It can be easily verified that the following remark proposed in [22] is also

valid for our proposed structure.

Remark 1. (Remark 5 of [22]) For any training matrix with q-ary matrix

X j
n (1 ≤ n ≤ D, 1 ≤ j ≤ J) where q is even, J should be even.

Proposed Construction : Consider a (Nt, Nactive, λ, J, θ) − Ω training

matrix as follows.

Ω = (Ω1,0Nt×λ,Ω2,0Nt×λ, ...,ΩJ ,0Nt×λ) , (10)

where Ωj =


T 0
(
Xj0Nactive×(D−1)θ

)
T θ
(
Xj0Nactive×(D−1)θ

)
...

T (D−1)θ
(
Xj0Nactive×(D−1)θ

)


Nt×Dθ

and Xj =


a1,j

a2,j

...

aNactive,j


Nactive×θ

for 1 ≤ j ≤ J .

The following lemma is straightforward from (7)-(9) in Lemma 3.
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Lemma 4. The training matrix in (10) is optimal if and only if {A1,A2, ...,

ANactive} satisfies the following two equations.

J∑
j=1

ρak,j(u) = 0, for u ∈ {1, ..., λ}
⋃
{θ − λ, ..., θ − 1},

1 ≤ k ≤ Nactive; (11)
J∑
j=1

ρak,j ,ak′,j(u) = 0, for u ∈ {0}
⋃
{1, ..., λ}

⋃
{θ − λ, ..., θ − 1},

1 ≤ k 6= k′ ≤ Nactive. (12)

The training matrix Ω can be enlarged when J ′ is a multiple of J , i.e.,

J ′ = tJ for some integer t, Ω can be enlarged to (Nt, Nactive, J
′, θ)− Ω′ as

Ω′ =

 Ω Ω · · · Ω︸ ︷︷ ︸
t×Ω


Nt×tJ(Dθ+λ)

.

3.2. Minimum MSE for the Proposed Training Framework

In this subsection, we show the minimum MSE related to the sequence

length of S, Eb/N0 and the numbers of transmit antennas and activated

antennas and multi-paths which are denoted by Nt, Nactive and λ + 1, re-

spectively, under the training framework proposed in Subsection A with each

training sequence having energy E.

Note that the sequence length of training sequence is L = Nt/Nactive ×

(λ+ θ). Then, the energy per bit is Eb = E
L

= E
Nt/Nactive×(λ+θ)

, where

Eb
N0

=
E

2σ2
ωNt/Nactive × (λ+ θ)

, (13)

N0 = 2σ2
ω is the power spectral density of the white complex Gaussian noise.

Combining (5) and (13), we have that

minimum MSE = (2 (Nt/Nactive) (λ+ θ)Eb/N0)−1 . (14)
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Therefore, for given Eb/N0 and Nt, the minimum MSE decreases with λ and

θ, and increases with Nactive.

4. Symmetrical Z-complementary code set (SZCCS): Properties

And Constructions

This section presents the properties and constructions of SZCCSs. The

definition and some properties of SZCCSs are as follows.

Definition 4. For a positive integer Z, S = {S1,S2, ...,SK} is called a

(K,M,L, Z)-SZCCS where Sk = {sk,1, sk,2, ..., sk,M} and sk,m = (sk,m(0),

sk,m(1), ..., sk,m(L− 1)) (1 ≤ k ≤ K, 1 ≤ m ≤M), if S satisfies the following

conditions:

C1: CSk(u) = 0, for |u| ∈ T1

⋃
T2;

C2: CSk,Sj(u) = 0, for k 6= j and |u| ∈ T1

⋃
T2

⋃
{0};

where T1 = {1, 2, ..., Z} and T2 = {L− Z,L+ 1− Z, ..., L− 1}.

According to Definition 4, Lemma 4 can be further expressed as the

following theorem.

Theorem 1. The training matrix in (10) is optimal if and only if {A1,A2, ...,

ANactive} is a (Nactive, J, θ, λ)-SZCCS, where Ak = {ak,1, ak,2, ..., ak,J} (1 ≤

k ≤ Nactive).

Remark 2. Note that SZCCS considers the cross-correlation function sum

between the different ZCCs, whereas, CZCP proposed in [22] is characterized

by the cross-correlation function sum of the sequences in a same ZCP.
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0 1 2 Z 1L 2L L Z1Z  1L Z 

u

0 1 2 Z 1L 2L L Z1Z  1L Z 

u

... ...

... ... ... ...... ...

Figure 3: The correlation properties of (K,M,L,Z)-SZCCS

Fig. 3 illustrates the correlation properties of (K,M,L, Z)-SZCCS which

shows that there are ZCZs at both the front and tail of auto- or cross- cor-

relation sums. Note that when Z ≥ L−1
2

, a (K,M,L, Z)-SZCCS reduces to

a (K,M,L)-MOCCS defined in Definition 2. Hence, the following theorem

is straightforward from Lemma 2.

Theorem 2. Any unimodular (K,M,L, Z)-SZCCS S = {S1, S2, ...,SK} sat-

isfies K ≤
⌊
ML
Z+1

⌋
, where Sk = {sk,1, sk,2, · · · , sk,M} and sk,m = (sk,m(0), sk,m(1),

· · · , sk,m(L− 1)) (l ≤ k ≤ K, 1 ≤ m ≤M). In particular, when K =
⌊
ML
Z+1

⌋
,

S is called an optimal (K,M,L, Z)-SZCCS.

Corollary 1. For any (K,M,L, Z)-SZCCS S = {S1,S2, · · · , SK} where

Sk = {sk,1, sk,2, ..., sk,M} and sk,m = (sk,m(0), sk,m(1), ..., sk,m(L − 1)) (1 ≤

k ≤ K, 1 ≤ m ≤M), it satisfies the following properties:

P1: S̃ = {c1S1, c2S2, ..., cKSK} is also a (K,M,L, Z)-SZCCS, where ck ∈ C

(1 ≤ k ≤ K) is nonzero and ckSk = {cksk,1, cksk,2, ..., cksk,M};

P2:
←−
S = {

←−
S1,
←−
S2, ...,

←−
SK} is also a (K,M,L, Z)-SZCCS, where

←−
Sk = {←−sk,1,

←−sk,2,
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...,←−−sk,M} and ←−−sk,m = (sk,m(L− 1), sk,m(L− 2), ..., sk,m(0)) (1 ≤ m ≤

M).

Note that if S is optimal, S̃ and
←−
S are also optimal.

Proof. The proof is straightforward according the definitions of aperiodic

auto-correlation, aperiodic cross-correlation and SZCCS, so we omit it here.

4.1. Proposed construction of optimal SZCCS

Theorem 3. Let q be an even integer, m ≥ 4 and L = 2m, and let

f(x) =
q

2

m−2∑
s=1

xπ(s)xπ(s+1) +
m∑
s=1

µsxs + µ,

ak(x) =f(x) + dk1

(q
2
xπ(m−2) +

q

2
xπ(m−2)xπ(m)

)
+ dk2

(q
2
xπ(m−1) +

q

2
xπ(m−2)xπ(m)

)
+ dk3

(q
2
xπ(m) +

q

2
xπ(m−1)xπ(m)

)
+ dk4

(q
2
xπ(m−1) +

q

2
xπ(m−2)xπ(m) +

q

2
xπ(m−1)xπ(m)

)
,

bk(x) =ak(x) +
q

2
xπ(1),

where x ∈ Zm2 , µ, µs are any given elements in Zq, π is a permutation

of the symbols {1, 2, · · · ,m} with {π(m − 1), π(m)} = {m − 1,m} and(
Dk = (dk1, d

k
2, d

k
3, d

k
4)
)8

k=1
= ((0, 0, 0, 0), (1, 0, 1, 0), (1, 1, 0, 0), (0, 1, 1, 0),

(0, 0, 0, 1), (1, 0, 1, 1), (1, 1, 0, 1), (0, 1, 1, 1)). Then, the set

S = {Sk = {ψ(ak), ψ(bk)} : k ∈ {1, 2, · · · , 8}}

is an optimal (8, 2, 2m, 2m−2 − 1)-SZCCS.

Proof of Theorem 3: See Appendix A.
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Example 3. For q = 2 and m = 4, let π be an identical permutation of

{1, 2, 3, 4} with π(i) = i for 1 ≤ i ≤ 4, and f(x) =
2∑

k=1

xkxk+1. Then,

S = {Sk = {ψ(ak), ψ(bk)} : k ∈ {1, 2, · · · , 8}}

is an optimal (8, 2, 16, 3)-SZCCS, where

(
|CSi,Sj(u)|

)15

u=0
=
(
|ρψ(ai),ψ(aj)(u) + ρψ(bi),ψ(bj)(u)|

)15

u=0
(1 ≤ i, j ≤ 8)

can be found in Table 2.

Remark 3. The significance of Theorem 3 is reflected in the following

aspects.

For sequence design:

• It provides an infinite class of optimal SZCCSs, which means that it

can generate optimal SZCCSs for infinite groups of parameters.

• This construction is interesting since it is based on two facts we ob-

served.

1. For the aperiodic correlation sum of sequence pairs in Lemma 1,

the width of ZCZ Z can be controlled by the permutation π, which

means that if {π(1), π(2), · · · , π(v)} = {1, 2, · · · , v} for a positive

v where 1 ≤ v < m− 1, then, we have Z = 2v − 1.

2. The orthogonality of different sequence pairs in Lemma 1 can be

guaranteed by some offsets composed of some linear functions.

• The (8, 2, 2m, 2m−2)-SZCCS constructed in Theorem 3 achieves the

theoretical upper bound on the size of the SZCCS proposed in Theorem
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3, which implies that for any K, if there exists a (K, 2, 2m, 2m−2 − 1)-

SZCCS, then, we have K ≤ 8. Furthermore, a (K, 2, 2m, 2m−2 − 1)-

SZCCS can be obtained by selecting any K codes from an (8, 2, 2m, 2m−2)-

SZCCS.

For application in GSM systems:

• For a (K,M,L, Z)-SZCCS, K represents the maximum number of RF

chains that can be supported, Z+1 represents the number of multi-paths,

M(L+Z) represents the length of training sequences under the proposed

training framework in the sequel. Hence, for fixed number of multi-

path and training sequence length, the bigger the K, the better. Note

that (8, 2, 2m, 2m−2)-SZCCS constructed in Theorem 3 is optimal, so

K = 8 is the best for the GSM systems under the proposed training

framework in the sequel with 2m−2 multi-paths and training sequence

length 2(2m + 2m−2 − 1).

However, the sequence length of the proposed optimal SZCCS is limited

to a power-of-two. The following subsection shows a construction of SZCCSs,

which are not optimal but with non-power-of-two sequence length.

4.2. Proposed construction of SZCCS with non-power-of-two lengths

Theorem 4. Let q be an even integer, m ≥ 3, 1 ≤ v < m − 1 and L =

2m−1 + 2v, and let

g(x) =
q

2

m−2∑
s=1

xπ(s)xπ(s+1) +
m−1∑
s=1

λsxπ(s)xm +
m∑
s=1

µsxs + µ,

ak(x) =g(x) +
q

2
(k − 1)

(
xm−1 + xmxπ(v)

)
, bk(x) = ak(x) +

q

2
xπ(1),
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where x ∈ Zm2 , k ∈ {1, 2}, λs, µ, µs are any given elements in Zq, and π

is a permutation of the symbols {1, 2, · · · ,m} with {π(1), π(2), · · · , π(v)} =

{1, 2, · · · , v} and π(m) = m. Then, S = {Sk = {ψ(ak), ψ(bk)} : k = 1, 2} is

a (2, 2, 2m−1 + 2v, 2v − 1)-SZCCS.

Proof. The proof of Theorem 4 is similar with that of Theorem 3, so we

omit it here.

Remark 4. When v = m−2 in Theorem 4, one can generate (2, 2, 2m−1 +

2m−2, 2m−2−1)-SZCCSs. However, to obtain SZCCSs with same Z = 2m−2−

1 using Theorem 3, the sequence length needs to be L = 2m, which is larger

than that of SZCCSs generated from Theorem 4. That means that when

the numbers of activated antennas and multi-paths are 2 and a power-of-two,

respectively, the SZCCS generated from Theorem 4 is a better choice than

that from Theorem 3 because of higher spectral efficiency.

5. Numerical Evaluation

In this section, we analyse the performance of the proposed SZCCSs in

Therorem 3 and Theorem 4 as the training sequences for GSM systems

over frequency-selective channels, based on the framework proposed in the

Subsection 3.1 for different settings of Eb/N0, number of multi-paths λ +

1, number of activated antennas Nactive and number of zero time-slots θ.

Consider the same frequency-selective channel in [22], where the λ + 1-path

channel (separated by integer symbol durations) has uniform power delay

profile as h[t] =
∑λ

n=0 hiδ[t − nT ] where hi’s are complex-valued Gaussian

random variables with zero mean and E
(
|hi|2

)
= 1.
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5.0.1. MSE comparison with the change of Eb/N0

We consider a generic training-based single carrier GSM transmission

structure with Nt = 4 TAs, one receive antenna and Nactive = 2 RF chains,

and a 6-path channel. Let the training matrix of the random binary se-

quences for J = 2 be Ωr =


sr,1 01×32 01×5 sr,2 01×32 01×5

sr,3 01×32 01×5 sr,4 01×32 01×5

01×32 sr,1 01×5 01×32 sr,2 01×5

01×32 sr,3 01×5 01×32 sr,4 01×5

 ,

where sr,1, sr,2, sr,3, sr,4 are randomly generated binary sequences of length

32. The aperiodic correlation sums of {sr,1, sr,2, sr,3, sr,4} is presented in Fig.

4. It can be observed that there is no ZCZ in the these correlation sum-

s, which implies Ωr can not satisfy the optimal conditions in (7)-(9). Let

Ωs be the training matrix of the proposed SZCCSs for J = 2, which can

be generated by replacing sr,1, sr,2, sr,3, sr,4 by ss,1, ss,2, ss,3, ss,4, respectively,

where ss,1, ss,2, ss,3, ss,4 are the sequences in the first two sequence sets of the

proposed optimal (8, 2, 32, 7)-SZCCS generated in Example 3, where

ss,1 = (+,+,+,−,+,+,−,+,+,+,+,−,−,−,+,−,+,+,+,−,+,+,−,

+,+,+,+,−,−,−,+,−),

ss,2 = (+,−,+,+,+,−,−,−,+,−,+,+,−,+,+,+,+,−,+,+,+,−,−,

−,+,−,+,+,−,+,+,+),

ss,3 = (+,+,+,−,−,−,+,−,−,−,−,+,−,−,+,−,+,+,+,−,−,−,+,

−,−,−,−,+,−,−,+,−),

ss,4 = (+,−,+,+,−,+,+,+,−,+,−,−,−,+,+,+,+,−,+,+,−,+,+,

+,−,+,−,−,−,+,+,+).

28



The aperiodic correlation sums of {ss,1, ss,2, ss,3, ss,4} is presented in Fig. 5,

where shows that there are symmetric ZCZs of width greater or equal to

7 in these aperiodic correlation sums. Hence, {ss,1, ss,2, ss,3, ss,4} satisfies

the optimal conditions in (7)-(9) when λ ≤ 7. The argument for the cases

that J = 6, 18 are the same. In Fig. 6 we evaluate the channel estimation

MSE performances of Ωr and Ωs when J = 2, 6, 18 and the Eb/N0 runs

over {0, 2, ..., 20}. It can be observed that when the number of multi-paths

is 6, the proposed (8, 2, 32, 7)-SZCCS can be used to design optimal GSM

training matrix which attains the MSE lower bound, which outperforms that

of random binary sequences. Those performances are consistent with the

discussions of Figs. 4 and 5 above. Moreover, the MSE decreases when J

increases, which can be seen as the length of training sequences increases.

5.0.2. MSE comparison with the change of the number of multi-paths

We evaluate the channel estimation MSE performances for different values

of multi-paths for Eb/N0 = 16 dB with 4 transmit antennas and 2 RF chains

in Fig. 9. We employ the first two sequence sets of the optimal (8,2,32,7)-

SZCCS constructed through Theorem 3 and the (2,2,24,7)-SZCCS in The-

orem 4 to generate our GSM training matrices. We compare their channel

estimation performances with those of the (16,8)-CZCP given in [22], the

Zadoff-Chu sequences of length 32 and binary random sequences of length

32. Let the training matrix of (16,8)-CZCP {a,b} be

Ωc =


a 01×16 01×λ b 01×16 01×λ

b 01×16 01×λ a 01×16 01×λ

01×16 a 01×λ 01×16 b 01×λ

01×16 b 01×λ 01×16 a 01×λ

 ,
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Figure 4: Aperiodic correlation sums of

random training matrix
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Figure 5: Aperiodic correlation sums of the

training matrix of the proposed SZCCS
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Figure 6: MSE comparison, for (8, 2, 16, 7)-

SZCCS , where the number of multi-paths

is 6, Nt = 4, Nactive = 2 and J ∈ {2, 6, 18}
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Figure 7: Aperiodic correlation sums of the

training matrix of (16,8)-CZCP

where a = (1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1, 1,−1,−1,−1),b = (1, 1, 1,−1,

1, 1,−1, 1,−1, 1,−1,−1,−1, 1, 1, 1). The aperiodic correlation sums of {a,b}

is shown in Fig. 7, it can be observed that {a,b} satisfies optimal conditions

in (7) and (9) without satisfying (8) when λ ≤ 8. Let the training matrix of
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four Zadoff-Chu sequences szc,1, szc,2, szc,3, szc,4 be

Ωzc =


szc,1 01×32 01×λ szc,2 01×32 01×λ

szc,3 01×32 01×λ szc,4 01×32 01×λ

01×32 szc,1 01×λ 01×32 szc,2 01×λ

01×32 szc,3 01×λ 01×32 szc,4 01×λ

 ,

where szc,1, szc,2, szc,3, szc,4 are Zadoff-Chu sequences of length 32 generated

with roots being 1, 3, 5, 7, respectively. The aperiodic correlation sums of

{szc,1, szc,2, szc,3, szc,4} is shown in Fig. 8, which implies that {szc,1, szc,2, szc,3,

szc,4} has no ZCZs and can not satisfy optimal conditions in (7)-(9) for any

λ > 0. Fig. 9 shows that the proposed SZCCSs lead to optimal GSM training

matrices which attain the MSE lower bound when the number of multi-paths

λ+ 1 is less than or equal to Z + 1. Note that the minimum MSE decreases

with the number of multi-paths λ + 1, which is consistent with (14). It is

noted that the MSE performance corresponding to CZCP, which is proposed

in [22] for optimal training of SM systems, is close to that of the Zadoff-Chu

sequence and binary random sequence, indicating that CZCP may not be

suitable for training matrix design in GSM systems.

5.0.3. MSE comparison with the change of the number of activated antennas

Fig. 10 shows that every GSM training matrix corresponding to the

proposed SZCCSs attains the MSE lower bound when the number of the

activated antennas Nactive is less than or equal to the size K of the SZCCS,

and the minimum MSE increases with the number of activated antennas

Nactive. Note that when Nactive = 1, the system is an SM system, which

implies that the proposed training framework and SZCCSs are also applicable

for the optimal training in SM systems.
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Figure 8: Aperiodic correlation sums of the

training matrix of Zadoff-Chu sequences
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Figure 9: MSE comparison among differ-

ent sequences for various multi-paths with

Nt = 4, Nactive = 2 and EbN0=16 dB.
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Figure 10: MSE comparison of the pro-

posed proposed SZCCSs for various Nactive

with Eb/N0=16 dB and λ = 3.
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Figure 11: MSE comparison among the

proposed SZCCSs for different values of

zero-time slot with Eb/N0=16 dB and λ =

15.

5.0.4. MSE comparison with the change of the number of zero time-slots

Finally, we evaluate the channel estimation MSE performances of the

proposed (8, 2, 64, 15)-SZCCS and (2, 2, 48, 15)-SZCCS for different values of
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zero-time slots with fixed λ = 15 in Fig. 11. One observes that reducing

or removing the zero-time slot has little influence on the performance of

the proposed GSM training matrices. Hence, in practical application, the

zero-time slot may be removed to improve the spectral efficiency.

6. Concluding Remarks

In this paper, we have proposed an optimal training design for the op-

timal channel estimation in broadband generalized spatial modulation sys-

tems using a new class of code sets called symmetrical Z-complementary

code sets which represents a stringent subclass of Z-complementary code set-

s. We point out that the training sequences for conventional multiple-input

multiple-output systems where the number of radio-frequency chains equals

that of transmit antennas is inapplicable in generalized spatial modulation.

The same may be said for spatial modulation systems with a single radio-

frequency chain. We have introduced a generic design of optimal general-

ized spatial modulation training matrix using symmetrical Z-complementary

code sets, where the inter-symbol interference and inter-channel interference

can be minimized by the zero aperiodic auto-correlation sums and aperi-

odic cross-correlation sums in front-end and tail-end zero-correlation zones.

Note that the number of radio-frequency chains that can be supported is

limited by the size of the applied symmetrical Z-complementary code sets,

and the maximum tolerable number of multi-paths depends on the width

of zero-correlation zones of aperiodic correlation sums for that symmetrical

Z-complementary code set. With the aid of generalized Boolean function,

we have constructed two classes of symmetrical Z-complementary code set-
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s including an optimal one with respect to the set size upper bound. We

have shown that the designed training matrix leads to minimum channel es-

timation mean-squared-error in frequency-selective channels, which are also

applicable to SM and traditional MIMO systems.

Appendix A. Proof of Theorem 3

Proof. According to (1) and Definition 4, this proof can be divided into

two steps. In the first step, it should be demonstrated that

CSk(u) = ρψ(ak)(u) + ρψ(bk)(u) = 0, for u ∈ T1

⋃
T2, 1 ≤ k ≤ 8,(A.1)

where T1 = {1, 2, · · · , 2m−2−1} and T2 = {2m+1−2m−2, 2m+2−2m−2, · · · , 2m−

1}. In the second step, it needs to prove that

CSk,Sn(u) = ρψ(ak),ψ(an)(u) + ρψ(bk),ψ(bn)(u) = 0, for u ∈ {0}
⋃
T1

⋃
T2,

1 ≤ k 6= n ≤ 8. (A.2)

For any integers i and u, let j = i+u; also let (i1, i2, · · · , im) and (j1, j2, · · · , jm)

be the binary representations of i and j, respectively. Without loss of gener-

ality, we only discuss the cases when k, n = 1, 2 here.

Step 1 : When D1 = (0, 0, 0, 0), it is clear that a1(x) = f(x), then, by

Lemma 1, we have that S1 = {ψ(a1), ψ(b1)} is a GCP of 2m and

ρψ(a1)(u) + ρψ(b1)(u) = 0, for |u| ∈ {1, 2, · · · , 2m − 1} ⊇ T1

⋃
T2.
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When D2 = (1, 0, 1, 0), then, we have

a2(x) =
q

2

m−2∑
s=1

xπ(s)xπ(s+1) +
m∑
s=1

µsxs + µ+
(q

2
xπ(m−2) +

q

2
xπ(m−2)xπ(m)

)
+
(q

2
xπ(m) +

q

2
xπ(m−1)xπ(m)

)
,

b2(x) =a2(x) +
q

2
xπ(1).

For u ∈ T1

⋃
T2, (A.1) can be further expressed as

2m−1−u∑
i=0

(
ξa2(i)−a2(j) + ξb2(i)−b2(j)

)
= 0, (A.3)

where

a2(i)− a2(j) =
q

2

m−2∑
s=1

(
iπ(s)iπ(s+1) − jπ(s)jπ(s+1)

)
+

m∑
s=1

µs (is − js)

+
q

2
(iπ(m−2) − jπ(m−2)) +

q

2
(iπ(m−2)iπ(m) − jπ(m−2)jπ(m))

+
q

2
(iπ(m) − jπ(m)) +

q

2
(iπ(m−1)iπ(m) − jπ(m−1)jπ(m)),

b2(i)− b2(j) =a2(i)− a2(j) +
q

2

(
iπ(1) − jπ(1)

)
.

If iπ(1) 6= jπ(1), it is straightforward that ξa2(i)−a2(j) = −ξb2(i)−b2(j) and

ξa2(i)−a2(j) + ξb2(i)−b2(j) = 0.

If iπ(1) = jπ(1), we have a2(i)−a2(j) = b2(i)−b2(j). Let t be the smallest

integer such that iπ(t) 6= jπ(t), obviously, 2 ≤ t ≤ m − 2, otherwise,

since {π(1), π(2), · · · , π(m − 2)} = {1, 2, · · · ,m − 2}, then, we have

u ∈ {2m−2, 2m−1, 2m−1 + 2m−2}, which is contradict with u ∈ T1

⋃
T2.

Let i′ and j′ be integers which are different from i and j in only one

position π(t − 1), i.e., i′π(t−1) = 1 − iπ(t−1) and j′π(t−1) = 1 − jπ(t−1)
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respectively, and so j′ = i′ + u, 0 ≤ i′, j′ ≤ 2m − 1 and i′π(1) = j′π(1).

Note that

a2(i′)− a2(j′) =a2(i)− a2(j) +
q

2
(1− 2iπ(t−1))iπ(t) −

q

2
(1− 2jπ(t−1))jπ(t)

≡a2(i)− a2(j) +
q

2
(mod q).

This implies ξa2(i)−a2(j) + ξa2(i′)−a2(j′) = ξb2(i)−b2(j) + ξb2(i′)−b2(j′) = 0.

Combining these cases above, we have (A.3) holds.

Step 2 : Eq. (A.2) can be further expressed as

2m−1−u∑
i=0

(
ξa1(i)−a2(j) + ξb1(i)−b2(j)

)
= 0, (A.4)

where

a1(i)− a2(j) =
q

2

m−2∑
s=1

(
iπ(s)iπ(s+1) − jπ(s)jπ(s+1)

)
− q

2
jπ(m−2) −

q

2
jπ(m)

− q

2
jπ(m−2)jπ(m) −

q

2
jπ(m−1)jπ(m) +

m∑
s=1

µs (is − js) ,

b1(i)− b2(j) =a1(i)− a2(j) +
q

2

(
iπ(1) − jπ(1)

)
.

For u = 0, then, we have i = j and

a1(i)− a2(i) = b1(i)− b2(i)

= −q
2
iπ(m−2) −

q

2
iπ(m−2)iπ(m) −

q

2
iπ(m) −

q

2
iπ(m−1)iπ(m).

So, (A.4) can be reduced as

2
2m−1−u∑
i=0

(ξa1(i)−a2(i)) =2

(
2m−1−1∑
i=0

(−1)iπ(m−2) +
2m−1∑
i=2m−1

(−1)iπ(m)−iπ(m−1)

)
= 2(0 + 0) = 0.
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For u ∈ T1

⋃
T2, under the same way of the proof of Step 1, we arrive

at
2m−1−u∑
i=0

(
ξa2(i)−a1(j) + ξb2(i)−b1(j)

)
= 0. (A.5)

Combining the cases above, we can conclude that

CSk(u) = ρψ(ak)(u) + ρψ(bk)(u) = 0, for |u| ∈ T1

⋃
T2, 1 ≤ k ≤ 2,

and

CS1,S2(u) = ρψ(a1),ψ(a2)(u) + ρψ(b1),ψ(b2)(u) = 0, for |u| ∈ {0}
⋃
T1

⋃
T2.

The proof is completed.
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