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Abstract

We analyze the convergence properties of the consensus-alternating direction method of multipliers (ADMM)

for solving general quadratically constrained quadratic programs. We prove that the augmented Lagrangian

function value is monotonically non-increasing as long as the augmented Lagrangian parameter is chosen

to be sufficiently large. Simulation results show that the augmented Lagrangian function is bounded from

below when the matrix in the quadratic term of the objective function is positive definite. In such a case,

the consensus-ADMM is convergent.

Keywords: Augmented Lagrangian function, Consensus-ADMM, quadratically constrained quadratic

program

1. Introduction

An attractive algorithm, called consensus-alternating direction method of multipliers (ADMM), has been

recently proposed in [1], for solving general quadratically constrained quadratic programs (QCQPs). Note

that these problems could be non-convex and thus NP-hard, including several special cases in real-world

applications, see e.g. [2–10]. The consensus-ADMM, primarily enjoys the following two advantages: i) it5

formulates the general QCQP in such a way that each subproblem is a QCQP with only one constraint,

referred to as QCQP-1, which can be effectively solved irrespective of (non)convexity; and ii) memory

efficient implementation and parallel/distributed processing are possible, which greatly save the effort of

solving general QCQPs, especially when the dimensions of the resulting matrices and/or the number of

constraints are large.10

Despite the effectiveness of consensus-ADMM, only a weak convergence result was presented in [1]. That

is, the authors claim that the consensus-ADMM converges to a Karush-Kuhn-Tucker (KKT) stationary point,

under the key assumptions that the limit points do exist, and that the difference between two successive

iterations converges to zero, see Theorem 1 in [1]. Note that such assumptions are nonstandard and overly

restrictive [11]. In this paper, we analyze the convergence of the consensus-ADMM, and show that the15
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augmented Lagrangian function is monotonically non-increasing as long as the Lagrangian parameter is

larger than a certain value.

The remainder of the paper is organized as follows. The problem formulation and the consensus-ADMM

are presented in Section 2. Convergence analyses are established in Section 3. Simulation results are shown

in Section 4, while Section 5 concludes the paper.20

Notation: Bold-faced lower-case and upper-case letters denote vectors and matrices, respectively. In

denotes the n × n identity matrix, and 1 and 0 are the all-one and all-zero vectors of appropriate size,

respectively. Superscripts ·T, ·H and ·−1 stand for transpose, Hermitian transpose and inverse operators,

respectively. | · | is the absolute operator. ‖ · ‖2 denotes the ℓ2-norm of a vector. λmax(·) and λmin(·) denote
the maximum and minimum eigenvalues, respectively. C is the set of complex numbers, and ℜ{·} returns25

the real part of its input complex-valued variable. 〈a,b〉 = aHb is the inner product of vectors a and b of

same sizes. max{a, b} returns the maximum between a and b. X ≻ 0 means that X is positive definite. E {·}
and Var{·} denote the expected value and variance of a random variable, respectively.

2. Problem Statement and Consensus-ADMM

General QCQP is an optimization problem that minimizes a quadratic function subject to quadratic

inequality and equality constraints [12], which can be typically formulated as [1]

min
x∈Cn

xHA0x− 2ℜ{bH
0 x} (1a)

s.t. xHAix− 2ℜ{bH
i x} ≤ ci, ∀i = 1, 2, · · · ,m, (1b)

where the known matrices Ai ∈ Cn×n are assumed to be general Hermitian matrices (possibly indefinite),30

and bi ∈ Cn, for all i = 0, 1, · · · ,m. Note that any quadratic equality constraint can always be reformulated

as two inequality constraints of the form in (1b). Therefore, for simplicity, only inequality constraints are

given in Problem (1). The following standard steps [13] guide us to the consensus-ADMM for solving the

general QCQP, i.e., Problem (1).

Step i): We reformulate Problem (1) by introducing auxiliary variables {zi}mi=1, and settling the original

variable x and the auxiliary variables {zi}mi=1 in a separable manner, as

min
x,{zi}

xHA0x− 2ℜ{bH
0 x} (2a)

s.t. zHi Aizi − 2ℜ{bH
i zi} ≤ ci, (2b)

zi = x, ∀i = 1, 2, · · · ,m. (2c)

Step ii): We form the scaled-form augmented Lagrangian function according to Problem (2), by dealing

with the equality constraints therein, i.e., zi = x, as

L(x, {zi}, {ui}) , xHA0x− 2ℜ{bH
0 x} + ρ

m∑

i=1

(
‖zi − x+ ui‖22 − ‖ui‖22

)
(3)
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where ρ > 0 is the augmented Lagrangian parameter, and ui is the scaled dual variable corresponding to35

the equality constraint zi = x in Problem (2).

Step iii): The consensus-ADMM updating equations can be written down by separately solving {zi} and

x, as

z
(k+1)
i =







argmin
zi

‖zi − x(k) + u
(k)
i ‖22

s.t. zHi Aizi − 2ℜ{bH
i zi} ≤ ci,

(4a)

x(k+1)= (A0 +mρIn)
−1

[

b0 + ρ

m∑

i=1

(z
(k+1)
i +u

(k)
i )

]

, (4b)

u
(k+1)
i = u

(k)
i + z

(k+1)
i − x(k+1), (4c)

where the superscript ·(k) denotes the corresponding variable obtained at the k-th iteration. As has been

mentioned in [1], we put the consensus-ADMM into this form due to the fact that each update of zi is a

QCQP-1, which can be computed optimally despite the fact that the matrices Ai may be indefinite. The

readers are referred to [1] for details of solving QCQP-1. Furthermore, in the form of (4), {zi}mi=1 can be40

updated in parallel, and the result of (A0 +mρIn)
−1 can be cached to save computations in the subsequent

iterations. On the other hand, it is worth pointing out that, different from [1] in which the algorithm was

presented by updating x before {zi}, we update {zi} before x. This shall be shown to be very important

when analyzing the convergence of the algorithm.

3. Convergence Analysis45

This section is devoted to a theorem showing the monotonicity of the augmented Lagrangian function.

First of all, from (4c), we have z
(k+1)
i + u

(k)
i = u

(k+1)
i + x(k+1). Substituting it into (4b) yields

ρ
m∑

i=1

u
(k+1)
i = A0x

(k+1) − b0. (5)

Remark 1. Equality (5) is one of the keys to the success of proving the monotonicity of the augmented

Lagrangian function, which will be shown subsequently. Moreover, such an equality or other similar results

are not available if we update x before {zi}, as done in [1].

Now, we show the monotonicity of the augmented Lagrangian function, L(x, {zi}, {ui}), defined in (3).

Theorem. As long as the augmented Lagrangian parameter

ρ > max

{

−λmin

m
,

√
mCλmax +max{−λmin, 0}

m

}

, (6)

where C stands for some constant, and λmin and λmax are short for λmin(A0) and λmax(A0), respectively,50

we have:

• L(x(k+1), {z(k+1)
i }, {u(k+1)

i }) ≤ L(x(k), {z(k)i }, {u(k)
i }), ∀k = 0, 1, 2, · · · ;

3



• lim
k→∞

∥
∥
∥x

(k+1) − x(k)
∥
∥
∥
2
= 0.

Proof. To show L(x(k+1),{z(k+1)i },{u(k+1)
i }) ≤ L(x(k),{z(k)i },{u

(k)
i }) holds ∀k = 0, 1, 2, · · · , we formulate their differ-

ence as

L(x(k+1), {z(k+1)
i }, {u(k+1)

i })− L(x(k), {z(k)i }, {u(k)
i })

=
[

L(x(k+1),{z(k+1)
i },{u(k+1)

i })− L(x(k+1),{z(k+1)
i },{u(k)

i })
]

(7a)

+
[

L(x(k+1),{z(k+1)
i },{u(k)

i })− L(x(k),{z(k+1)
i },{u(k)

i })
]

(7b)

+
[

L(x(k),{z(k+1)
i },{u(k)

i })− L(x(k),{z(k)i },{u
(k)
i })

]

. (7c)

In the sequel, we successively deal with (7a), (7b), and (7c). Firstly, for (7a), it is calculated as

L(x(k+1), {z(k+1)
i }, {u(k+1)

i })− L(x(k+1), {z(k+1)
i }, {u(k)

i })

(8a)
= ρ

m∑

i=1

(∥
∥
∥z

(k+1)
i − x(k+1) + u

(k+1)
i

∥
∥
∥

2

2
−
∥
∥
∥z

(k+1)
i − x(k+1) + u

(k)
i

∥
∥
∥

2

2
−
∥
∥
∥u

(k+1)
i

∥
∥
∥

2

2
+
∥
∥
∥u

(k)
i

∥
∥
∥

2

2

)

(8b)
= ρ

m∑

i=1

(∥
∥
∥2u

(k+1)
i − u

(k)
i

∥
∥
∥

2

2
− 2

∥
∥
∥u

(k+1)
i

∥
∥
∥

2

2
+
∥
∥
∥u

(k)
i

∥
∥
∥

2

2

)

= 2ρ

m∑

i=1

∥
∥
∥u

(k+1)
i − u

(k)
i

∥
∥
∥

2

2

(8c)

≤ ρC

∥
∥
∥
∥
∥

m∑

i=1

(

u
(k+1)
i − u

(k)
i

)
∥
∥
∥
∥
∥

2

2

(8d)

≤ C

ρ
λ2
max(A0)

∥
∥
∥x

(k+1) − x(k)
∥
∥
∥

2

2
, (8)

where in (8a) we use the definition of L(x, {zi}, {ui}); in (8b) we use (4c); in (8c) we use the fact discussed

in Remark 2 as below; in (8d) we employ (5) and the inequality ‖Ha‖22 ≤ λ2
max(H)‖a‖22 for any Hermitian55

matrix H ∈ Cn×n and any vector a ∈ Cn.

Next, we move on to (7b), which is calculated as

L(x(k+1), {z(k+1)
i }, {u(k)

i })− L(x(k), {z(k+1)
i }, {u(k)

i })
(9a)

≤ ℜ
{〈

∇xL(x(k+1), {z(k+1)
i }, {u(k)

i }),x(k+1)−x(k)
〉}

− γx
2

∥
∥
∥x

(k+1) − x(k)
∥
∥
∥

2

2

(9b)
= −(λmin(A0) +mρ)

∥
∥
∥x

(k+1) − x(k)
∥
∥
∥

2

2
, (9)

where in (9a) we utilize the fact that function L(x, {zi}, {ui}) is strongly convex (see Remark 3 below) with

respect to (w.r.t.) x with parameter γx > 0 [14]; in (9b) we employ the optimality condition, namely,

∇xL(x(k+1), {z(k+1)
i }, {u(k)

i }) = 0, and γx = 2λmin(A0) + 2mρ (see Remark 3).

Lastly, (7c) is calculated as

L(x(k), {z(k+1)
i }, {u(k)

i })− L(x(k), {z(k)i }, {u
(k)
i })

(10a)
= ρ

m∑

i=1

(∥
∥
∥z

(k+1)
i −x(k)+u

(k)
i

∥
∥
∥

2

2
−
∥
∥
∥z

(k)
i −x(k)+u

(k)
i

∥
∥
∥

2

2

)
(10b)

≤ 0, (10)

where we utilize the definition of L(x, {zi}, {ui}) in (10a); in (10b) we use the fact that z
(k+1)
i is optimal to60

(4a).
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Therefore, by substituting inequalities (8), (9), and (10) back into (7), we have

L(x(k+1), {z(k+1)
i }, {u(k+1)

i })− L(x(k), {z(k)i }, {u(k)
i })

≤
(
C

ρ
λ2
max−λmin−mρ

)∥
∥
∥x

(k+1)−x(k)
∥
∥
∥

2

2
︸ ︷︷ ︸

(i)

.

We provide the following discussion regarding the term (i) of the above inequality. It is seen that if

ρ <

(

−
√

λ2
min + 4mCλ2

max − λmin

)

/(2m)

(which should be deleted because of ρ > 0) or

ρ >

(√

λ2
min + 4mCλ2

max − λmin

)

/(2m),

the coefficient C
ρ
λ2
max−λmin−mρ < 0 and hence (i) ≤ 0. Furthermore, as

√

λ2
min+4mCλ2

max−λmin ≤
2
√
mCλmax + |λmin| − λmin = 2

√
mCλmax + 2max{−λmin, 0}, we reach the following conclusion: (i) ≤ 0, as

long as

ρ >
(√

mCλmax +max{−λmin, 0}
)

/m. (11)

Therefore, combining (11) and (20), we conclude that L(x(k+1),{z(k+1)
i },{u(k+1)

i }) − L(x(k),{z(k)i },{u(k)
i }) ≤

(i) ≤ 0 as long as ρ satisfies (6).

To prove the second part of the theorem, we first define Φ , −C
ρ
λ2
max + λmin + mρ, and denote

L(x(k+1),{z(k+1)
i },{u(k+1)

i }) and L(x(k),{z(k)i },{u
(k)
i }) by L(k+1) and L(k), respectively. Then, when (6) holds, we

have Φ > 0 and

L(k) − L(k+1) ≥ Φ‖x(k+1) − x(k)‖22, ∀k = 0, 1, 2, · · · .

Summing all the above inequalities over all k ≥ 0, we obtain

L(0) ≥ Φ

∞∑

k=0

‖x(k+1)−x(k)‖22,

which implies [15] that lim
k→∞

‖x(k+1)−x(k)‖2 = 0.

Remark 2. It is easy to see that
∥
∥
∥u

(k+1)
i − u

(k)
i

∥
∥
∥

2

2
, ∀i = 1, 2, · · · ,m, are bounded from above. Hence, there

exists an upper bound for

m∑

i=1

∥
∥
∥u

(k+1)
i − u

(k)
i

∥
∥
∥

2

2
. We can find a real-valued constant C, such that

m∑

i=1

∥
∥
∥u

(k+1)
i − u

(k)
i

∥
∥
∥

2

2
≤ C

∥
∥
∥
∥
∥

m∑

i=1

(

u
(k+1)
i − u

(k)
i

)
∥
∥
∥
∥
∥

2

2

. (12)

In the case where m = 1 (i.e., only one constraint in Problem (1)), the above inequality reduces to

∥
∥
∥u

(k+1)
1 − u

(k)
1

∥
∥
∥

2

2
≤ C

∥
∥
∥u

(k+1)
1 − u

(k)
1

∥
∥
∥

2

2
, (13)

5



which implies that the constant C can be selected as







C is arbitrary, if u
(k+1)
1 = u

(k)
1 ,

C ≥ 1, otherwise.
(14)

In what follows, we provide an explanation on how to choose C from a statistical perspective. For the sake65

of notational simplicity, we define di , u
(k+1)
i −u

(k)
i ∈ Cn, ∀i = 1, 2, · · · ,m, and di = [di(1), di(2), · · · , di(n)]T

where di(j) is the j-th entry of di. We make the following assumptions:

A1) di’s are independently and identically distributed (i.i.d.) complex random variables;

A2) for any di, all its entries are i.i.d.;

A3) E{di} = µ1 and Var{di} = σ2In, ∀i = 1, 2, · · · ,m.70

These assumptions indicate that E{di(j)} = µ and Var{di(j)} = σ2, for all i = 1, 2, · · · ,m and j = 1, 2, · · · , n.
We focus on the expected value of (12), which is given as

E

{
m∑

i=1

‖di‖22

}

≤ E






C

∥
∥
∥
∥
∥

m∑

i=1

di

∥
∥
∥
∥
∥

2

2






. (15)

The left-hand side of (15) is determined as

E

{
m∑

i=1

‖di‖22

}

=

m∑

i=1

E
{

‖di‖22
}

=

m∑

i=1

E







n∑

j=1

|di(j)|2






=

m∑

i=1

n∑

j=1

E
{
|di(j)|2

}

(16a)
=

m∑

i=1

n∑

j=1

[

Var{di(j)}+
∣
∣E{di(j)}

∣
∣
2
]

=
m∑

i=1

n∑

j=1

(σ2 + |µ|2)

= mn(σ2 + |µ|2), (16)

where in (16a) we use the relationship between expected value and variance of a complex random variable,

see for example Pages 117 and 118 in [16]. Similarly, the right-hand side of (15) is computed as

E






C

∥
∥
∥
∥
∥

m∑

i=1

di

∥
∥
∥
∥
∥

2

2






= C × E







∥
∥
∥
∥
∥

m∑

i=1

di

∥
∥
∥
∥
∥

2

2







= C × E







n∑

j=1

∣
∣
∣
∣
∣

m∑

i=1

di(j)

∣
∣
∣
∣
∣

2






6



= C ×
n∑

j=1

E







∣
∣
∣
∣
∣

m∑

i=1

di(j)

∣
∣
∣
∣
∣

2






(17a)
= C ×

n∑

j=1



Var

{
m∑

i=1

di(j)

}

+

∣
∣
∣
∣
∣
E

{
m∑

i=1

di(j)

}∣
∣
∣
∣
∣

2




= C ×
n∑

j=1





m∑

i=1

Var
{
di(j)

}
+

∣
∣
∣
∣
∣

m∑

i=1

E
{
di(j)

}

∣
∣
∣
∣
∣

2




= C ×
n∑

j=1

(
mσ2 +m2|µ|2

)

= Cmn(σ2 +m|µ|2), (17)

where in (17a) we use the same strategy as in (16a). Substituting (16) and (17) into (15) yields

σ2 + |µ|2 ≤ C(σ2 +m|µ|2), (18)

which implies that







C is arbitrary, if µ = 0 and σ2 = 0,

C ≥ σ2+|µ|2

σ2+m|µ|2 , otherwise.
(19)

Note that: i) the case where µ = 0 and σ2 = 0 indicates that di = 0 (i.e., u
(k+1)
i = u

(k)
i ), ∀i = 1, 2, · · · ,m;

and ii) by assigning m = 1, we have σ2+|µ|2

σ2+m|µ|2 = 1. Therefore, when m = 1, (19) is consistent with (14).

Remark 3. The statement that L(x,{zi},{ui}) is strongly convex w.r.t. x with parameter γx, is equivalent to

the statement that L(x, {zi}, {ui})− γx

2 ‖x‖22 is convex w.r.t. x, see [17]. Note that L(x, {zi}, {ui})− γx

2 ‖x‖22 =
xH[A0 + (mρ − γx

2 )In]x − 2ℜ
{

(b0+ρ
∑m

i=1(zi + ui))
H
x
}

+ C′, where C′ is a constant independent of x.

L(x, {zi}, {ui}) − γx

2 ‖x‖22 is convex if and only if A0 + (mρ − γx

2 )In � 0, which indicates that parameter

γx = 2λmin(A0) + 2mρ. This equality together with γx > 0 yields ρ > −λmin(A0)/m. Since ρ > 0, we have

ρ > max {−λmin(A0)/m, 0} . (20)

Remark 4. When A0 ≻ 0, our simulation results show that the augmented Lagrangian function L(x, {zi}, {ui})
is bounded from below during the consensus-ADMM iteration, i.e., (4). This observation together with the75

result in Theorem indicates the convergence of the consensus-ADMM. However, when A0 is indefinite, our

simulation results show that L(x, {zi}, {ui}) is unbounded.

4. Simulation Results

In this section, we provide numerical simulations to confirm our theoretical analyses in Section 3. After

fixing the problem dimensions n and m, we first generate xfeas ∼ CN (0, In). A Hermitian indefinite matrix80

Ai (i = 0, 1, · · · ,m) is generated by first randomly drawing an n×n matrix from CN (0, 1), and then taking

7



the average of its Hermitian and itself. In the situation where we need A0 ≻ 0, we add ǫIn to its indefinite

counterpart, with ǫ larger than the absolute of the smallest eigenvalue of the indefinite matrix. We generate

bi ∼ CN (0, In), ∀i = 0, 1, · · · ,m, and ci = xH
feasAixfeas − 2ℜ{bH

i xfeas} + |vi|, ∀i = 1, 2, · · · ,m, where vi is

randomly drawn from N (0, 1). The constructed constraint set is thus guaranteed to be non-empty, because85

at least xfeas is feasible. The above-described problem setting is similar to those considered in [1] and [2].

We initiate the consensus-ADMM algorithm with x(0) = xfeas and u
(0)
i = 0, ∀i = 1, 2, · · · ,m.

In the first example, we set n = 10 and m = 5. All Ai’s are indefinite. The augmented Lagrangian

function value versus iteration index is plotted in Fig. 1. It is seen that the function value is monotonically

non-increasing, but unbounded.90

In all the remaining examples, Ai (i = 1, 2, · · · ,m) are indefinite and A0 ≻ 0. In the second example,

n = 10 and m = 5. The augmented Lagrangian function value versus iteration index is shown in Fig. 2.

It is observed that the function value is not monotonic when ρ = 2 and ρ = 5; while it is monotonically

non-increasing and bounded from below when ρ ≥ 10. In Fig. 3, we plot the function value versus k in

20 independent runs, with n = 10, m = 5, and ρ = 10. The function value versus k is depicted in Fig. 495

for different number of constraints, with n = 10 and ρ = 20. All the curves in Figs. 3 and 4 indicate the

convergence of the augmented Lagrangian function value sequence {L(k)}.
In the last example, we test the distance of the variables, by using the ℓ2-norm as performance metric.

We set n = 10, m = 5, and ρ = 10. The results are shown in Fig. 5. It is seen that, both
∥
∥x(k+1) − x(k)

∥
∥
2

and

m∑

i=1

∥
∥
∥z

(k)
i − x(k)

∥
∥
∥
2
approach 0 when k is large enough.100

5. Conclusion

We studied the convergence property of the consensus-alternating direction method of multipliers (ADMM)

for general quadratically constrained quadratic programs (QCQPs). We have proved that the augmented

Lagrangian function is monotonically non-increasing if the augmented Lagrangian parameter is larger than

a certain value. Simulation results showed that the augmented Lagrangian function is bounded from be-105

low when the matrix in the quadratic term of the objective function is positive definite. In such cases,

the consensus-ADMM was shown to generate a convergent Lagrangian function value sequence. However,

the augmented Lagrangian function is unbounded when the matrix in the quadratic term of the objective

function is indefinite. We further proved that the distance of the variables between two successive itera-

tions converges to 0. Numerical simulations with definite as well as indefinite matrices in the QCQP were110

conducted. The simulation results verified the theoretical development.
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Figure 1: Function value L(k) versus iteration index k, with n = 10, m = 5, and indefinite A0.
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Figure 2: Function value L(k) versus iteration index k, with n = 10, m = 5, and A0 ≻ 0.
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Figure 3: Function value L(k) versus iteration index k in 20 runs, with n = 10, m = 5, ρ = 10, and A0 ≻ 0.
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Figure 4: Function value L(k) versus iteration index k for different number of constraints, with n = 10, ρ = 20, and A0 ≻ 0.
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Figure 5: Distance of variables versus iteration index k, with n = 10, m = 5, ρ = 10, and A0 ≻ 0.
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