
HAL Id: hal-04039414
https://hal.science/hal-04039414

Submitted on 21 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Newton time-extracting wavelet transform: an effective
tool for characterizing frequency-varying signals with
weakly-separated components and theoretical analysis

Wenting Li, François Auger, Zhuosheng Zhang, Xiangxiang Zhu

To cite this version:
Wenting Li, François Auger, Zhuosheng Zhang, Xiangxiang Zhu. Newton time-extracting wavelet
transform: an effective tool for characterizing frequency-varying signals with weakly-separated compo-
nents and theoretical analysis. Signal Processing, 2023, �10.1016/j.sigpro.2023.109017�. �hal-04039414�

https://hal.science/hal-04039414
https://hal.archives-ouvertes.fr


Newton time-extracting wavelet transform: an effective tool for
characterizing frequency-varying signals with weakly-separated

components and theoretical analysis

Wenting Lia, François Augerb, Zhuosheng Zhanga,∗, Xiangxiang Zhuc

aSchool of Mathematics and Statistics, Xi’an Jiaotong University, 710049 Xi’an , China
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Abstract

In this paper, we propose a high resolution time-frequency (TF) analysis method called Newton

time-extracting wavelet transform (NTEWT), which is designed to analyze frequency-varying signals

with fast varying group delay (GD). Firstly, we discuss the relationship among the fixed points of time

reassignment operator, the ridge points of wavelet transform and GD of the signal. Combining the

above relations and Newton algorithm, we propose a Newton GD estimator. By only retaining the TF

information most related to frequency-varying features of the signal and removing the weakly-related

TF coefficients, we further introduce the NTEWT, which can not only achieve a more concentrated TF

representation, but also enable signal reconstruction. Meanwhile, we develop a theoretical analysis of

NTEWT under the mathematical framework. Firstly, we introduce a precise mathematical definition

of a class of weakly-separated frequency-varying chirp-like components, and we prove that Newton GD

estimator can accurately estimate GD of arbitrary function in this class, and NTEWT does indeed succeed

in decomposing these functions. Finally, we use numerical experiments to evaluate the performance of

the proposed NTEWT in terms of TF concentration, GD estimation and signal reconstruction.

Keywords: Time-frequency analysis, Time reassignment operator, Group delay, Ridge, Newton

time-extracting wavelet transform, Signal reconstruction

1. Introduction

Non-stationary signals widely appear in various fields, such as radar and sonar [1, 2], seismic [3],

biomedicine [4, 5], and mechanical engineering [6, 7], etc. Time-frequency analysis (TFA) can convert one-

dimensional signals into two-dimensional time-frequency (TF) representations (TFR) efficiently, which

helps to detect the TF feature of non-stationary signals in the TF plane visually [8, 9]. Many effective

TFA methods mainly include linear TFA methods, nonlinear TFA methods and bilinear TFA methods.

Linear TFA methods, such as the short-time Fourier transform (STFT) [8] and the wavelet transform
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(WT) [9], calculate the inner product between the signal and the basis function to characterize the TF

structure of signal. Generally, the better the basis function matches the signal, the more suitable it is

to characterize TF features with concentrated energy. Nonlinear TFA methods aim to construct new

basis functions to characterize the non-linearity of signals, such as linear chirplet transform [10], local

polynomial transform [11], and matched demodulation transform [12], etc. However, restricted by the

Heisenberg uncertainty principle, linear and nonlinear TFA methods often generate blurry TFRs, and

they had difficulty providing accurate TF descriptions for signals. Besides, bilinear TFA methods, such

as the Wigner-Ville distribution [1] and its variants, which can effectively improve the TF resolution of

mono-component signals, but introduce interference terms for multi-component signals and thus reduce

the readability of the TFRs. In order to overcome these shortcomings, some advanced methods have

been proposed successively.

The reassignment method (RM), proposed by Kodera et al. to the spectrogram [13, 14], and general-

ized by Auger and Flandrin to any bilinear time-frequency or time-scale distribution [15], is an old but

under-explored method [16, 17, 18]. In parallel, Daubechies and Maes proposed the synchrosqueezing

wavelet transform (SWT) [19] based on a phase technique to analyse auditory signals, which is a special

case of the RM. And Huang et al. introduced an empirical mode decomposition (EMD) [20] to decompose

the signal into a series of intrinsic mode functions in a data-driven manner. Though attractive because of

its effectiveness and simplicity [21, 22], EMD lacks solid mathematical foundations. In this context, SWT

has resurfaced as an alternative theoretical way to understand the principle of EMD with a convenient

mathematical framework [23]. RM has, in turn, received new attention [24-26]. Although the RM relo-

cates TF energy aiming to sharpen the TFR, and employs instantaneous frequency (IF) and group delay

(GD) estimators, it is not invertible unfortunately. While SWT can reconstruct the interesting signals

but suffers from blurred TFRs for signals with fast varying IF. Furthermore, new extensions of SWT

have been developed [7, 27-32], among these improved methods, recently synchroextracting transform

(SET) [32] has attracted great attention. Differing from the squeezing manner of SWT, SET only utilizes

a small number of TF coefficients, but achieves a more concentrated TFR. Similar to SWT, SET also

develops the corresponding higher-order extensions [33-35].

On the one hand, based on different features of signals, signals are divided into time-varying signals

and frequency-varying signals. The TF energy distribution of time-varying signals spread around the

IF trajectory, which can help to better identify the variation law of time-varying signals along the time

direction, while the TF energy distribution of frequency-varying signals spread around the GD trajectory,

which can effectively reflect the variation law of frequency-varying signals along the frequency direction.

On the other hand, according to different direction of post-processing, TFA post-processing methods

are divided into three categories. The first class considers both time and frequency directions, such as

reassigned scalogram (RS), although RS can improve both the time resolution and the frequency/scale

resolution of the TFR, unfortunately, it cannot reconstruct the signal. The second class considers only

2



frequency direction, such as SWT [23], matching synchrosqueezing wavelet transform (MSWT) [7], SET

[32] and self-matched extracting wavelet transform (SMEWT) [34]. These TFA methods can reconstruct

signals, and they are more suitable for characterizing slowly or strongly time-varying signals, but they

may be no longer applicable for characterizing frequency-varying signals. In order to accurately analyze

frequency varying signals, the third class of TFA post-processing along the time direction have emerged,

including the time-reassigned synchrosqueezing transform (TSST) [36] and transient-extracting transform

(TET) [37], and our recently proposed time-reassigned synchrosqueezing wavelet transform (TSWT) [38]

and time-extracting wavelet transform (TEWT) [39], where we provide rigorous theoretical analysis of

TSWT and TEWT for frequency-varying signals under the mathematical framework. Moreover, second-

order TSST (TSST2) [40, 41] and second-order TET [42, 43] have been proposed. Indeed, these TFA

methods reassigning or extracting along the time direction can reconstruct signals and are suitable for

characterizing slowly or strongly frequency-varying signals.

It can be concluded that one of the advantages of TET/TEWT is to extract the TF coefficients of

the fixed points of time reassignment operator, because the time reassignment operator can accurately

estimate the GD of impulsive signal, and the fixed points of time reassignment operator are equivalent

to ridge points of WT, where ridge is the most relevant to the TF features of signals. Therefore, for

more general signals, the relationship among the fixed points of the time reassignment operator, ridge

points of the WT and GD of signals is particularly important. In this paper, we discuss the relationship

among these three, and develop a new GD estimator for strongly frequency-varying signal, which can

precisely describe the ridge of WT and accurately estimate the GD of signal. Further we introduce a new

frequency-varying TFA method and develop the rigorous theoretical analysis. The main innovations of

this paper are:

i) We convert the GD estimation problem into solving the fixed point problem and propose a new

GD estimator. We firstly develop a strict equivalence condition between the fixed points of the time

reassignment operator and ridge points of WT, and further discuss the relationship among the fixed

points of the time reassignment operator, ridge points of the WT and GD of a frequency-varying linear

chirp signal. Then, combining these relations with Newton algorithm, we propose a Newton GD estimator,

which not only accurately estimates the GD of the signal, but also accurately describes the ridge of WT.

ii) Based on the proposed Newton GD estimator, we propose a Newton time-extracting wavelet

transform (NTEWT), which can generate a highly concentrated TFR and reconstruct signal. The main

idea of NTEWT is to retain the TF information that are most related to the frequency-varying features

of the signal and to remove the weakly-related TF coefficients.

iii) We define a class of weakly-separated frequency-varying chirp-like components (WFCC), which

relaxes the strict well-separated condition between components to some extent. The function class we

define includes possible interference components and is applicable to a wider range of practical signals.

iv) For such function class, we provide a theoretical analysis for NTEWT under a strict mathematical
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framework, and prove that the Newton GD estimator indeed successfully estimates the GD and the

NTEWT reconstructs the signal with high accuracy.

The remainder of this paper is organized as follows. In section 2, we discuss the relationship among

the fixed points of the time reassignment operator, ridge points of the WT and GD of the signal. Then

in section 3, we combine these relations and Newton algorithm to propose a Newton GD estimator. And

further, we introduce the NTEWT. In section 4, we analyze the performance of the NTEWT theoretically,

including a theorem and its proof about the NTEWT for a class of WFCC. Section 5 is devoted to the

comparative study of the NTEWT and other TFA methods on simulated and real sigals with three

quantitative indicators. Finally, conclusions are drawn in section 6.

2. Time reassignment operator

In this section, we first recall several basic definitions, then study the relationship among the fixed

points of the time reassignment operator, ridge points of the WT and GD of the signal.

2.1. Basic Notations and Definitions

Definition 1. [8] The Fourier transform (FT) of a given signal x(t) ∈ L1(R), i.e. its correlation with a

sinusoidal wave eiωt, is defined as:

X(ω) =

∫
R
x(t)e−iωtdt, (1)

and its inverse FT is defined by [8]:

x(t) =
1

2π

∫
R
X(ω)eiωtdω. (2)

Definition 2. [41] The frequency-varying signal is defined in the frequency domain

X(ω) = A(ω)e−iφ(ω), (3)

where A(ω) is the signal amplitude, φ(ω) and its derivative φ′(ω) are the phase and the GD, respectively.

Definition 3. [8] Consider an admissible wavelet ψ(t) ∈ L2(R), its FT satisfies Cψ =
∫
R+

|ψ̂(ω)|2
ω dω <

+∞, and then the WT of a signal x(t) ∈ L2(R) is defined as a complex-valued function of time b and

scale a > 0 by

Wψ
x (b, a) =

1

a

∫
R
x(t)ψ∗(

t− b
a

)dt, (4)

where z∗ is the complex conjugate of z. And Wψ
x (b, a) can be expressed in the frequency domain by

Plancherel’s theorem

W ψ̂
X(b, a) =

1

2π

∫
R
X(ω)ψ̂∗(aω)eiωbdω. (5)

where X(ω) and ψ̂(ω) are FTs of x(t) and ψ(t), respectively.

Denote W ψ̂
X(b, a) = M ψ̂

X(b, a)eiΦ
ψ̂
X(b,a), M ψ̂

X(b, a) and Φψ̂X(b, a) stand for magnitude and phase of WT,

respectively.
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Definition 4. [44] A ridge point of WT W ψ̂
X(b, a) is a time-scale pair (b, a) satisfying the two conditions:

∂b lnM ψ̂
X(b, a) = 0,

∂2

∂b2
lnM ψ̂

X(b, a) < 0. (6)

where ∂b,
∂2

∂b2 are the first and second order partial derivatives with respect to b, respectively. These

conditions state that for each fixed scale a, a time ridge point b corresponds to the time at which a local

maximum of magnitude M ψ̂
X(b, a) occurs.

Definition 5. [15] The complex time reassignment operator t̃x(b, a) and the time reassignment operator

t̂x(b, a) can be defined respectively by
t̃x(b, a) = b+ a

W tψ
x (b,a)

Wψ
x (b,a)

t̂x(b, a) = b+ a<{W
tψ
x (b,a)

Wψ
x (b,a)

},
(7)

where Wψ
x (b, a) 6= 0 and <{z} denotes the real part of z.

Definition 6. [45] Metric space (Λ, ρ) is a set Λ together with a metric ρ on the set Λ, we say that a

mapping F on (Λ, ρ) is a contraction mapping from Λ to Λ if there exists a costant k such that 0 < k < 1

and

ρ(F (x), F (y)) ≤ kρ(x, y), ∀x, y ∈ Λ. (8)

2.2. Time reassignment operator and ridge

In this subsection, we discuss the relationship between the fixed points of the time reassignment

operator and ridge points of WT for frequency-varying signals, and we further provide the equivalent

conditions between the fixed points and ridge points.

Theorem 1. For any signal X(ω) = A(ω)e−iφ(ω), consider a Morlet wavelet expressed by

ψ̂(ω) = (4πσ2)
1
4 e−

σ2(ω−ωψ)2

2 , (9)

then for any (b, a) ∈ R× R+, the following statements hold:

(a) t̂X(b, a) = b if and only if ∂b lnM ψ̂
X(b, a) = 0.

(b) If t̂X(b, a) is a contraction operator for a given scale a, then t̂X(b, a) = b if and only if the point

(b, a) is a ridge point.

Proof. (a) For ψ̂(ω), since tψ(t)
FT−−→ iψ̂′ and its derivative ψ̂′(ω) = −σ2(ω − ωψ)ψ̂(ω), it is easy to

derive that by Eq. (7)

t̂X(b, a) = b+ a={
W ψ̂′

X (b, a)

W ψ̂
X(b, a)

} = b− aσ2={
Wωψ̂
X (b, a)

W ψ̂
X(b, a)

}, (10)

where ={z} is the imaginary part of z. On the other hand, noting that ∂bW
ψ̂
X(b, a) = i

aW
ωψ̂
X (b, a), it

follows that

<{∂b lnW ψ̂
X(b, a)} = −={

Wωψ̂
X (b, a)

aW ψ̂
X(b, a)

}. (11)
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According to Eqs. (10) and (11), and noticing that ∂b lnM ψ̂
X(b, a) = <{∂b lnW ψ̂

X(b, a)}, we get

t̂X(b, a) = b+ a2σ2∂b lnM ψ̂
X(b, a). (12)

Then, Theorem 1 (a) holds.

(b) Assume b∗ is a fixed point of t̂X(b, a), i.e. t̂X(b∗, a) = b∗. Then, for proving that (b∗, a) is

a ridge point, we only need to show ∂2

∂b2 lnM ψ̂
X(b∗, a) < 0, by Eq. (12) which is equivalent to prove

∂bt̂X(b∗, a) < 1. Consider a sequence {bn}+∞n=1 with lim
n→+∞

bn = b∗, and denote F (b) = t̂X(b, a). Since

t̂X(b, a) is a contraction operator, by Definition 6, there exists a constant k such that 0 < k < 1 and

|F (bn+1)− F (bn)| ≤ k · |bn+1 − bn|, n = 1, 2, · · · (13)

Thanks to the regularity of the WT, the function F (b) is continuously differentiable, then this follows

that there exists a ξn being between bn and bn+1, such that

|F ′(ξn)| ≤ k, n = 1, 2, · · · (14)

Due to lim
n→+∞

bn = b∗, it deduces that |F ′(b∗)| ≤ k, that is |∂bt̂X(b∗, a)| ≤ k < 1. Assume (b, a) is a ridge

point, then by (a), we have t̂X(b, a) = b. Hence, Theorem 1 (b) holds.

Theorem 1 well reveals the existence of the fixed points of the time reassignment operator, explains

the relationship between the fixed points of the time reassignment operator and ridge points of WT, and

provides equivalent condition of the two, i.e. t̂x(b, a) is a contraction operator. Since the fixed points

of the contraction operator exist and are unique, the ridge points exist and are unique. In the next

subsection, we will use a frequency-varying linear chirp signal to verify Theorem 1.

2.3. Time reassignment operator and GD

For a frequency-varying linear chirp signal X(ω), the following lemma shows that t̂X(b, a) is a con-

traction operator and further gives the relations among the fixed points of t̂X(b, a), ridge points of WT

and GD of X(ω).

Lemma 1. For a frequency-varying linear chirp signal,

X(ω) = Ae−iφ(ω), (15)

where φ(ω) = α
2ω

2 + βω + γ, consider the Morlet wavelet ψ̂(ω) = (4πσ2)
1
4 e−

σ2(ω−ωψ)2

2 . Then, for any

given scale a > 0, the following hold:

(a) t̂X(b, a) is a contraction operator.

(b) t̂X(b, a) is a biased estimate of the signal GD.

(c) t̂X(b, a) = b if and only if the point (b, a) is at the GD trajectory of signal X(ω).

(d) t̂X(b, a) = b if and only if the point (b, a) is a ridge point of WT W ψ̂
X(b, a).

6



Proof. (a) Since ωψ is the frequency center of the Morlet wavelet ψ̂(ω), the frequency ω and scale a are

related by

ω =
ωψ
a
. (16)

Thus, the GD of signal X(ω) can be expressed as

φ′(
ωψ
a

) = α
ωψ
a

+ β. (17)

A straightforward computation shows that the WT W ψ̂
X(b, a) and W ψ̂′

X (b, a) of X(ω) can be expressed

as

W ψ̂
X(b, a) = Ae−i(

α
2 (

ωψ
a )2+β

ωψ
a +γei

ωψ
a b

√
σ(a2σ2 − iα)

π
1
2 (a4σ4 + α2)

e
− a

2(a2σ2−iα)

2(a4σ4+α2)
(
α
ωψ
a

+β−b
a )2

=
1

a
X(

ωψ
a

)Cx(b, a),

W ψ̂′

X (b, a) =
iσ2(a2σ2 − iα)

a4σ4 + α2
(α
ωψ
a

+ β − b)ei
ωψ
a bX(

ωψ
a

)Cx(b, a),

(18)

where Cx(b, a) =

√
a2σ(a2σ2−iα)

π
1
2 (a4σ4+α2)

e
− a

2(a2σ2−iα)

2(a4σ4+α2)
(
α
ωψ
a

+β−b
a )2

.

Therefore, by the definition of complex time reassignment operator t̃X(b, a) in Eq. (7) and Eq. (18),

we have

t̃X(b, a) = b− ia
W ψ̂′

X (b, a)

W ψ̂
X(b, a)

= b− a2σ2(a2σ2 − iα)

a4σ4 + α2
(b− αωψ

a
− β). (19)

It follows that the time reassignment operator t̂X(b, a) = <{t̃X(b, a)} can be expressed as

t̂X(b, a) = b− a4σ4

a4σ4 + α2
(b− αωψ

a
− β) =

α2b+ a4σ4(α
ωψ
a + β)

a4σ4 + α2
. (20)

Thus, for any given a, we have

0 ≤ ∂bt̂X(b, a) =
α2

a4σ4 + α2
< 1, (21)

that is, t̂X(b, a) is a contraction operator.

(b) For any given scale a, Eqs. (17) and (20) shows that t̂X(b, a) is a biased GD estimator.

(c) According to Eq. (20), the fixed point curve of t̂X(b, a) can be expressed as

b = α
ωψ
a

+ β, a > 0. (22)

Hence, by Eq. (22) and the GD expression of signal X(ω) in Eq. (17), one can get immediately that

Lemma 1 (c) holds.

(d) The derivative of lnW ψ̂
X(b, a) with respect to time b is calculated as

∂b lnW ψ̂
X(b, a) = i

ωψ
a
− a2σ2 − iα
a4σ4 + α2

(b− αωψ
a
− β). (23)

This, together with the fact ∂b lnM ψ̂
X(b, a) = <{∂b lnW ψ̂

X(b, a)}, implies

∂b lnM ψ̂
X(b, a) = − a2σ2

a4σ4 + α2
(b− αωψ

a
− β), (24)
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and
∂2

∂b2
lnM ψ̂

X(b, a) < 0. (25)

Thus, the ridge trajectory of WT W ψ̂
X(b, a) can be written as

b = α
ωψ
a

+ β, a > 0. (26)

This, together with Eq. (22), lead to the conclusion that Lemma 1 (d) holds.

It can be concluded from Lemma 1 that for the frequency-varying linear chirp signal X(ω): (1)

t̂X(b, a) is a biased estimate of the GD of X(ω); (2) the fixed point of time reassignment operator t̂X(b, a)

is an accurate estimate of the GD; (3) the GD trajectory of signal X(ω) and the ridge trajectory of WT

W ψ̂
X(b, a) are the same.

3. Newton time-extracting wavelet transform

3.1. Newton group delay estimator

As can be seen from the previous section, for the frequency-varying linear chirp signal X(ω), the time

reassignment operator t̂X(b, a) can’t estimate the GD of X(ω) accurately, but the fixed points of the

time reassignment operator can. Indeed, the fixed points of the time reassignment operator can not only

accurately estimate the GD of the signal, but also precisely describe the ridge of WT. Therefore, the GD

estimation problem is converted into the problem for solving the fixed points of the time reassignment

operator, then we can try to employ some root finding algorithms to derive a new GD estimator. Inspired

by the relations between Eqs. (17), (19) and (22), we use Newton algorithm to estimate GD in the

following.

Lemma 2. For a frequency-varying linear chirp signal,

X(ω) = Ae−iφ(ω), (27)

where φ(ω) = α
2ω

2 + βω + γ, consider the Morlet wavelet ψ̂(ω) = (4πσ2)
1
4 e−

σ2(ω−ωψ)2

2 . Let

t̄X(b, a) = b− b− t̃X(b, a)

1− ∂bt̃X(b, a)
. (28)

Then the following hold:

(a) t̄X(b, a) = b if and only if t̃X(b, a) = b.

(b) t̄X(b, a) is an accurate GD estimation of the signal X(ω).

(c) t̄X(b, a) = b if and only if the point (b, a) is at the GD trajectory of signal X(ω).

(d) t̄X(b, a) = b if and only if the point (b, a) is a ridge point of WT W ψ̂
X(b, a).

Proof. (a) By Eq. (19), we immediately get

∂bt̃X(b, a) = 1− a2σ2(a2σ2 − iα)

a4σ4 + α2
, (29)
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it means that we have 1− ∂bt̃X(b, a) 6= 0. Thus, by Eq. (28), t̄X(b, a) = b if and only if t̃X(b, a) = b.

(b) Combining Eq. (19) with Eq. (29), we have

t̃X(b, a) = b− (1− ∂bt̃X(b, a))(b− αωψ
a
− β).

Thus, for any (b, a) ∈ R× R+, we have

t̄X(b, a) = b− b− t̃X(b, a)

1− ∂bt̃X(b, a)
= α

ωψ
a

+ β = φ′(
ωψ
a

). (30)

that is, t̄X(b, a) is an accurate GD estimation of the signal X(ω).

(c) According to Eq. (30), one has t̄X(b, a) = b if and only if the point (b, a) is at the GD trajectory

of signal X(ω), i.e.

b = α
ωψ
a

+ β. (31)

(d) Combining Eq. (26) with Eq. (30), we have t̄X(b, a) = b if and only if the point (b, a) is a ridge

point of WT.

Eq. (28) can be considered as the first iteration of the Newton algorithm for solving the fixed point

equation t̃X(s, a) = s, in which a sequence defined in the scalar case as sn+1 = sn − f(sn)
f ′(sn) , is hoped to

converge to a root of the equation f(s) = 0, where f(s) = s − t̃X(s, a), with s0 = b. Thus, we have the

following definition:

Definition 7. A Newton GD (NGD) estimator t̄X(b, a) can be defined by

t̄X(b, a) = b− b− t̃X(b, a)

1− ∂bt̃X(b, a)
. (32)

It is noteworthy that we convert GD estimation problem into solving the fixed point problem, and

propose the NGD estimator t̄X(b, a) combined with Newton algorithm. It is a new attempt to estimate

GD, which also allows to design other GD estimators from other root finding algorithms.

It can be found that various IF estimators, presented in [7], [23], [27], [28], [32], [34], are usually suitable

for estimating the IF of slowly or strongly time-varying signals, but they aren’t suitable for impulsive

signals whose TF ridge curves are nearly perpendicular to the time axis. For analyzing impulsive signals,

GD estimation is often more appropriate than IF estimation. The proposed NGD estimator can not

only accurately estimate the GD of impulsive signals, but also further estimate the GD of second-order

frequency-varying signals. Especially for frequency-varying linear chirp signal X(ω), NGD estimator can

accurately estimate the GD of X(ω) and describe the ridge of WT.

From the comparison between those IF estimators and NGD estimator, we found that those IF

estimators perform better for estimating the IF of slowly or strongly time-varying signals, while NGD

estimator can accurately estimate the GD of slowly or strongly frequency-varying signals. Therefore, NGD

estimator and those IF estimators are complementary with each other and each of them has respective

scope of application.

9



3.2. NTEWT

In this subsection, we extend TEWT to the second-order case based on the Newton GD estimator,

and propose a new TFA post-processing method extracting along the time direction.

Definition 8. The Newton time-extracting wavelet transform (NTEWT) is defined as

NTe(b, a) = W ψ̂
X(b, a) · δ(b− t̄X(b, a)). (33)

It is well known that SWT [23] is designed for local harmonic signal in the time domain, MSWT [7]

is designed for local constant amplitude-modulated linear chirp signal in the time domain, and SMEWT

[34] is designed for local Gaussian amplitude-modulated linear chirp in the time domain. Thus, these

TFA methods reassigning or extracting along the frequency direction are suitable for dealing with slowly

or strongly varying signals in the time domain. However, the TSST [36], TSWT [38] and TEWT [39]

are suitable for impulsive-like signals, and the proposed NTEWT is designed for frequency-varying linear

chirp signal. Therefore, these TFA methods reassigning or extracting along the time direction are suitable

for characterizing slowly or strongly varying signals in the frequency domain.

Differing from the squeezing manner of synchrosqueezing methods [7], [23], [27], [36], [38], [40], the

NTEWT only extracts the WT coefficients at the fixed point trajectory b = t̄X(b, a), while removing the

TF coefficients beyond the fixed point trajectory b = t̄X(b, a). In particular, for the frequency-varying

linear chirp signal X(ω), it can be concluded from the above discussion that: (1) by Lemma 2 (c), the

NTEWT exactly extracts the WT coefficients at the GD trajectory of signal; (2) as shown in Lemma 2 (d),

the fixed points of the NGD estimator t̄X(b, a) are the time ridge points, which means that NTEWT can

remain the maximum energy of the WT modulus, then NTEWT can obtain a more energy concentrated

TFR; (3) According to Eq. (18), NTEWT maintains the reconstructed property of WT, and signal X(ω)

can be recovered by WT along the GD trajectory, i.e.,

X(
ωψ
a

) =
aWψ

x (φ′(
ωψ
a ), a)e−i

ωψ
a b

Cx(φ′(
ωψ
a , a)

. (34)

It motivates us to recover signal X(ω) from the NTEWT with a similar reconstruction expression:

X(
ωψ
a

) =
aNTe(φ′(

ωψ
a ), a)e−i

ωψ
a b

Cx(φ′(
ωψ
a , a)

. (35)

4. Theoretical analysis of Newton time-extracting wavelet transform

In this section, we will provide a rigorous theoretical analysis of NTEWT that can identify and

characterize a function class Cε,d. To better understand the function class Cε,d for NTEWT, let’s first

review a function class Hε,d for TSWT.

Definition 9. [38] The class Hε,d is said to be a set of all superposition of well-separated frequency-

domain harmonic-like functions, with accuracy ε > 0 and separation d > 0, if each element X(ω) =

10



K∑
k=1

Xk(ω) =
K∑
k=1

Ak(ω)e−iφk(ω) ∈ L∞(R), with Ak(ω) ∈ C1(R) ∩ L∞(R) and φk(ω) ∈ C2(R) satisfying:

mk = sup
ω∈R+

|Ak(ω)|, m′k = sup
ω∈R+

|φ′k(ω)|, |A′k(ω)|, |φ′′k(ω)| ≤ ε|φ′k(ω)|, ∀ω ∈ R+,

φ′k+1(ω)− φ′k(ω) ≥ d

ω
, ∀ω ∈ R+, k ∈ {1, 2, ...,K − 1}.

(36)

Intuitively, for the function class Hε,d, each component Xk(ω) can be viewed as approximately a

harmonic signal locally in the frequency domain, with slowly varying amplitude Ak(ω) and GD φ′k(ω).

In Theorem 3.1 for the TSWT [38], it has been shown that Xk(ω) and Xk+1(ω) satisfying well-separated

conditions ( φ′k+1(ω)−φ′k(ω) ≥ d
ω with d > 2ωψ∆) are separated. It has been also proven that the energy

of WT W ψ̂
Xk

(b, a) of the kth component Xk(ω) is concentrated in the zone Zk := {(b, a); |φ
′
k(
ωψ
a )−b
a | < ∆},

and the energy distribution of W ψ̂
X(b, a) is concentrated in the zones

⋃
1≤k≤K

Zk. Thus, zone Zk provides

an estimate of the main energy distribution region of W ψ̂
Xk

(b, a). Compared with the class Hε,d for

TSWT, the class Cε,d for NTEWT is not restricted to the class Hε,d composed of several harmonic-like

components, which is mathematically defined as:

Definition 10. The class Cε,d is said to be a set of all superposition of weakly-separated frequency-varying

chirp-like components (WFCC) up to accuracy ε > 0 and with separation dk,k+1 > 0, if each element

X(ω) =
K∑
k=1

Xk(ω) =
K∑
k=1

Ak(ω)e−iφk(ω) satisfies the following four conditions:

(1) Regularity conditions:

Ak(ω) ∈ L∞(R) ∩ C2(R), φk(ω) ∈ C3(R), k ∈ {1, 2, ...,K}.

(2) Boundedness conditions:

0 < inf
ω∈R

Ak(ω) ≤ sup
ω∈R

Ak(ω) < +∞, k ∈ {1, 2, ...,K}

0 < inf
ω∈R

φ′k(ω) ≤ sup
ω∈R

φ′k(ω) < +∞, sup
ω∈R
|φ′′k(ω)| < +∞.

(3) Growth conditions:

|A′k(ω)|, |φ′′′k (ω)| ≤ ε|φ′′k(ω)|, k ∈ {1, 2, ...,K}.

(4) Weakly-separated conditions: Xk(ω) are separated with the distance dk,k+1 > 0, i.e.

φ′k+1(ω)− φ′k(ω) ≥ dk,k+1

ω
, ω ∈ R+, k ∈ {1, 2, ...,K − 1}. (37)

Intuitively, the function class Cε,d is composed of several oscillatory components Xk(ω), where the

change rate (in frequency) of Ak(ω) and φ′′k(ω) is much smaller than the change rate of φ′k(ω) itself,

which means that each component Xk(ω) can be viewed as approximately a chirp signal locally in the

frequency domain, with slowly varying amplitude Ak(ω) and φ′′k(ω). It is worth noting that, different

from the constant separation constant d in the well-separated condition (36), each separation constant

dk,k+1 in the weakly-separated condition (37) here varies with components.
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Our main result is then the following:

Theorem 2. Let X(ω) =
K∑
k=1

Xk(ω) ∈ Cε,d, and set ε̃ := ε
1
4 . Pick a wavelet ψ̂(ω) such that inverse

FT ψφ(t) of its variant ψ̂φ(ω) = eiφ
′′
k (
ωψ
a ) ω

2

2a2 ψ̂(ω + ωψ) satisfies the following conditions: if |t| > ∆k with

dk,k+1 > max{ωψ∆k, ωψ∆k+1}, ψφ(t) ≤ εG0, ψ′φ(t) ≤ εG1, ψ′′φ(t) ≤ εG2, with G0, G1, G2 being some

constants. Consider the WT W ψ̂
X(b, a) of X(ω) with respect to ψ̂(ω), as well as the NTEWT NTe(b, a).

For k ∈ {1, 2, ...,K − 1}, define a set Tk := {(b, a); Πk(a) < b < Πk(a)}, with

Πk(a) = max{φ′k−1(
ωψ
a

) + a∆k−1, φ
′
k(
ωψ
a

)− a∆k}, Π1(a) = φ′1(
ωψ
a

)−∆1,

Πk(a) = min{φ′k(
ωψ
a

) + a∆k, φ
′
k+1(

ωψ
a

)− a∆k+1}, ΠK(a) = φ′K(
ωψ
a

) + ∆K ,
(38)

Then, provided ε is sufficiently small, the following hold:

(a) For k ∈ {1, 2, ...,K − 1}, and for each pair (b, a), we have Tk 6= ∅ with (φ′k(
ωψ
a ), a) ∈ Tk, and

Tk ∩ Tk+1 = ∅.

(b) For each k ∈ {1, . . . ,K − 1}, and for each pair (b, a) ∈ Tk for which holds |W ψ̂
X(b, a)| > ε̃, then

we have

|t̄X(b, a)− φ′k(
ωψ
a

)| ≤ ε̃. (39)

(c) Moreover, for each k ∈ {1, . . . ,K}, and for each pair (b, a) ∈ Tk, there exists a constant C > 0

such that,

|
2πaNTe(φ′k(

ωψ
a ), a)e−i

ωψ
a φ′k(

ωψ
a )

ψ∗φ(0)
−Xk(

ωψ
a

)| ≤ Cε̃.

Theorem 2 basically tells us that:

(a) If dk,k+1 > max{ωψ∆k, ωψ∆k+1}, then weakly-separated chirp-like components of Cε,d may inter-

fere with each other. However, each zone Tk does not intersect with each other, the zone Tk corresponds

to the energy distribution region of W ψ̂
Xk

(b, a) of the kth component Xk(ω) at the point (φ′k(
ωψ
a ), a) and

its vicinity, and the zone Tk for component Xk(ω) is separated from the main energy distribution regions

of WT of other components.

(b) The NGD estimator t̄X(b, a) is indeed a high-precision GD estimator in the zone Tk.

(c) The signal can be reconstructed with reasonably high accuracy by NTEWT.

The proof of this theorem is available in Appendix A. In the Lemma 3 of Appendix A, to further

compare Tk and Zk, we modify the set Zk for TSWT [38], i.e. Zk = {(b, a); |φ
′
k(
ωψ
a )−b
a | < ∆} and

well-separated condition φ′k+1(ω) − φ′k(ω) ≥ d
ω with d > 2ωψ∆. In Lemma 3, we define a set Zk :=

{(b, a); |φ
′
k(
ωψ
a )−b
a | < ∆k} and well-separated condition φ′k+1(ω)−φ′k(ω) ≥ dk,k+1

ω with dk,k+1 > ωψ(∆k +

∆k+1). The set Zk we define in Lemma 3 is slightly different from the set Zk for TSWT [38], we assume

dk,k+1 and ∆k vary with components, but d and ∆ in [38] are constant.

The focus here is on proving that: (1) the relationship between Tk satisfying weakly-separated con-

dition and Zk satisfying well-separated condition; (2) if the change-rate (in frequency) of the Ak(ω) and

φ′′k(ω) is small, compared with the change-rate of the GD φ′k(ω) themselves, then the proposed method

12



will identify and characterize the information of the signal X(ω) and their GDs. It can be concluded that,

for frequency-varying signals with weakly-separated chirp-like components, the NTEWT can effectively

represent them with satisfied TF energy concentration and reasonable reconstruction accuracy. Besides,

in the future, we will try to follow the ideas and analysis methods of Daubechies [46] and Sejdić [47]

about the theoretical analysis of noise, to further carry out a detailed and in-depth theoretical analysis

of noise.

5. Numerical Analysis of the Behavior of NTEWT and Comparisons

In this section, we will compare the difference between the proposed NTEWT method and advanced

TFA methods in addressing simulated and real signals, including SWT [23], MSWT [7], RS [15], TSST

[36], and TSST2 [41], and we use three quantitative indicators, including the Rényi entropy [7], mean

relative error (MRE) [34] and reconstruction quality factor (RQF) [40], to evaluate the TF energy con-

centration, GD estimation and signal reconstruction performance, respectively.

5.1. Simulation study and performance analysis

The TF concentration is one of the outstanding features used for evaluating the TF performance of

TFA methods, which can be quantified by Rényi entropy. The Rényi entropy of α order for TFR is

defined as [7]

Rα =
1

1− α
log2

∫ ∫
(

TFR(b, ω)∫ ∫
TFR(b, ω)dbdω

)αdbdω. (40)

where a smaller Rényi entropy value indicates that the TFA method can generate a more energy-

concentrated TFR.

Herein, a simulated signal consisting of two components can be constructed in the frequency domain

as:

X(ω) = X1(ω) +X2(ω) = A1(ω)e−iφ1(ω) +A2(ω)e−iφ2(ω), (41)

where the higher the frequency, the closer the distance between the two components of X(ω):

A1(ω) = A2(ω) = e0.001ω,

φ1(ω) = −0.001ω3 + 0.16ω2 + 1.2ω,

φ2(ω) = 0.03ω2 + 5.2ω + 250 ln(0.05ω + 0.6).

(42)

Figs. 1, 2 show the TF results obtained by different TFA methods in addressing frequency-varying

signals X(ω), where third-order Rényi entropy values are displayed in the bottom. It can be observed

that some TFA post-processing methods along the frequency direction, such as SWT and MSWT, provide

blurred TFRs for frequency-varying signals X(ω). However, some TFA post-processing methods along

the time direction, such as TSST, TSST2 and NTEWT, improve the readability of TFRs of frequency-

varying signals X(ω). The RS along the time and frequency directions also obtain a high resolution TFR.

Compared with the other five methods, NTEWT generates the most concentrated TFR, obtains the least

13
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Figure 1: TF results for X(ω): (a) SWT, (b) MSWT, (c) RS, (d) zoom of the SWT, (e) zoom of the MSWT,

(f) zoom of the RS.
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Figure 2: TF results for X(ω): (a) TSST, (b) TSST2, (c) NTEWT, (d) zoom of the TSST, (e) zoom of the

TSST2, (f) zoom of the NTEWT.

Rényi entropy, and suffers the least interference at high frequency, which means the NTEWT behaves

the best TF concentration performance for X(ω). Meanwhile, Table 1 lists the numerical execution time

of these TFA methods in addressing frequency-varying signals X(ω). It can be seen that under the

framework of STFT, TSST and TSST2 can finish the analysis within one second. However, these TFA

methods under the framework of WT need more time than TSST and TSST2, while NTEWT needs much

less time than SWT, MSWT and RS.

In order to study the performance of TF concentration of those TFA methods in the presence of noise,

we add Gaussian white noise with signal-to-noise ratio (SNR) of 0 dB to the test signal (see Fig. 3 and

Fig. 4). Compared with other TF results, NTEWT achieves the highest resolution TFR and obtains the
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Table 1: REQUIRED COMPUTATION TIME.

TFA SWT MSWT RS TSST TSST2 NTEWT

Time(s) 4.749 7.928 5.255 0.134 0.211 2.663
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Figure 3: TF results for X(ω) with SNR=0 dB Gaussian white noise: (a) SWT, (b) MSWT, (c) RS, (d) zoom

of the SWT, (e) zoom of the MSWT, (f) zoom of the RS.
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Figure 4: TF results for X(ω) with SNR=0 dB Gaussian white noise: (a) TSST, (b) TSST2, (c) NTEWT, (d)

zoom of the TSST, (e) zoom of the TSST2, (f) zoom of the NTEWT.

least Rényi entropy. Therefore, the NTEWT has clear advantages in addressing strongly-varying signals

in the frequency domain, even in noisy conditions.

To further compare the TF concentration performance of these TFA methods under different noise

levels, Fig. 5 displays the Rényi entropy curves of five TFA methods under SNRs of 0 dB to 30 dB. It

can be shown that, no matter under any SNR, the Rényi entropy curves of NTEWT and RS are always
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Figure 5: Under different noise levels (SNRs of 0-30 (dB)), Rényi entropy curves of TFRs generated by TFA

methods.
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Figure 6: The comparisons of GD estimation: (a) SWT, (b) MSWT, (c) RS, (d) TSST, (e) TSST2, (f) NTEWT.
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Figure 7: The original signal and reconstructed signals: (a) SWT, (b) MSWT, (c) TSST. The reconstructed

signals and the reconstructed errors: (d) SWT, (e) MSWT, (f) TSST.

below the Rényi entropy curves of TSST2, MSWT and TSST, which means that the Rényi entropy values

of NTEWT and RS are smaller. However, compared with RS reassigning along the time direction and

frequency direction, NTEWT extracting only along the time direction has smaller Rényi entropies. It
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Figure 8: The original signal and reconstructed signals: (a) TSST2, (b) NTEWT. The reconstructed signals and

the reconstructed errors: (c) TSST2, (d) NTEWT.

follows that among these TFA methods, NTEWT obtains the lowest Rényi entropy and behaves the best

TF concentration performance whatever the noise level. Thus, NTEWT provides the most concentrated

TFRs for analyzing noisy signals or noise-free signals.

Furthermore, we use the second quantified indicator, i.e., MRE, to evaluate the performance of N-

TEWT on detecting the GD feature of the signal, MRE can be employed to measure the errors of

estimated GD, which is defined by [34],

MRE =
1

NG
‖ ĜD−GD

GD
‖1, (43)

where ‖ · ‖1 denotes l1-norm, NG is the discrete length of the GD, GD and ĜD respectively represent the

true GD and the estimated GD. Generally, a lower MRE value means a better GD estimation performance.

In Fig. 6, red lines denote true GD trajectory, blue lines denote estimated GD trajectories, and MRE

values are written on both sides. As shown in Fig. 6, for two TFA post-processing methods along the

frequency direction, the GD trajectory estimated by SWT deviates from the true GD trajectory most

seriously, and as the second-order extension of SWT, MSWT reduces the deviation of both. However, for

three TFA post-processing methods along the time direction, the GD trajectories estimated by TSST,

TSST2 and NTEWT are closer to the true GD trajectory. Moreover, for RS along the frequency direction

and the time direction, the GD trajectory estimated by RS is also very close to the true GD trajectory. It

can be also seen that the GD trajectories estimated by the SWT, MSWT, TSST and TSST2 are interfered

at high frequency, while the GD trajectories estimated by RS and NTEWT are almost unaffected at high

frequency, and highly consistent with the true GD trajectory. And the MREs of GD estimated by RS and

NTEWT are smaller than those of the other four TFA methods. Thus, RS and NTEWT shows better

GD estimation performance.

17



Finally, the third quantified indicator RQF is used to evaluate the reconstruction performance, which

is defined as [40]

RQF = 10 log10

‖x(t)‖2

‖x(t)− xr(t)‖2
, (44)

where x(t) and xr(t) denote the original signal and the reconstructed signal, respectively. A higher RQF

value indicates a better reconstruction performance. Figs. 7, 8 show reconstructed results of five TFA

methods and their respective RQF values, and we find that the RQF values of TSST, TSST2 and NTEWT

are lower than those of SWT and MSWT, and NTEWT achieves the smallest reconstruction error and

the highest RQF value, it means that NTEWT behaves better reconstruction performance than other

four reconstruction methods. Therefore, it can be concluded that, the TFA methods for post-processing

operations along the time direction has more obvious advantages, in analyzing the strongly-varying signals

in the frequency domain, than the TFA methods for post-processing operations along the frequency

direction, especially the NTEWT behaves the best TF concentration, GD estimation and reconstruction

performance for strongly frequency-varying signal X(ω) through three quantified indicators.

5.2. Application

In this subsection, we employe two real-world signals to validate the effectiveness of the proposed

method. The first case is a popular bat signal recorded by Rice University [32], its waveform and spectrum

are displayed in Fig. 9 (a), (b). We first use NTEWT to reconstruct the signal, and its reconstruction

results are shown in Fig. 9 (c), (d). It can be seen that NTEWT can reconstruct signals well with high

RQF value and with small reconstruction error, thus NTEWT behaves the good reconstruction ability.

Furthermore, in order to understand the non-linear behaviors of the bat signal precisely, we use SWT,

MSWT, RS, TSST, TSST2 and NTEWT to analyze the bat signal, and corresponding TF results are

shown in Figs. 10, 11. Both the quantitative measure by the Rényi entropy and the visual interpretation

show that the NTEWT can accurately characterize the bat signal and essentially improve the TF energy

concentration of the bat signal.

Next, we consider a bearing vibration signal with the outer race fault, which was recorded by the Case

Western Reserve University [41], and its waveform and spectrum are displayed in Fig. 12. As shown in

Fig. 12 (b), the frequency band of this vibration signal is mainly concentrated in the frequency range of

2.5-4 kHz, thus we compare the TF features of this frequency range in Figs. 13, 14. Focus on the TF

results and Rényi entropies, the NTEWT can provide a more concentrated TFR than other five TFA

methods. This thus demonstrates the interest of the proposed new technique in real applications.

6. Conclusion

The main contribution of this paper is the introduction of Newton GD estimator and NTEWT, and

its theoretical analysis. In this paper, we firstly convert the GD estimation problem into solving the

fixed point problem, and combine with Newton algorithm to propose the Newton GD estimator for a
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Figure 9: (a) The waveform of the bat signal. (b) The spectrum of the bat signal. (c) The original signal and

the NTEWT reconstructed signal. (d) The reconstructed signal and the NTEWT reconstructed error.
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Figure 10: TF results for bat signal: (a) SWT, (b) MSWT, (c) RS, (d) zoom of the SWT, (e) zoom of the

MSWT, (f) zoom of the RS.

frequency-varying linear chirp signal. Based on the Newton GD estimator, we then propose the NTEWT,

which can achieve a high resolution TFR and reconstruct signal. Furthermore, we provide a precise

mathematical definition for WFCC, and develop a comprehensive theoretical error analysis of NTEWT for

WFCC, including approximate expression of WT, GD estimation and signal reconstruction. Finally, three

quantitative indicators are used to compare NTEWT and other advanced TFA methods from the aspects

of simulated and real signals. Both the quantitative indicators and the visual interpretation verify that

the TFA post-processing methods along the time direction are more suitable for analyzing the strongly-

varying signals in the frequency domain than the TFA post-processing methods along the frequency
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Figure 11: TF results for bat signal: (a) TSST, (b) TSST2, (c) NTEWT, (d) zoom of the TSST, (e) zoom of

the TSST2, (f) zoom of the NTEWT.
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Figure 12: The waveform of vibration signal and its spectrum.

direction, especially the NTEWT has a more concentrated TFR, better GD estimation performance, and

good reconstruction performance. In the future, we will try to develop a rigorous theoretical analysis of

noise, and further explore the potential of the proposed method in practical applications.

Appendix A

For convenience, we divide the proof of Theorem 2 into several simple estimates and demonstrate one

by one. The following lemma clearly explains the relationship between Tk satisfying weakly-separated

condition and Zk satisfying well-separated condition.

Lemma 3. For k ∈ {1, 2, ...,K}, define a set Zk

Zk := {(b, a); |
φ′k(

ωψ
a )− b
a

| < ∆k}, (45)

then the following hold:

(1) Tk ∩ Tk+1 = ∅, Tk ∩ Zk+1 = ∅ and Tk ⊂ Zk.

(2) If dk,k+1 > max{ωψ∆k, ωψ∆k+1}, then Tk 6= ∅ with (φ′k(
ωψ
a ), a) ∈ Tk.

(3) If dk,k+1 > ωψ(∆k + ∆k+1), then Tk = Zk.
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Figure 13: TF results for vibration signal: (a) SWT, (b) zoom of the SWT, (c) MSWT, (d) zoom of the MSWT,

(e) RS, (f) zoom of the RS.

Proof. (1) On the one hand, based on Eq. (38), Πk(a) and Πk+1(a) can be written as

Πk(a) = min{φ′k(
ωψ
a

) + a∆k, φ
′
k+1(

ωψ
a

)− a∆k+1},

Πk+1(a) = max{φ′k(
ωψ
a

) + a∆k, φ
′
k+1(

ωψ
a

)− a∆k+1},
(46)

it is obvious that Πk(a) ≤ Πk+1(a), thus Tk ∩ Tk+1 = ∅. Combined with

Πk(a) ≤ φ′k+1(
ωψ
a

)− a∆k+1,

Zk+1 = {(b, a);φ′k+1(
ωψ
a

)− a∆k+1 < b < φ′k+1(
ωψ
a

) + a∆k+1},
(47)

it means that the lower boundary of the zones Zk+1 is above the upper boundary of the zones Tk, i.e.

Tk ∩ Zk+1 = ∅.

On the other hand, for any (b, a) ∈ Tk, i.e. Πk(a) < b < Πk(a), combined with

b > Πk(a) ≥ φ′k(
ωψ
a

)− a∆k, b < Πk(a) ≤ φ′k(
ωψ
a

) + a∆k, (48)

this gives (b, a) ∈ Zk, and Tk ⊂ Zk.

(2) Since X(ω) =
K∑
k=1

Xk(ω) ∈ Cε,d, dk,k+1 satisfies the separation condition φ′k+1(
ωψ
a ) − φ′k(

ωψ
a ) ≥

adk,k+1

ωψ
. When dk,k+1 > max{ωψ∆k, ωψ∆k+1}, we have

φ′k+1(
ωψ
a

)− φ′k(
ωψ
a

) ≥ adk,k+1

ωψ
> max{a∆k, a∆k+1}, (49)
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Figure 14: TF results for vibration signal: (a) TSST, (b) zoom of the TSST, (c) TSST2, (d) zoom of the TSST2,

(e) NTEWT, (f) zoom of the NTEWT.

this gives

φ′k+1(
ωψ
a

) > φ′k(
ωψ
a

) + a∆k, φ′k+1(
ωψ
a

)− a∆k+1 > φ′k(
ωψ
a

). (50)

Considering

φ′k(
ωψ
a

) > max{φ′k−1(
ωψ
a

) + a∆k−1, φ
′
k(
ωψ
a

)− a∆k} = Πk(a), (51)

and

φ′k(
ωψ
a

) < min{φ′k(
ωψ
a

) + a∆k, φ
′
k+1(

ωψ
a

)− a∆k+1} = Πk(a), (52)

leads to (φ′k(
ωψ
a ), a) ∈ Tk, which means that Tk 6= ∅.

(3) According to separation condition and dk,k+1 > ωψ(∆k + ∆k+1), we have φ′k+1(
ωψ
a ) − φ′k(

ωψ
a ) ≥

adk,k+1

ωψ
> a(∆k + ∆k+1), which means that φ′k+1(

ωψ
a )− a∆k+1 > φ′k(

ωψ
a ) + a∆k. This leads to

Πk(a) = max{φ′k−1(
ωψ
a

) + a∆k−1, φ
′
k(
ωψ
a

)− a∆k} = φ′k(
ωψ
a

)− a∆k,

Πk(a) = min{φ′k(
ωψ
a

) + a∆k, φ
′
k+1(

ωψ
a

)− a∆k+1} = φ′k(
ωψ
a

) + a∆k.
(53)

Thus, when dk,k+1 > ωψ(∆k + ∆k+1), we have Tk = Zk. �

The above lemma indicates that:

(1) Each zone Tk does not intersect with each other, Tk is a subset of Zk. Moreover, Tk and

Z`(` 6= k) don’t intersect, which means that the zone Tk for component Xk(ω) is separated from the zone
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Z` for other component X`(ω), and it has been proved that in [38], Z` provides an estimate of the main

energy distribution region of W ψ̂
X`

(b, a).

(2) It is noteworthy that when dk,k+1 > max{ωψ∆k, ωψ∆k+1}, weakly-separated chirp-like compo-

nents of Cε,d may interfere with each other, and the zone Tk corresponds to the energy distribution region

of W ψ̂
Xk

(b, a) of the kth component Xk(ω) at the point (φ′k(
ωψ
a ), a) and its vicinity.

(3) If dk,k+1 > ωψ(∆k+∆k+1), then we have Tk = Zk, it follows that weakly-separated conditions are

restricted to well-separated cases, and the class Cε,d contains some signals with well-separated components.

In what follows, denote Mk = sup
ω∈R

Ak(ω) < ∞, M ′k = max(sup
ω∈R
|A′k(ω)|, sup

ω∈R
φ′k(ω)) < ∞, M ′′k =

sup
ω∈R
|φ′′k(ω)| <∞. If O(A′k) and O(φ′′′k ) are neglected, the kth component Xk(ω) can be approximated by

Taylor expansion as

Xk(ω) ≈ X̃k(ω) = Ak(
ωψ
a

)e−i[φk(
ωψ
a )+φ′k(

ωψ
a )(ω−

ωψ
a )+ 1

2φ
′′
k (
ωψ
a )(ω−

ωψ
a )2]. (54)

To simplify some notations, denote tk(b, a) =
φ′k(

ωψ
a )−b
a . If (b, a) ∈ Tk, then |tk(b, a)| < ∆k. Set

Ψk(tk(b, a)) =
ψ′∗φ (tk(b,a))

ψ∗φ(tk(b,a)) , and for (b, a) ∈ Tk, assume

|ψφ(tk(b, a))| ≤ Qk, |Ψk(tk(b, a))| ≤ Q′k, |Ψ′k(tk(b, a))| ≤ Q′′k . (55)

Estimate 1. For each k ∈ {1, . . . ,K}, we have

|Ak(ω)−Ak(
ωψ
a

)| ≤ εM ′′k |ω −
ωψ
a
|

|φk(ω)− φk(
ωψ
a

)− φ′k(
ωψ
a

)(ω − ωψ
a

)− 1

2
φ′′k(

ωψ
a

)(ω − ωψ
a

)2| ≤ 1

6
εM ′′k |ω −

ωψ
a
|3

(56)

Proof. When ω ≥ ωψ
a , noticing Definition 10, we have (the case ω <

ωψ
a can be done in a similar way):

|Ak(ω)−Ak(
ωψ
a

)| = |
∫ ω

ωψ
a

A′k(x)dx| ≤
∫ ω

ωψ
a

|A′k(x)|dx ≤ ε
∫ ω

ωψ
a

|φ′′k(x)|dx ≤ εM ′′k |ω −
ωψ
a
|, (57)

On the other hand, it is easy to show that

|φk(ω)− φk(
ωψ
a

)− φ′k(
ωψ
a

)(ω − ωψ
a

)− 1

2
φ′′k(

ωψ
a

)(ω − ωψ
a

)2| = |
∫ ω

ωψ
a

∫ x

ωψ
a

[φ′′k(y)− φ′′k(
ωψ
a

)]dydx|

= |
∫ ω

ωψ
a

∫ x

ωψ
a

∫ y

ωψ
a

φ′′′k (τ)dτdydx| ≤ εM ′′k
∫ ω

ωψ
a

∫ x

ωψ
a

|y − ωψ
a
|dydx =

1

6
εM ′′k |ω −

ωψ
a
|3. �

(58)

Next, we will prove Theorem 2 (b) by approximating X̃k(ω) to Xk(ω), which first needs to calculate

several WTs of X̃k(ω) and their upper bounds.

Estimate 2. (1) For each k ∈ {1, . . . ,K} and (b, a) ∈ Tk, we have

|W ψ̂

X̃k
(b, a)| ≤ Υ0,0(a), |W ψ̂′

X̃k
(b, a)| ≤ Υ0,1(a),

|∂bW ψ̂

X̃k
(b, a)| ≤ Υ1,0(a), |∂bW ψ̂′

X̃k
(b, a)| ≤ Υ1,1(a),

(59)

where

Υ0,0(a) =
MkQk
2πa

, Υ0,1(a) =
MkQk(∆k +

M ′′k
a2 Q

′
k)

2πa
, Υ1,0(a) =

MkQk(ωψ +Q′k)

2πa2
,

Υ1,1(a) =
MkQk
2πa2

(1 + ∆kQ
′
k + ∆kωψ +

M ′′k
a2

(ωψQ
′
k +Q′′k +Q′2k )).

(60)
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(2) Furthermore, for (b, a) ∈ Tk, for any 1 ≤ ` 6= k ≤ K, denote β` = sup
(b,a)∈R×R+

{|t`(b, a)|}, we have

|W ψ̂

X̃`
(b, a)| ≤ εJ0,0(a), |W ψ̂′

X̃`
(b, a)| ≤ εJ0,1(a)

|∂bW ψ̂

X̃`
(b, a)| ≤ εJ1,0(a), |∂bW ψ̂′

X̃`
(b, a)| ≤ εJ1,1(a)

(61)

where

J0,0(a) =
M`G0

2πa
, J0,1(a) =

M`

2πa3
(a2G0β` +G1M

′′
` ), J1,0(a) =

M`

2πa2
(G0ωψ +G1),

J1,1(a) =
M`

2πa2
(G0 + ωψ(G0β` +

G1M
′′
`

a2
) + β`G1 +

M ′′` G2

a2
)

(62)

Proof. (1) Based on Eqs. (5) and (54), the WT W ψ̂

X̃k
(b, a) of X̃k(ω) with ψ̂(ω) can be expressed as

W ψ̂

X̃k
(b, a) =

1

2π

∫
R
Ak(

ωψ
a

)e−i[φk(
ωψ
a )+φ′k(

ωψ
a )(ω−

ωψ
a )+φ′′k (

ωψ
a )

(ω−
ωψ
a

)2

2 ]ψ̂∗(aω)eiωbdω

=
1

2πa
Ak(

ωψ
a

)e−iφk(
ωψ
a )ei

ωψ
a b

∫
R

e−iφ
′′
k (
ωψ
a ) ω

2

2a2 ψ̂∗(ω + ωψ)e−i(φ
′
k(
ωψ
a )−b)ωa dω

=
1

2πa
Xk(

ωψ
a

)ei
ωψ
a b

∫
R
ψ̂∗φ(ω)e−i(φ

′
k(
ωψ
a )−b)ωa dω

=
1

2πa
Xk(

ωψ
a

)ei
ωψ
a bψ∗φ(tk(b, a)).

(63)

Thus, |W ψ̂

X̃k
(b, a)| ≤ 1

2πaMkQk = Υ0,0(a). Furthermore, W ψ̂′

X̃k
(b, a), ∂bW

ψ̂

X̃k
(b, a) and ∂bW

ψ̂′

X̃k
(b, a) can be

formulated as

W ψ̂′

X̃k
(b, a) = Λ1,k(a, b)W ψ̂

X̃k
(b, a), Λ1,k(a, b) = itk(b, a)−

φ′′k(
ωψ
a )

a2
Ψ(tk(b, a)),

∂bW
ψ̂

X̃k
(b, a) = Λ2,k(a, b)W ψ̂

X̃k
(b, a), Λ2,k(a, b) = i

ωψ
a
− 1

a
Ψ(tk(b, a)),

∂bW
ψ̂′

X̃k
(b, a) = Λ3,k(a, b)W ψ̂

X̃k
(b, a),

Λ3,k(a, b) = −(
i+ itk(b, a)Ψ(tk(b, a)) + ωψtk(b, a)

a
+
φ′′k(

ωψ
a )

a3
(iωψΨ(tk(b, a))−Ψ′(tk(b, a))−Ψ2(tk(b, a)))).

(64)

From the above results, it is easy to obtain the bounds of these WTs.

(2) According to Lemma 3, for (b, a) ∈ Tk and k 6= `, we have Tk ∩ Z` = ∅, and (b, a) /∈ Z`, i.e.,

|t`(b, a)| ≥ ∆`. According to the condition on ψφ(t), if |t`(b, a)| ≥ ∆` with d`,`+1 > max{ωψ∆`, ωψ∆`+1},

then |ψφ(t`(b, a))| ≤ εG0, |ψ′φ(t`(b, a))| ≤ εG1, |ψ′′φ(t`(b, a))| ≤ εG2. Thus, by Eqs. (63) and (64), we

obtain

|W ψ̂

X̃`
(b, a)| = | 1

2πa
X`(

ωψ
a

)ei
ωψ
a bψ∗φ(t`(b, a))| ≤ εM`G0

2πa
= εJ0,0(a), (65)

|W ψ̂′

X̃`
(b, a)| ≤ |it`(b, a)W ψ̂

X̃`
(b, a)|+ | 1

2πa3
X`(

ωψ
a

)ei
ωψ
a bφ′′` (

ωψ
a

)ψ′∗φ (t`(b, a))|

≤ εβ`
M`G0

2πa
+ ε

M`G1

2πa3
M ′′` =

εM`

2πa3
(a2G0β` +G1M

′′
` ) = εJ0,1(a),

(66)

|∂bW ψ̂

X̃`
(b, a)| ≤ |iωψ

a
W ψ̂

X̃`
(b, a)|+ | 1

2πa2
X`(

ωψ
a

)ei
ωψ
a bψ′∗φ (t`(b, a))|

≤ ε M`

2πa2
(G0ωψ +G1) = εJ1,0(a),

(67)
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and,

|∂bW ψ̂′

X̃`
(b, a)| ≤ |iωψ

a
W ψ̂′

X̃`
(b, a)|+ | i

a
W ψ̂

X̃`
(b, a)|

+ | it`(b, a)

2πa2
X`(

ωψ
a

)ei
ωψ
a bψ′∗φ (t`(b, a))|+ |

φ′′` (
ωψ
a )

2πa4
X`(

ωψ
a

)ei
ωψ
a bψ′′∗φ (t`(b, a))|

≤ εωψM`

2πa4
(a2G0β` +G1M

′′
` ) + ε

M`G0

2πa2
+
εM`β`G1

2πa2
+
εM`M

′′
` G2

2πa4

=
εM`

2πa2
(G0 + ωψ(G0β` +

G1M
′′
`

a2
) + β`G1 +

M ′′` G2

a2
) = εJ1,1(a). �

(68)

Estimate 3. For k ∈ {1, . . . ,K}, and (b, a) ∈ R× R+, we have

|W ψ̂
Xk

(b, a)−W ψ̂

X̃k
(b, a)| ≤ εM ′′k (I1

0,0(a) +
Mk

6
I3
0,0(a))

|W ψ̂′

Xk
(b, a)−W ψ̂′

X̃k
(b, a)| ≤ εM ′′k (I1

0,1(a) +
Mk

6
I3
0,1(a))

|∂bW ψ̂
Xk

(b, a)− ∂bW ψ̂

X̃k
(b, a)| ≤ εM ′′k (I1

1,0(a) +
Mk

6
I3
1,0(a))

|∂bW ψ̂′

Xk
(b, a)− ∂bW ψ̂′

X̃k
(b, a)| ≤ εM ′′k (I1

1,1(a) +
Mk

6
I3
1,1(a)).

(69)

where Irp,q(a) = 1
2πap

∫
R |ω −

ωψ
a |

r|(aω)pψ̂(q)(aω)|dω, p, q = 0, 1, r = 1, 3.

Proof. According to the WT definition, for (b, a) ∈ R× R+, we have

|W ψ̂
Xk

(b, a)−W ψ̂

X̃k
(b, a)| ≤ | 1

2π

∫
R

(Ak(ω)−Ak(
ωψ
a

))e−iφk(ω)ψ̂∗(aω)eiωbdω|

+ | 1

2π

∫
R
Ak(

ωψ
a

)(e−iφk(ω) − e−i[φk(
ωψ
a )+φ′k(

ωψ
a )(ω−

ωψ
a )+ 1

2φ
′′
k (
ωψ
a )(ω−

ωψ
a )2])ψ̂∗(aω)eiωbdω|

≤ 1

2π

∫
R
|Ak(ω)−Ak(

ωψ
a

)||ψ̂(aω)|dω

+
1

2π

∫
R
|Ak(

ωψ
a

)||φk(ω)− φk(
ωψ
a

)− φ′k(
ωψ
a

)(ω − ωψ
a

)− 1

2
φ′′k(

ωψ
a

)(ω − ωψ
a

)2||ψ̂(aω)|dω

≤ ε

2π
M ′′k

∫
R
|ω − ωψ

a
||ψ̂(aω)|dω +

ε

2π

1

6
MkM

′′
k

∫
R
|ω − ωψ

a
|3|ψ̂(aω)|dω)

≤ εM ′′k (I1
0,0(a) +

Mk

6
I3
0,0(a)),

(70)

where we use the differential mean value theorem eix − ei0 = ieiξx for the second inequality. The proofs

of the other estimates are analogous. �

Estimate 4. (1) For k ∈ {1, . . . ,K}, and (b, a) ∈ R× R+, we have

|W ψ̂
X(b, a)−

K∑
k=1

W ψ̂

X̃k
(b, a)| ≤ ε

K∑
k=1

M ′′k (I1
0,0(a) +

Mk

6
I3
0,0(a)),

|W ψ̂′

X (b, a)−
K∑
k=1

W ψ̂′

X̃k
(b, a)| ≤ ε

K∑
k=1

M ′′k (I1
0,1(a) +

Mk

6
I3
0,1(a)),

|∂bW ψ̂
X(b, a)−

K∑
k=1

∂bW
ψ̂

X̃k
(b, a)| ≤ ε

K∑
k=1

M ′′k (I1
1,0(a) +

Mk

6
I3
1,0(a)),

|∂bW ψ̂′

X (b, a)−
K∑
k=1

∂bW
ψ̂′

X̃k
(b, a)| ≤ ε

K∑
k=1

M ′′k (I1
1,1(a) +

Mk

6
I3
1,1(a)),

(71)
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(2) Furthermore, for (b, a) ∈ Tk, we have

|W ψ̂
X(b, a)−W ψ̂

X̃k
(b, a)| ≤ εΩ0,0(a), |W ψ̂′

X (b, a)−W ψ̂′

X̃k
(b, a)| ≤ εΩ0,1(a)

|∂bW ψ̂
X(b, a)− ∂bW ψ̂

X̃k
(b, a)| ≤ εΩ1,0(a), |∂bW ψ̂′

X (b, a)− ∂bW ψ̂′

X̃k
(b, a)| ≤ εΩ1,1(a).

(72)

where Ωp,q(a) =
K∑
k=1

(M ′′k I
1
p,q(a) +

MkM
′′
k

6 I3
p,q(a) + Jp,q(a)).

Proof. (1) According to Estimate 3, for (b, a) ∈ R× R+, we obtain

|W ψ̂
X(b, a)−

K∑
k=1

W ψ̂

X̃k
(b, a)| ≤

K∑
k=1

|W ψ̂
Xk

(b, a)−W ψ̂

X̃k
(b, a)|

≤ ε
K∑
k=1

M ′′k (I1
0,0(a) +

Mk

6
I3
0,0(a)).

(73)

(2) For (b, a) ∈ Tk, according to Lemma 3, we have (b, a) /∈ Z` (` 6= k), i.e. |φ
′
`(
ωψ
a )−b
a | ≥ ∆`, then

|ψφ(t`(b, a))| ≤ εG0. Thus, by Estimate 2 and Estimate 3, it follows that

|W ψ̂
X(b, a)−W ψ̂

X̃k
(b, a)| ≤ |

K∑
k=1

W ψ̂
Xk

(b, a)−
K∑
k=1

W ψ̂

X̃k
(b, a)|+ |

K∑
` 6=k

W̃ ψ̂
X`

(b, a)|

≤
K∑
k=1

|W ψ̂
Xk

(b, a)−W ψ̂

X̃k
(b, a)|+ ε

K∑
` 6=k

J0,0(a)

≤ ε
K∑
k=1

(M ′′k I
1
0,0(a) +

MkM
′′
k

6
I3
0,0(a) + J0,0(a)) = εΩ0,0(a).

(74)

The proofs of the other estimates are analogous. �

Estimate 5. For k ∈ {1, . . . ,K}, and (b, a) ∈ Tk for which holds |W ψ̂
X(b, a)| > ε̃, we have

(1) |t̃X(b, a)− t̃X̃k(b, a)| ≤ ε 3
4 Γ0(a), where Γ0(a) = a(Ω0,1(a) + (∆k +

M ′′k
a2 Q

′
k)Ω0,0(a)).

(2) |∂bt̃X(b, a)− ∂bt̃X̃k(b, a)| ≤ ε 1
2 Γ1(a), where

Γ1(a) = a(ε
1
4 Ω1,1(a) + Υ1,1(a)Ω0,0(a) + (εΩ1,0(a) + Υ1,0(a))Ω0,1(a)

+ Υ0,1(a)Ω1,0(a) + (1 +
1

a2
M ′′kQ

′′
k)(εΩ0,0(a) + 2Υ0,0(a))Ω0,0(a)).

(75)

Proof. (1) Based on Eqs. (19), (64) and (72), we obtain

|t̃X(b, a)− t̃Xk(b, a)| = |ia(
W ψ̂′

X (b, a)

W ψ̂
X(b, a)

− Λ1,k(a, b))| = |ia
W ψ̂′

X (b, a)− Λ1,k(a, b)W ψ̂
X(b, a)

W ψ̂
X(b, a)

|

= |ia
(W ψ̂′

X (b, a)−W ψ̂′

X̃k
(b, a)) + (W ψ̂′

X̃k
(b, a)− Λ1,k(a, b)W ψ̂

X̃k
(b, a)) + Λ1,k(a, b)(W ψ̂

X̃k
(b, a)−W ψ̂

X(b, a))

W ψ̂
X(b, a)

|

≤ |ia
W ψ̂′

X (b, a)−W ψ̂′

X̃k
(b, a)

W ψ̂
X(b, a)

|+ |ia
Λ1,k(a, b)(W ψ̂

X̃k
(b, a)−W ψ̂

X(b, a))

W ψ̂
X(b, a)

|

≤ ε 3
4 a(Ω0,1(a) + |Λ1,k(a, b)|Ω0,0(a)) ≤ ε 3

4 a(Ω0,1(a) + (∆k +
M ′′k
a2

Q′k)Ω0,0(a)) = ε
3
4 Γ0(a)

(76)
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(2) By Eq. (19), we have

∂bt̃X̃k(b, a) = 1− ia(
∂bW

ψ̂′

X̃k
(b, a)W ψ̂

X̃k
(b, a)−W ψ̂′

X̃k
(b, a)∂bW

ψ̂

X̃k
(b, a)

(W ψ̂

X̃k
(b, a))2

), (77)

this gives

(1− ∂bt̃X̃k(b, a))(W ψ̂

X̃k
(b, a))2 = ia(∂bW

ψ̂′

X̃k
(b, a)W ψ̂

X̃k
(b, a)−W ψ̂′

X̃k
(b, a)∂bW

ψ̂

X̃k
(b, a)),

then, we can get

|∂bt̃X(b, a)− ∂bt̃X̃k(b, a)| = |1− ia(
∂bW

ψ̂′

X (b, a)W ψ̂
X(b, a)−W ψ̂′

X (b, a)∂bW
ψ̂
X(b, a)

(W ψ̂
X(b, a))2

)− ∂bt̃X̃k(b, a)|

≤ |
ia(∂bW

ψ̂′

X (b, a)W ψ̂
X(b, a)−W ψ̂′

X (b, a)∂bW
ψ̂
X(b, a)− (∂bW

ψ̂′

X̃k
(b, a)W ψ̂

X̃k
(b, a)−W ψ̂′

X̃k
(b, a)∂bW

ψ̂

X̃k
(b, a)))

(W ψ̂
X(b, a))2

|

+ |
(1− ∂bt̃X̃k(b, a))((W ψ̂

X(b, a))2 − (W ψ̂

X̃k
(b, a))2)

(W ψ̂
X(b, a))2

|

≤ |a
∂bW

ψ̂′

X (b, a)− ∂bW ψ̂′

X̃k
(b, a)

W ψ̂
X(b, a)

|+ |a
∂bW

ψ̂′

X̃k
(b, a)(W ψ̂

X(b, a)−W ψ̂

X̃k
(b, a))

(W ψ̂
X(b, a))2

|+ |a
(W ψ̂′

X (b, a)−W ψ̂′

X̃k
(b, a))∂bW

ψ̂
X(b, a)

(W ψ̂
X(b, a))2

|

+ |a
W ψ̂′

X̃k
(b, a)(∂bW

ψ̂
X(b, a)− ∂bW ψ̂

X̃k
(b, a))

(W ψ̂
X(b, a))2

|+ |
(1− ∂bt̃X̃k(b, a))((W ψ̂

X(b, a))2 − (W ψ̂

X̃k
(b, a))2)

(W ψ̂
X(b, a))2

|

≤ aε 3
4 Ω1,1(a) + aε

1
2 |∂bW ψ̂′

X̃k
(b, a)|Ω0,0(a) + aε

1
2 |∂bW ψ̂

X(b, a)|Ω0,1(a) + aε
1
2 |W ψ̂′

X̃k
(b, a)|Ω1,0(a)

+ aε
1
2 |1− ∂bt̃X̃k(b, a)||W ψ̂

X(b, a) +W ψ̂

X̃k
(b, a)|Ω0,0(a)

(78)

According to Eq. (7), t̃Xk(b, a) and ∂bt̃Xk(b, a) can be formulated as

t̃Xk(b, a) = φ′k(
ωψ
a

) + i
φ′′k(

ωψ
a )

a
Ψ(tk(b, a)), ∂bt̃Xk(b, a) = −i

φ′′k(
ωψ
a )

a2
Ψ′(tk(b, a)). (79)

Also note that |Ψ′k(tk(b, a))| ≤ Q′′k , it follows that

|1− ∂bt̃X̃k(b, a)| ≤ 1 + |∂bt̃X̃k(b, a)| ≤ 1 +
1

a2
M ′′kQ

′′
k . (80)

By Estimate 2 and Estimate 4, considering that

|∂bW ψ̂
X(b, a)| ≤ |∂bW ψ̂

X(b, a)− ∂bW ψ̂

X̃k
(b, a)|+ |∂bW ψ̂

X̃k
(b, a)| ≤ εΩ1,0(a) + Υ1,0(a), (81)

and,

|W ψ̂
X(b, a) +W ψ̂

X̃k
(b, a)| ≤ |W ψ̂

X(b, a)−W ψ̂

X̃k
(b, a)|+ 2|W ψ̂

X̃k
(b, a)| ≤ εΩ0,0(a) + 2Υ0,0(a), (82)

it leads to

|∂bt̃X(b, a)− ∂bt̃X̃k(b, a)| ≤ aε 1
2 (ε

1
4 Ω1,1(a) + Υ1,1(a)Ω0,0(a) + (εΩ1,0(a) + Υ1,0(a))Ω0,1(a) + Υ0,1(a)Ω1,0(a)

+ (1 +
1

a2
M ′′kQ

′′
k)(εΩ0,0(a) + 2Υ0,0(a))Ω0,0(a)) = ε

1
2 Γ1(a). �

(83)
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Next, we will consider the error analysis of the Newton GD estimator and the true GD.

Estimate 6. For k ∈ {1, . . . ,K}, and (b, a) ∈ Tk such that |W ψ̂
X(b, a)| > ε̃, we have

(1) Denote Pk = inf
a∈R+

{|1+i
φ′′k (

ωψ
a )

a2 Ψ′(tk(b, a)|}, if there exists some constant Sk such that |Ψ(tk(b, a))−

tk(b, a)Ψ′(tk(b, a))| ≤ εSk, then

|t̄X̃k(b, a)− φ′k(
ωψ
a

)| ≤ εM
′′
k Sk
aPk

. (84)

(2) Furthermore, we have

|t̄X(b, a)− φ′k(
ωψ
a

)| ≤ ε 1
2 Γ2(a), (85)

where Γ2(a) =
ε
1
4 Γ0(a)+a∆kΓ1(a)+ε

1
2
M′′k Sk
aPk

(H+ε
1
2 Γ1(a))

H , with H = inf
a∈R+

{|1− ∂bt̃X(b, a)|}.

Proof. (1) By Eq. (32), we have

|t̄X̃k(b, a)− φ′k(
ωψ
a

)| = |b−
b− φ′k(

ωψ
a )− iφ

′′
k (
ωψ
a )

a Ψ(tk(b, a))

1 + i
φ′′k (

ωψ
a )

a2 Ψ′(tk(b, a))
− φ′k(

ωψ
a

)|

≤ |
i
φ′′k (

ωψ
a )

a (Ψ(tk(b, a))− tk(b, a)Ψ′(tk(b, a)))

1 + i
φ′′k (

ωψ
a )

a2 Ψ′(tk(b, a))
| ≤ εM

′′
k Sk
aPk

.

(86)

2) According to the definition of t̄X(b, a), we have then

|t̄X(b, a)− φ′k(
ωψ
a

)| = |b− b− t̃X(b, a)

1− ∂bt̃X(b, a)
− φ′k(

ωψ
a

)| = |
b− t̃X(b, a)− (b− φ′k(

ωψ
a ))(1− ∂bt̃X(b, a))

1− ∂bt̃X(b, a)
|

≤ |
b− t̃X(b, a)− (b− t̃X̃k(b, a))

1− ∂bt̃X(b, a)
|+ |

(b− φ′k(
ωψ
a ))(1− ∂bt̃X(b, a))− (b− φ′k(

ωψ
a ))(1− ∂bt̃X̃k(b, a))

1− ∂bt̃X(b, a)
|

+ |
b− t̃X̃k(b, a)− (b− φ′k(

ωψ
a ))(1− ∂bt̃X̃k(b, a))

1− ∂bt̃X(b, a)
|

≤ |
t̃X(b, a)− t̃X̃k(b, a)

1− ∂bt̃X(b, a)
|+ |

(b− φ′k(
ωψ
a ))(∂bt̃X(b, a)− ∂bt̃X̃k(b, a))

1− ∂bt̃X(b, a)
|+ |

(t̄X̃k(b, a)− φ′k(
ωψ
a ))(1− ∂bt̃X̃k(b, a))

1− ∂bt̃X(b, a)
|

≤ ε
1
2

H
(ε

1
4 Γ0(a) + a∆kΓ1(a) + ε

1
2
M ′′k Sk
aPk

(H + ε
1
2 Γ1(a))) = ε

1
2 Γ2(a).

(87)

where the last inequality uses |
1−∂b t̃X̃k (b,a)

1−∂b t̃X(b,a)
| = |1 +

∂b t̃X(b,a)−∂b t̃X̃k (b,a)

1−∂b t̃X(b,a)
| ≤ 1

H (H + ε
1
2 Γ1(a)). �

Proof of Theorem 2 (b). Assume ε
1
4 Γ2(a) < 1, then we have

|t̄X(b, a)− φ′k(
ωψ
a

)| ≤ ε̃. � (88)

Proof of Theorem 2 (c). For (b, a) ∈ Tk, we evaluate the WT in Eq. (63) along the trajectory

b = φ′k(
ωψ
a )

W ψ̂

X̃k
(φ′k(

ωψ
a

), a) =
1

2πa
Xk(

ωψ
a

)ei
ωψ
a φ′k(

ωψ
a )ψ∗φ(0), (89)

it follows that,

Xk(
ωψ
a

) =
2πaW ψ̂

X̃k
(φ′k(

ωψ
a ), a)e−i

ωψ
a φ′k(

ωψ
a )

ψ∗φ(0)
. (90)
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According to Estimate 4, we have

|
2πaNTe(φ′k(

ωψ
a ), a)e−i

ωψ
a φ′k(

ωψ
a )

ψ∗φ(0)
−Xk(

ωψ
a

)|

≤ | 2πa

ψ∗φ(0)
|W ψ̂

X(φ′k(
ωψ
a

), a)−W ψ̂

X̃k
(φ′k(

ωψ
a

), a)||+ |
2πaW ψ̂

X̃k
(φ′k(

ωψ
a ), a)e−i

ωψ
a φ′k(

ωψ
a )

ψ∗φ(0)
−Xk(

ωψ
a

)|

≤ ε| 2πa

ψφ(0)
|Ω0,0(a) = Cε̃.

(91)

The proof of Theorem 2 is finished. �
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