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Abstract

This paper presents a pixel selection method for compact image representation based on superpixel segmentation and tensor

completion. Our method divides the image into several regions that capture important textures or semantics and selects a

representative pixel from each region to store. We experiment with different criteria for choosing the representative pixel and

find that the centroid pixel performs the best. We also propose two smooth tensor completion algorithms that can effectively

reconstruct different types of images from the selected pixels. Our experiments show that our superpixel-based method achieves

better results than uniform sampling for various missing ratios.

Index Terms

Superpixel, Tensor Completion, Uniform sampling, Nuclear norm minimization.

I. INTRODUCTION

Dealing with incomplete data tensors is inevitable in real-world applications due to sensor malfunctioning, inaccurate data

acquisition, communication problems or inappropriate handling. However, data elements can also be manually removed to

optimise space requirements or to remove unwanted outliers. Estimating the unknown elements of an incomplete data tensor is

known as tensor completion and has played important roles in many machine learning problems, e.g. image/video completion

[1] and recommender systems [2]. Due to the importance of tensor completion in the above-mentioned applications, several

efficient algorithms have been developed during the past few decades to solve it. Indeed, tensor completion has its basis from

matrix completion [3]. Similar to the matrix completion where the main assumption is low-rank property of the underlying

data matrix, for the tensor case, it is also assumed that the data tensor has low-rank structure. This assumption plays a key

role in the formulation of the optimization problem and also deriving theoretical results. It should be noted that the notion of

rank for tensors is not unique as it is for matrices, different types of tensor ranks have been defined [4]. Minimizing the matrix

rank is an NP hard problem and it has been proved that the nuclear norm is the convex envelope of the matrix rank which

can be used to efficiently estimate the matrix rank [5]. Replacing the matrix rank function with the nuclear norm, converts a

non-convex optimization problem into a convex one which is more favorable. Following the matrix case, the nuclear norm of

the unfolding matrices has been used to efficiently recover different types of tensor ranks, see [1] for a comprehensive review

on this topic.
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This paper is inspired by the idea of using tensor completion technology to compress and transmit images [6]. The idea

is to sample a subset of pixels from an image at the source and send them to the destination through a network. Then, at

the destination, the tensor completion algorithms are applied to the incomplete image to recover it. This can save memory

and speed up data transmission. Most existing papers use uniform sampling to select pixels, but we wonder if other heuristic

approaches can perform better. To the best of our knowledge, this question has not been investigated before. We propose

to cluster a given image into several partitions that have similar characteristics and then select pixels from each partition.

As an efficient clustering method, superpixel algorithms have been used in several applications such as image segmentation

[7], [8], [9], [10] and object detection [11]. Among several superpixel methods, Simple Linear Iterative Clustering (SLIC)

algorithm [12] is known for its high performance and fast execution time. Due to these key issues, we use it in our work as

a preprocessing stage to find partitions with similar texture/semantic. Then, we select pixels from each superpixel separately.

Since each superpixel has homogeneous features and share similar pixel information, the preprocessing stage can hep us to

avoid sampling many redundant and similar pixels. Of course, there are several ways to select pixels from each superpixel such

as the pixel located in the center or those are on the border. It is also possible to apply the clustering algorithm repeatedly

to each superpixel to further explore important pixels. We have extensively investigated the performance of such different

sampling strategies. Our simulation results confirmed that the pixel selection based on superpixel preprocessing provides better

results than the uniform sampling for a variety of images. Besides, the superpixel preprocessing method with center pixel

selection achieved the best results compared with selecting other pixels in the superpixels.

For recovering the sampled/incomplete image, we also propose the Smooth Tensor nuclear norm (STNN) and Smooth Matrix

Nuclear Norm (SMNN) algorithms for image completion. In particular, the smoothing processing enables the completion

algorithms to provide better results and this is shown experimentally in our simulation results. The important pixel selection

followed by applying efficient tensor completion algorithms totally improves the traditional uniform sampling approach.

We summarize our main contributions as follows:

• We sample and capture important pixels in images using the superpixel technique.

• We develop efficient tensor completion algorithms with smoothing and filtering methods to enhance their performance.

• We conduct extensive simulations on various images with missing patterns, including random and structured ones.

The rest of this paper is organized as follows: Section II introduces the notations and concepts that we use in our approach.

Section III explains the superpixel technique and how it extracts important content or semantics from the images. Section IV

studies the importance of pixel selection and how to sample important pixels. Section V develops tensor completion algorithms

with an efficient smoothing technique to improve their performance. Section VI presents extensive experiments to demonstrate

the applicability and feasibility of our methods. Section VII concludes the paper.

II. NOTATIONS AND DEFINITIONS

Basic notations used in this work are taken from [4]. We represent scalars by the lowercase letters. A vector is given by a

boldface lower case letter, e.g. a. A matrix is represented by boldface capital letter, e.g. A and a higher order tensors are also
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denoted by bold underlined capital letter, e.g. A. For an N th-order tensor A ∈ RI1×I2×···×IN its (i1, i2, . . . , iN )th element is

denoted by xi1,i2,...,iN and is represented as A(i1, i2, . . . , iN ).

The n-mode matricization of a tensor A ∈ RI1×I2×···×IN which is also called mode-n unfolding of a tensor [13] is

shown by A(n) ∈ RIn×I1···In−1In+1···IN . Tensorization or matrix folding is the process of converting a low-order tensor to

a higher-order tensor. When we fix all indices except two of a tensor, a sub-tensor is generated and it is called a slice.

For example, for a tensor A ∈ RI×J×K , the slices A(:, :, k), i = 1, 2, . . . , I3, are called frontal slices and is denoted as

A(k), the tube in a tensor is denoted as A(i, j, :). The inner product of two tensors A , B ∈ RI1×I2×···×IN is defined as

〈A,B〉 =
∑
i1

∑
i2
. . .
∑
iN
ai1,...,iN bi1,...,iN and the Frobenius norm of a tensor is given as ‖A‖F =

√
〈A,A〉.

A. Low-Rank Tensor Completion

Let an incomplete data tensor A ∈ RI1×I2×···×IN , be given and assume the indices of its observed elements are arranged in

the indexing binary tensor Ω ∈ RI1×I2×···×IN . The complement of the indexing set Ω is represented as Ω⊥(i1, i2, . . . , iN ).

The projection operator Ω over the data tensor A is defined as follows:

PΩ (A) =

 ai1,i2,...,iN (i1, i2, . . . , iN ) ∈ Ω.

0 for missing entries.

The task of low rank tensor completion can be formulated as the following optimization problem

arg min
B

∥∥PΩ (B)− PΩ (A)
∥∥2

F
, (1)

where B is the estimated data tensor. To make the problem (1) well-posed we need to impose constraints on the data tensor B,

e.g. low-rank property. Depending on the tensor rank notion defined such as Tucker rank, Tensor Tran rank, Tubal rank etc, the

minimization problem (1) is solved over the space of tensors with at most the predefined tensor rank. If estimating the tensor

rank is difficult, then the minimization problem (1) can be converted to the tensor rank minimization problem formulated as

follows

arg min
B

rank(B) +
∥∥PΩ (B)− PΩ (A)

∥∥2

F
, (2)

where by solving problem (2), we can reconstruct the data tensor and also estimate the tensor rank. Unfortunately, the tensor

rank minimization is an NP hard problem and a surrogate or a relaxation of it should be considered (to be discussed in Section

V).

III. SUPERPIXEL CLUSTERING

A group of pixels that share similar features such as pixel intensity, texture and color are referred to as superpixels. Superpixels

can be found in many applications of computer vision and machine learning tasks. As an efficient superpixel method, SLIC

(Simple Linear Iterative Clustering) algorithm was introduced in [12] and due to its superior performance [14], [15] was

extensively used in many applications such as image segmentation [7], [8], [9], [10], object detection [11], anomaly detection

[16], [17] and image reconstruction [18], [19], [20]. To efficiently generate superpixels, the SLIC algorithm employs a k-means
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clustering approach. It basically converts an RGB color space into the CIELAB color space as [l, a, b, x, y]T where [l, a, b]T

is the pixel color vector in CIELAB color space and [x, y]T is the pixel position. The spatial distances are normalized in order

to use the Euclidean distance in the 5D space. To cluster pixels in 5D space, a new distance measure that takes super-pixel

size into account is introduced. This method takes as input a desired number of approximately equally sized superpixels K.

At first, K superpixel cluster centers ck, k = 1, 2, . . . ,K are chosen at regular grid intervals S. Since the spatial vastness of

any superpixel is approximately S2, we assume that pixels associated with this cluster center are located within a 2S × 2S

area on the xy plane surrounding the superpixel center. Ds is the normalized distance measure that will be used in 5D space

and defined as follows
Ds = dlab + (m/S) ∗ dxy,

dlab =
√

(lk − li) + (ak − ai) + (bk − bi),

dxy =
√

((xk − xi)2 + (yk − yi)2),

(3)

where i represents the value to be clustered. The sum of the lab distance dlab and the xy plane distance dxy normalized by

the grid interval S. Besides, the distance measure Ds includes a variable m that allows us to control the compactness of a

superpixel. The greater the value of m, the cluster becomes more compact. This value can range between 1 and 20. The SLIC

algorithm is summarized in the Appendix (Algorithm 5). See Figure 1 for a graphical illustration on the SLIC algorithm for

K = 50, 100, 200 superpixels.

The use of superpixels for various computer vision and image processing tasks acts as a preprocessing step to reduce the

complexity of subsequent processing. They are also used to capture redundancy in an image [15]. A superpixel clustering

method was employed in [21] as an initial step to segmentation, texture learning and patch matching for image reconstruction.

Indeed, the superpixel methods as clustering techniques allow for sampling important pixels used in the reconstruction of the

images. The reconstructed images can then be used to perform other tasks achieving results comparable to the original image.

The clustering techniques using superpixel have been implemented in many neural networks and autoencoders models. These

methods have proven to be very effective with promising results. The unsupervised learning models are very useful for feature

extraction. A Dual Graph Autoencoder (DGAE), proposed by Zhang et al. [22] constructs the superpixel-based similarity

graph using entropy rate superpixel which captures the spatial information in the image and generate a band-based similarity

graph that can be used to characterize the geometric structures of hyperspectral images. The dual graph convolution, allows

more discriminative feature representations to be learned from the hidden layers that aids in the generation of a clustering

map. Superpixels has also seen implementation in medical data segmentation [23], [24], [25], [26]. The implementation by

Bechar et al [24] uses a semi-supervised model for optic cup and disc segmentation to calculate the cup to disc ratio value.

Here, the SLIC superpixel was adopted for generating some labels used in the retina segmentation. However, the drawback

to most of these sophisticated models is hyperparameter fine-tuning and also the computational load needed to achieve the

desired result. Superpixel based image representation in [27] acquires mid-level information in order to improve the object

recognition accuracy. Even though the main work focuses on the image recognition task, superpixel clustering has been

performed specifically for the feature extraction step.
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Fig. 1: Superpixel clustering using SLIC with k = 50, 100, and 200 superpixels.

Fig. 2: Illustration of centroid superpixel sampling.

Fig. 3: Illustration of uniform sampling vs superpixel sampling on kodim20 image. Uniform sampling can not find the important
pixels and treat them accordingly while the superpixel approach chooses the most promising pixels.

Fig. 4: PSNR comparison of kodim03 image using different superpixels sampling methods with approximately selecting 50%
of the data. The experiment show that centroid pixel selection provides better results.

IV. PROPOSED PIXEL SAMPLING METHOD

Signal processing researchers have found that a data tensor with a low-rank structure can be efficiently recovered from a

subset of its components [1]. This finding has led to many tensor completion algorithms for various types of data, such as
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images and videos. The missing components can have either random or structured patterns. Random patterns remove pixels

of images/videos randomly, while structured patterns remove sequential fibers, slices, or parts of the data. For example, [28]

uses a structured pattern to remove slices of videos and recovers them using a Hankelization approach. Structured patterns are

more challenging than random ones, because they lose information about a whole region of the data. However, the question of

how to select the best subset of pixels for optimal image recovery performance has not been well studied. This paper aims to

investigate this question. Most of the existing papers use uniform sampling to remove pixels of images or videos. For example,

in [6], it is proposed to sample some pixels of a given image uniformly and remove the rest to reduce the memory requirement

and to transfer it faster in the network. The sampled pixels are recovered in the destination through the tensor completion

process. Contrary to the simple pixel selection using random sampling, we propose to first cluster the image to some partitions

or so-called superpixels which share common characteristics. Then, we select the pixels from each of the clusters. Since the

pixels in each cluster more likely have similar features, the clustering as a preprocessing stage can help to avoid selecting

redundant pixels as is done in random sampling. In this sense, it is a kind of smart pixel sampling as we try to select pixels

in a heuristic and an intelligent way.

It is worth pointing out that to select pixels in each cluster, there are several possibilities. For example, We can select a pixel

located in the center of the cluster or on its boundary/border. Depending on a way used to select a pixel from each superpixel,

we define the following categories:

• Centriod superpixel approach The centroid superpixel refers to the case when we select a center of each superpixel to

be the selected pixel.

• Boundary superpixel approach This approach selects a pixel from a border/boundry of the superpixel and use it for the

sampling procedure.

• Multi-stage superpixel approach. It is also possible to cluster each spuerpixel again to further explore important pixels

and we call it multi-stage superpixel approach.

Figure 2, shows the superpixel clustering applied to a given image followed by selecting the center of each superpixel. Also,

Figure 3, demonstrates what looks like an image after sampling 30% of pixels using uniform sampling and superpixel sampling

with center selection. We extensively investigated the difference between the performance of different sampling methods for the

superpixel approach and compared it with the uniform sampling. Our simulation results show that in most of our experiments

on a variety of images, the center of superpixels provides quite promising results. For example, in Figure 4, the results of

applying the superpixel clustering (with center, boundary and multi-stage selection) and the uniform sampling to an image with

50% pixel sampling have been reported. As we earlier mentioned, the superpixel with center pixel selection achieved the best

performance. It is interesting to note that for 60% pixel sampling, the difference between uniform sampling and superpixel

clustering with center selection was significant as seen in Figure 5. After sampling important pixels, we have a compact variant

of the image which can be transmitted and it can be recovered in the destination using tensor completion algorithms (see

Section V).
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Fig. 5: The results show that centroid pixel selection provides better results than the uniform sampling. For Kodim23 image,
we have used 237905 clusters which leads to sampling 60% of all pixels.

V. TENSOR COMPLETION WITH SMOOTHING/FILTERING

As discussed in Section IV, in the first stage of our methodology, we sample a part of images to have a compact representation

of the image. This strategy was used in [6] to store only a part of pixels. In the second stage, the image with only observed

pixels should be recovered based on the completion algorithms. Here, the performance of such completion algorithms is crucial

for the better image recovery. In this section, we use the nuclear norm minimization (both matrix and tensor scenarios, see

the Appendix) for the completion task. Nonetheless, we apply the smoothing strategy to enhance the performance of the

algorithms. In the simulation section, we will show the importance of smoothing strategy for a better image recovery. The

matrix completion and tensor completion formulations are presented in Subsections V-A and V-B, respectively.

A. Tensor completion based on matrix nuclear norm regularization

A significant advantage of the low-rank matrix approximation is that the vital information in a matrix, given in terms of

degree of freedom, is substantially less than the total number of entries. As a result, even if the number of observed entries is

small, there is still a decent chance of recovering the entire matrix [29]. This advantage has been shown in computer vision

tasks [30], [31] for estimating missing values in images. In this section, we describe the completion task. The model of rank

minimization based matrix completion is formulated as:

min
X

rank (X)

s.t. XΩ = YΩ

(4)

where X ∈ RI1×I2 and elements of X are determined such that the rank of the matrix X is as small as possible. However,

finding the rank of a matrix is non-convex therefore the optimization problem in (4) becomes a non-convex problem. One

common approach to solve this is to use the matrix nuclear norm ‖.‖∗ to approximate the rank. The nuclear norm has the
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advantage of being the tightest convex envelop for the rank of matrices [32], [33], [30]. Matrix nuclear norm has widely been

used and has been successful in reconstruction and completion tasks [34]. Adopting nuclear norm the problem in (4) becomes

min
X

‖X‖∗

s.t. XΩ = YΩ,
(5)

with ‖.‖∗ representing the nuclear norm of a matrix which is the sum of the singular values of the matrix.

To use the matrix completion formulation (5), when we are dealing with data tensors, we can use the unfolding of the

underlying data tensor and replaced it in (6) (X(1) ← X, Y(1) ← Y and Ω(1) ← Ω). Therefore we obtain the following

optimization problem

min
X(1)

λ
∥∥X(1)

∥∥
∗ +

∥∥PΩ(1)

(
X(1) −Y(1)

)∥∥2

F
, s.t. XΩ(1)

= YΩ(1) (6)

where λ denotes the trade-off parameter. A constrained optimization problem can be formulated by introducing an auxiliary

matrix Z(1) with the same size as the matrix X(1)

min
X(1),Z(1)

λ
∥∥X(1)

∥∥
∗ +

∥∥PΩ(1)

(
Z(1) −Y(1)

)∥∥2

F

s.t. X(1) = Z(1).

(7)

For the brevity of presentation, we use the notation X(1) = X, Z(1) = Z, Y(1) = Y. We solve the minimization problem (7)

via the Alternating Direction Method of Multipliers (ADMM) algorithm [35] which has been shown to have fast convergence

and good performance. To do so, the augmented Lagrangian function for the constrained optimization problem (7) is first

written as

L (X,Z,T) = λ ‖X‖∗ +
∥∥PΩ(1)

(Z−Y)
∥∥2

F
+ 〈T,X− Z〉+

µ

2
‖X− Z‖2F , (8)

where T is a matrix representing the Lagrangian multipliers and µ is a penalty parameter. In our simulation results the ADMM

method worked properly for µ between 0.1 to 1.1. According to the ADMM method, we update the matrices X, Y, Z,

iteratively by fixing two of them and updated the other as presented below.

Update of X: By minimizing the augmented Lagrangian function (8) w.r.t. X, we have

Xk+1 = min
X

L (X,Zk,Tk, µk) , (9)

which can be further simplified to

Xk+1 = min
X

(
λ ‖X‖∗ +

µk
2

∥∥∥∥X− Zk +
Tk

µk

∥∥∥∥2

F

)
. (10)

According to the paper [33], the above problem has the closed form solution given by:

Xk+1 = Dβ

(
Zk −

Tk

µk

)
, (11)
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where β > 0 is constant and Dβ(.) is the matrix singular value thresholding operation defined as follows

Dβ(X) = U ∗Dβ(S) ∗V
T
, (12)

where Dβ(S(i)) = diag(max{σt − β, 0}1≤t≤R), i = 1, . . . , I3, β > 0 is a constant and R is the rank of S. Here, the

X = USVT SVD of the matrix X.

Update of Z: By minimizing the augmented Lagrangian function w.r.t. Z, we have

Zk+1 = min
Z

L (Xk+1,Z,Tk, µk) , (13)

and can be simplified as

Zk+1 = min
Z

(n)
k

‖PΩ (Z−Y)‖2F +
µk
2

∥∥∥∥Xk+1 − Z +
Tk

µk

∥∥∥∥2

F

(14)

The closed form solution for problem 14 is also solved through

Zk+1 = P⊥Ω

(
Xk+1 +

Tk

µk

)
+ Y (15)

Update of T: The solution for the Lagrangian multiplier matrix T is similarly converted to simpler optimization problem

as follows

Tk+1 = min
T

L (Xk+1,Zk+1,T, µk) . (16)

which has the close solution

Tk+1 = Tk + µk (Xk+1 − Zk+1) . (17)

Besides, we update the parameter µ in the following way

µk+1 = min (αµk, µmax) . (18)

where α > 1 is a predetermined constant used to iteratively increase the penalty and µmax represents the upper bound for the

penalty. This procedure is summarized in Algorithm 1. As we will discuss in Subsection V-C, to improve the quality of the

image reconstruction process, we smooth the auxiliary matrix Z in Line of Algorithm 1 after its computation. This smoothing

approach totally improves the results as will be shown in the simulation part.

B. Tensor completion using tensor nuclear norm (TNN) regularization

In this section, we discuss the tensor formulation of the completion problem based on the tensor Singular Decomposition

(t-SVD) model. The motivation for this new formulation is comparing the performance of the matrix and the tensor variants

in reconstructing the images. We have seen better results of the tensor case than the matrix case as will be discussed in the

simulation section. Kilmer et al. [36] proposed the t-SVD as a new tensor decomposition, for detailed description of this

tensor model, see the Appendix. Inspired by the results achieved by the nuclear norm minimization of matrices for recovering
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Algorithm 1: Algorithm for Smooth Matrix Nuclear Norm (SMNN)

Input : An observed data tensor Y ∈ RI1×I2×···×IN , the observation index tensor Ω, and regularization parameter
λ > 0, X0 = T0, Z0 = X0, PΩ (X) = PΩ (Y).

Output: Completed data tensor X
1 Perform Super-pixel extraction to generate compressed data
2 Perform mode-n unfolding of tensor X
3 while A stopping criterion is not satisfied do
4 Update Xk+1 using solution from equation 11
5 Update Zk+1 using solution from 15
6 Perform Smoothing operation
7 Update Tk+1 using equation in 17
8 Update µk+1 using solution from equation 18
9 end

10 Reshape X into tensor X
11 Compute X = PΩ (X) + PΩ⊥ (X)
12 Return X

data matrices with missing values, Zhang et al.[37] proposed the tubal nuclear norm minimization approach based on t-SVD,

defined as the sum of nuclear norms of all frontal slices in the Fourier domain and proved to be convex envelope to the tensor

tubal rank (See the Appendix for the details). More precisely, the model of rank minimization based tensor completion is

formulated as follows

min
X

tubal rank (X) +
∥∥PΩ (X−Y)

∥∥2

F
. (19)

Similar to the matrix case, minimizing the tubal tensor rank is NP hard because it includes the matrix case as a special case.

The matrix trace norm was generalized to the tensor case based on the t-product in [38], [39], [40], [37]. We use the one

introduced in [40], [39] which has been shown to provide superior results compared to the others and to be faster because of

using only the information of the first slice in the Fourier domain. So, we consider the following minimization problem

min
X

λ ‖X‖∗ + 1
2

∥∥PΩ (X−Y)
∥∥2

F
, (20)

where ‖.‖∗ is the tubal nuclear norm and λ denotes the trade-off parameter. Note that the truncated tubal nuclear norm [40]

can also be used in the formulation (20). Similar tensor completion formulation is used in [41] but here we have used unitary

transform matrices instead of discrete Fourier transform matrix that is used in the traditional tensor SVD and has shown to

provide better results [42]. We also proposed to improve the image recovery by smoothing the results at each iteration (Line

5 in Algorithm 2). To use the ADMM algorithm, we need to introduce an auxiliary tensor Z with same size as the tensor X:

min
X,Z

λ ‖X‖∗ + 1
2

∥∥PΩ (Z−Y)
∥∥2

F

s.t. X = Z,

(21)

Here again, the augmented Lagrangian function corresponding to the constrained optimization problem (21), is written as

L (X,Z,T) = λ ‖X‖∗ +
1

2

∥∥PΩ (Z−Y)
∥∥2

F
+ 〈T,X− Z〉+

µ

2
‖X− Z‖2F , (22)
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where T is a tensor representing the Lagrangian multipliers and µ is a penalty parameter. Similarly as done for the matrix

case, the Lagrangian function (22), is minimized with respect to the tensors X, Y,T, by fixing two of them and updating the

other. Let us start with the tensor X and by minimizing the augmented Lagrangian function (22) with respect to the tensor X,

we have

Xk+1 = min
X

L (X,Zk,Tk, µk) , (23)

which can be simplified as

Xk+1 = min
X

(
λ ‖X‖∗ +

µk
2

∥∥∥∥X− Zk +
Tk

µk

∥∥∥∥2

F

)
. (24)

The minimization problem (23), has the close form solution

Xk+1 = Dβ

(
Zk −

Tk

µk

)
, (25)

where Dβ(.) is the tensor singular value thresholding operation and defined similar to the matrix case (See the Appendix). To

update Z, consider

Zk+1 = min
Z

L
(
Xk+1,Z,Tk, µk

)
, (26)

which be simplified as (26) for Z can be solved through:

Zk+1 = min
Zk

1

2

∥∥PΩ (Z−Y)
∥∥2

F
+
µk
2

∥∥∥∥Xk+1 − Z +
Tk

µk

∥∥∥∥2

F

. (27)

and has the closed form solution defined as

Zk+1 = P⊥Ω

(
Xk+1 +

Tk

µk

)
+ Y. (28)

The solution for T is also converted to a simpler optimization as

Tk+1 = min
T

L
(
Xk+1,Zk+1,T, µk

)
. (29)

which can be solved through:

Tk+1 = Tk + µk
(
Xk+1 − Zk+1

)
, (30)

Similar to the matrix case, we update the penalty parameter µ via

µk+1 = min (Jµk, µmax) . (31)

C. Smoothing techniques

Low rank modeling of data has achieved tremendous success in tensor completion, however, only a low rank prior is

inadequate for a successful recovery of the underlying tensor [43], [44], [45]. The case is much difficult when the number of
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Algorithm 2: Algorithm for Smooth Tensor Nuclear Norm (STNN)

Input : An observed data tensor Y ∈ RI1×I2×···×IN , the observation index tensor Ω, and regularization parameter
λ > 0, X0 = T0, Z0 = X0, PΩ (X) = PΩ (Y).

Output: Completed data tensor X
1 Perform Super-pixel extraction to generate compressed data
2 while A stopping criterion is not satisfied do
3 Update Xk+1 with equation 25
4 Update Zk+1 with equation 28
5 Perform Smoothing operation
6 Update Tk+1 with equation 30
7 Update µk+1 using equation 31
8 Check convergence conditions
9

∥∥Xk+1 −Xk

∥∥
∗ ≤ tol

10 Compute X = PΩ

(
X̂H

)
+ PΩ⊥

(
X̂
)

11 end

Fig. 6: Pipeline of proposed method

missing pixels are high. Thankfully, many real world images and data exhibit some smoothness prior along both the spatial

and the third modes especially in the case of RGB images, videos, and hyperspectral images [44], [46]. As such, it becomes

a very useful property in modelling these types of data. The assumption of smoothness in data means that the differences

between neighboring values are small in certain domains. For example, non-negative natural images are smooth in the spatial

domain. Therefore, the smoothing constraint is a common assumption used to improve results when dealing with some datasets

such as images and videos. More precisely, the smoothness constraint is imposed on the underlying factors along with the

low-rank assumption of the tensor decomposition used in reconstruction model. Indeed, matrix/tensor factorization methods

with smoothness constraints have a wide range of applications that require robustness in the presence of noisy signals, including

image in-painting, denoising, brain signal analysis and hyperspectral imaging. As a result, many tensor completion algorithms

have been proposed imposing smoothness on the recovered data [47], [44], [48], [43], [49], [49]. A very popular regularizer

used to impose piece-wise smoothness is the Total Variation (TV) [50]. The TV is determined by the l1-norm of the difference



13

between neighboring elements. Many methods in matrix and tensor completion have used the TV approach [43], [51], [52],[44],

[53], [45], [46], [54]. The works by [43] and [55] incorporates smoothness into a PARAFAC model for partially observed

tensors. Both models created two variants for the completion task. The former proposed the models based on total variation

and quadratic variation regularizes. The approach by [55] uses the total variation (TV) regularizer to also formulate the tensor

completion model, taking advantage of a piecewise prior and local smoothness constraint. The approaches adopts Canonical

Polyadic(CP) and Tucker decomposition for a simultaneous decomposition and completion task. Furthermore, [44] adopts the

tensor smoothness constraints using smooth matrix factorizations. The methods in [56], [54], [57], [44] exploit the spatial

piecewise smoothness prior of the underlying tensor by increasing the piecewise smoothness of each row in the data. Other

smoothness approaches such as methods used in [49], [58],[59], [60], [61], [57] have demonstrated significant improvement

in results using various low rank and higher order tensor networks. In addition, different techniques and methodologies can be

used for smoothing out the elements of data elements such as low-pass filtering, moving averaging, locally estimated scatterplot

smoothing (LOESS) and gaussian filtering. We perform a simple Gaussian smoothing filtering with standard deviation which

returns the filtered image. The “imgaussfilt” command in Matlab can be used for the mentioned smoothing technique.

VI. EXPERIMENTS

In this section, we present an evaluation of the proposed algorithm using real colored images. Experiments or simulations

were performed on a laptop computer with 16GB memory and a 2.60 GHz Intel(R) Core(TM) i7-5500U processor. The Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index measure (SSIM) metrics were used to evaluate and compare the

performance of different algorithms. We mainly consider three experiments. In the first simulation, we extensively compare the

proposed superpixel sampling approach with the random sampling and show that in all cases the superpixel method provide

better results. In the second simulation, we will use the superpixel sampling to remove the pixels as was shown in the first

simulation to be better than the random one and compared the proposed completion algorithms with the baseline completion

algorithms. Here, the effect of smooth filtering in the reconstruction performance is also illustrated. In the third simulation,

we consider the more challenging cases where the pixels are removed in structural way and again compared the proposed

completion algorithms with the baseline algorithms. We have used the RGB images “Kate”, “House”, “Lena”,“Plane”, and

“Peppers” and also some images from the Kodak dataset [62] as our benchmark images which are shown in Figure 7. “Lena”,

“House”, “Peppers” and “Kate” images are of size 256× 256× 3 whiles the Kodak images are of size 512× 768× 3.

Fig. 7: Colored images used in numerical experiments.

Example 1. (Comparison of superpixel sampling methods and random sampling.) This experiment is devoted to illustrating

the superiority of the proposed superpixel sampling approach compared to the random sampling method which was mostly

used in literature. In Section V (Figures 4 and 5), we showed the better performance of the superpixel sampling compared to
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random sampling for kodak images (kodim03, kodim23) and here we make new experiments for the kodim15, kodim22 and

kodim02 images. Here, we make more experiments using images with 60%, 30% and 20% of pixel sampling. The pixels are

sampled according to different superpixel sampling approaches described in Section V including Centroid, Boundary, Multi-

stage sampling and also random sampling. Note that for the completion part (stage 2), we have used Algorithm 2 (STNN) with

smoothing filtering. The results are reported in Figure 8. As can be seen, in all scenarios, the centriod superpixel sampling

provided the best results. These extensive simulations on a variety of images and using different categories clearly convinced

us that the centroid superpixel approach can select better pixels than other superpixel approaches and also the random sampling

method.

Example 2. (Comparing the SMNN, the STNN with the baseline completion algorithms) Our main goal in this experiment

is to show the better recovery performance of the proposed SMNN and STNN than the baseline completion algorithms: LRMC

[63], LRTC TNN [63], TRPCA [39], HaLTRC[30], SPC(TV) [43] and WSTNN [53] which to the best of our knowledge have

provided the sate-of-the-art results. All the hyper-parameters were tuned as used in the methods for fair comparison. This is to

ensure that all the methods performed as best as possible. Note that since the first experiment confirmed the better performance

of the centroid superpixel approach provides better results than other sampling methods, throughout this experiment we use it

to sample pixels. The results PSNR of the reconstructed images for 70%,30%,20%,10% and 5% pixel sampling are displayed

in Figures 9-13. We see that our proposed algorithms perform better than the other algorithms in most cases and for various

sampling ratios. Also, the results shows that the STNN performed better than the SMNN. Moreover, to highlight the effect of

filtering/smoothing scheme, we performed a new experiment with 30% of available pixels and presents results for three images

(kodim03, kodim23 and Kate). The reconstructed images using the STNN with/without filtering are displayed in Figure 14

and the PNSR and SSIM results show that the smoothing/filtering technique can improve the recovery results.

Owing to the fact that our method uses smoothness, we also performed experiments comparing our methods with other

tensor completion algorithms that incorporate smoothness. Figures 15 and 16 show results comparing some smoothed tensor

completion methods such as LRTC-TV-I [55], LRTC-TV-II [55], SPC(QV) [43], and LRTV-PDS [47]. The results show that our

methods can provide comparable results to the mentioned smoothed tensor completion methods and even in some cases, they

achieve better performance. We performed experiments on images with 50% and 30% of pixel sampled both using random and

superpixels sampling methods. The obtained results are shown in Figures 15 and 16. We see that the proposed technique can

achieve better results than the baseline techniques. We can also observe that reconstruction of incomplete image whose pixels

were sampled by the proposed superpixel method have better quality. To further examine the proposed smoothed completion

algorithm, we used the Washington DC mall hyperspectral data 1 which is of size 1208× 307× 191. We used a sub-tensor of

256× 256× 30 and sampled only 50% of its pixels. We applied the proposed superpixel sampling method with the centroid

pixel selection to the first frontal slice to compute the mask operator and this mask was used for all frontal slices. Then our

proposed smoothed tensor completion method, SMF-LRTC [44], LRTC-TV-II [55], and TR-ALS [64] algorithms were applied

to it to reconstruct the hyperspectral data. Figure 17 represents the reconstructed images obtained by the algorithms for band

20. Clearly, we see that the proposed smoothed tensor completion method provided better recovery results.

1https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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(a) Reconstructed images with 60% of pixels sampled from the kodim15 image using different sampling techniques.

(b) Reconstructed images with 30% of pixels sampled from the kodim23 image using different sampling techniques.

(c) Reconstructed images with 30% of pixels sampled from the kodim22 image using different sampling techniques.

(d) Reconstructed images with 20% of pixels sampled form the kodim02 image using different sampling techniques.

Fig. 8: PSNR comparison of Kodak images using different superpixels sampling methods for Example 1. The experiment show
that centroid pixel selection provides better results.

Example 3. (Image recovery performance of the STNN for images with structured missing pixels) In this experiment,

we evaluate the efficiency of the proposed STNN which achieved the best results among other completion algorithms for

recovering images with structured missing pixels which is a more challenging case. To this end, we considered three types of

structured missing patterns depicted in the first rows of Figures 18-20. Then, apply STNN algorithm to estimate the missing

pixels. The reconstructed images using the STNN algorithm are shown in the third rows of Figures 18-20. Clearly, the results

confirmed that the STNN algorithm is also applicable for recovering images with structured missing pixels.
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Fig. 9: PSNR comparison of different low rank completion methods with sampling 70% of pixels for Example 2.

Fig. 10: PSNR comparison of different low rank completion methods with sampling 30% of pixels for Example 2.

VII. CONCLUSION AND FUTURE WORKS

In this work, we investigated the effects of superpixel clustering and pixel selection for the task of image completion.

More precisely, we proposed to apply superpixel clustering method as an efficient segmentation/clustering approach to capture

important textures underlying a given image in some partitions. Then we select pixels from each cluster based on different

strategies, e.g., center, boundary, etc. The experiment results showed that the best results can be achieved by selecting the

centroid pixel (pixel located in the center). We also formulated the tensor completion based on the tubal tensor nuclear norm

and also matrix nuclear norm applied on the unfolding matrices. We equipped the algorithm with a smoothing technique
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Fig. 11: PSNR comparison of different low rank completion methods with sampling 20% of pixels for Example 2.

Fig. 12: PSNR comparison of different low rank completion methods with sampling 10% of pixels for Example 2.
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Fig. 13: PSNR comparison of different low rank completion methods with sampling 5% of pixels for Example 2.

Fig. 14: Reconstruction comparison for the TNN algorithm with/without smoothing. We have sampled 30% of pixels for
Example 2.

to achieve better results. Extensive simulation results on a variety of images show the effectiveness and applicability of the

proposed algorithm. In the future work, we will use the truncated tubal nuclear norm [40] in minimization problem (19). Also

acceleration of the proposed algorithm using the randomization technique is an interesting topic needs to be investigated.
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Fig. 15: Comparison of smoothing completion algorithms with sampling 50% of pixels for Example 2. a) Centroid sampling
b) Random sampling.

Fig. 16: Comparison of smoothing completion algorithms with sampling 30% of pixels for Example 2. a) Centroid sampling
b) Random sampling

Fig. 17: PSNR comparison of tensor completion algorithms with sampling 50% of pixels from the WDC hyper-spectral Data
for Example 2. The superpixel with centriod sampling was used.
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Fig. 18: The structured results of the STNN algorithm for structured missing pixels for Example 3.

Fig. 19: The structured results of the STNN algorithm for structured missing pixels for Example 3.
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Fig. 20: The structured results of the STNN algorithm for structured missing pixels for Example 3.
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APPENDIX

We provide definitions to some concepts used in our paper. We also provide some algorithms we adopted for our paper.

Definition 1. (t-product) The t-product of two tensors X ∈ RI1×I2×I3 and Y ∈ RI2×I4×I3 , is given by C ∈ RI1×I4×I3 , this

is defined as

C = X ∗Y = fold (circ (X) .unfold (Y)) , (32)

where

circ (X) =



X(:, :, 1) X(:, :, I3) · · · X(:, :, 2)

X(:, :, 2) X(:, :, 1) · · · X(:, :, 3)

...
...

. . .
...

X(:, :, I3) X(:, :, I3 − 1) · · · X(:, :, 1)


,

and

unfold(Y) =



Y(:, :, 1)

Y(:, :, 2)

...

Y(:, :, I3)


, Y = fold (unfold (Y)) .

It can be seen that the t-product operation (32) is equivalent to the circular convolution operator, and can therefore be easily

computed through the Fast Fourier Transform (FFT). To be precise, all tubes from the two tensors X, Y are transformed into

the frequency domain, then the frontal slices of the spectral tensors are multiplied. we then apply the Inverse Fast Fourier

Transform (IFFT) to all the tubes in the last tensor. The t-product can also be written in the Fourier domain as follows:

C = X ∗Y ⇐⇒ Ĉ = X̂Ŷ, (33)

where X̂, Ŷ and Ĉ are block diagonal matrices defined as follows:

X̂ = bdiag(X̂) =



X̂(1)

X̂(2)

. . .

X̂(I3)


where X̂(1) is the a matrix computed by applying the fast Fourier transform. The operator bdiag(.) maps the tensor X̂ to the

block diagonal matrix X̂. The procedure for t-product in the Fourier domain is summarized in Algorithm 3.

Definition 2. (Transpose) The transpose of a tensor X ∈ RI1×I2×I3 is denoted by XT ∈ RI2×I1×I3 . It is obtained by applying

transpose to all the frontal slices and then reversing the order of the transposed frontal slices from the second through to the

last frontal slice.

Definition 3. (Identity tensor) An identity tensor I ∈ RI1×I1×I3 is a tensor with first frontal slice being an identity matrix of



26

Algorithm 3: The t-product tensor in the Fourier domain [65]

Input : Two data tensors X ∈ RI1×I2×I3 , Y ∈ RI2×I4×I3
Output: t-product C = X ∗Y ∈ RI1×I4×I3

1 X̂ = fft (X, [], 3)

2 Ŷ = fft (Y, [], 3)
3 for i = 1, 2, . . . , I3 do
4 Ĉ (:, :, i) = X̂ (:, :, i) Ŷ (:, :, i)
5 end
6 C = ifft

(
Ĉ, [], 3

)

size I1 × I1, and all other frontal slices being equal to zero.

Definition 4. (Orthogonal tensor) A tensor X ∈ RI1×I1×I3 is orthogonal if XT ∗X = X ∗XT = I is satisfied.

Definition 5. (f-diagonal tensor) An f-diagonal tensor is a tensor with all of its frontal slices being diagonal.

Definition 6. (t-SVD) A tensor X ∈ RI1×I2×I3 , can be decomposed as

X = U ∗ S ∗VT ,

where U ∈ RI1×I1×I3 , V ∈ RI2×I2×I3 are orthogonal tensors, and tensor S ∈ RI1×I2×I3 is f-diagonal.

Algorithm 4: Truncated t-SVD [36]

Input : A data tensor X ∈ RI1×I2×I3 and target tubal rank R
Output: UR ∈ RI1×R×I3 , SR ∈ RR×R×I3 , VR ∈ RI2×R×I3

1 X̂ = fft (X, [], 3)
2 for i = 1, 2, . . . , I3 do
3 [U,S,V] = truncated svd

(
X̄(:, :, i), R

)
4 Û (:, :, i) = U

5 Ŝ (:, :, i) = S

6 V̂ (:, :, i) = V
7 end
8 U = ifft

(
Û, [], 3

)
, S = ifft

(
Ŝ, [], 3

)
, V = ifft

(
V̂, [], 3

)

The t-SVD can be obtained using the SVD of frontal slices of the original data tensor in the Fourier domain. The algorithm

for computing the t-SVD for tensors is outlined in Algorithm 4. So, for the t-SVD of X, we have:

X̂(i) = Û(i) ∗ Ŝ(i) ∗ (V̂(i))T , i = 1, 2, . . . , I3, (34)

with X̂(i) being the i-th frontal slice in the Fourier domain, i.e., X̂(i) = X̂(:, :, i).

Now, we introduce the tensor nuclear norm based on the t-product.

Definition 7. (tensor tubal rank and nuclear norm) [40] The tensor tubal rank of X ∈ RI1×I2×I3 is defined as the maximum

rank among all frontal slices of an f-diagonal tensor S, i.e., max rank(S(i)). Additionally, the tensor nuclear norm ‖X‖∗ is
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defined as the sum of the singular values in all frontal slices of S, i.e.,

‖X‖∗ = tr(S) =

I3∑
i=1

tr(S(i)), (35)

where S(i) were defined in (34).

It is shown in [40] that the trace of tensor product (X ∗Y) equals to the trace of the product of X̂(1) and Ŷ(1), that is

tr(X ∗Y) = tr(X̂(1)Ŷ(1)). (36)

Then, it is proved [40] that the tensor nuclear norm defined in (35) can be simplified as

‖X‖∗ = tr(S) = tr(Ŝ(1)) =
∥∥∥(X̂(1))

∥∥∥
∗
. (37)

Definition 8. (Tensor singular value thresholding) The singular value thresholding (SVT) [40] operator Dβ(.) is performed

on each frontal slice of the f-diagonal tensor Ŝ. That is,

Dβ(X) = U ∗Dβ(S) ∗V
T (38)

where Dβ(S) is the inverse FFT of Dβ(Ŝ). and Dβ(Ŝ
(i)

) = diag(max{σt − β, 0}1≤t≤R), i = 1, . . . , I3, β > 0 is a constant

and R is the tubal rank.

Algorithm 5: The SLIC method [12]

1 Set clusters centers ck = [lk, ak, bk, xk, yk]T by taking regular grid steps S to sample pixels
2 shift Cluster centers in an n× n neighborhood to the lowest gradient location
3 while ε ≥ threshold do
4 for each cluster center ck do
5 Assign the best matching pixels from a 2S × 2S square neighborhood around the cluster center ck using the

distance measure for Ds in Equation (3)
6 end
7 Compute cluster centers
8 Calculate the residual error ε using the L1 distance between recomputed centers and previous centers.
9 end
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