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Abstract—This paper proposes a non-data-driven deep neural
network for spectral image recovery problems such as denoising,
single hyperspectral image super-resolution, and compressive
spectral imaging reconstruction. Unlike previous methods, the
proposed approach, dubbed Mixture-Net, implicitly learns the
prior information through the network. Mixture-Net consists of
a deep generative model whose layers are inspired by the linear
and non-linear low-rank mixture models, where the recovered
image is composed of a weighted sum between the linear and
non-linear decomposition. Mixture-Net also provides a low-rank
decomposition interpreted as the spectral image abundances and
endmembers, helpful in achieving remote sensing tasks without
running additional routines. The experiments show the Mixture-
Net effectiveness outperforming state-of-the-art methods in re-
covery quality with the advantage of architecture interpretability.

Index Terms—Spectral Image Recovery, Model-based Opti-
mization, Deep Image Prior, Low-rank Spectral Mixture Models.

I. INTRODUCTION

Spectral imaging sensors acquire spatial-spectral informa-
tion of a scene, organized in a datacube known as a spectral
image (SI), which is helpful in remote sensing applications
such as unmixing and material identification [1]. The SI
acquisition through specialized optical systems can be af-
fected by artifacts linked with external conditions and optical
aberrations that corrupt, degrade, or diminish the number of
measurements. Therefore, recovering the underlying scene is
a critical step in the SI analysis [2].

The atmospheric conditions, light source nature, and photon
efficiency can add noise, outlines, and striping, yielding a de-
noising problem [3], [4]. The technology limitation inhibits the
acquisition of high spatial-spectral resolution images, leading
to a hyperspectral super-resolution (HSI-SR) problem [5], [6].
The compressive spectral imaging (CSI) paradigm provides a
small number of projected measurements, yielding a recon-
struction problem [7], [8]. Using prior information is crucial
in current recovery approaches to solve the aforementioned
ill-posed problems, including greedy algorithms, model-based
optimization, data-driven and learning-based strategies.
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Greedy algorithms include the prior information by follow-
ing a sequence of reasonable steps, where only locally optimal
solutions can be guaranteed [9]. Meanwhile, model-based op-
timization considers the prior information by designing hand-
crafted regularizers to reduce the feasible search set and find
globally optimal solutions [10]–[12]. For instance, the low-
rank regularizer promotes low-dimensionality by modeling the
SI as a low-rank structure [13]–[16]. Nonetheless, hand-crafted
regularizers are often insufficient to handle the wide spectral
information variety. Next, data-driven methods such as deep-
learning (DL) learn the prior information by training a black-
box non-linear mapping from a dataset. The black-box nature
has been tackled by connecting model-based iterative algo-
rithms and deep neural networks [17]–[19]. Nonetheless, data-
driven methods are still impractical because of the expensive
acquisition cost of several SI datasets.

Deep image prior (DIP) is a non-data-driven DL approach
that overcame the data dependency limitation, showing that a
single generator network is sufficient to capture the low-level
SI statistics [20]–[22]. In particular, DIP approaches usually
entail autoencoder-based networks that learn the underlying
image’s coding and decoding process, providing promising re-
sults for remote sensing tasks [23]. Still, the network structure
is a black-box that lacks interpretability.

Further, [24]–[27] proposed network architectures including
physical factors as the abundance and the endmembers with
a linear mixture model, mitigating the lack of interpretability.
However, the non-linear interactions and the benefits of using
an interpretable network to solve different tasks have not
been considered. Therefore, this paper proposes a non-data-
driven SI recovery method that, contrary to previous methods,
considers the non-linear interactions and adds interpretability
to the network using linear and non-linear mixture models.

The proposed SI recovery method contains three main
components, the input structure, the network architecture, and
the customized loss function. The input structure uses a low-
rank decomposition of the network input based on the SI
low-dimensionality prior. The network architecture, termed
Mixture-Net, consists of a sequence of interpretable deep-
blocks composed of three trainable block-layers representing
the abundance, the endmember, and the non-linear model
learning. The customized loss function consists of each deep-
block loss sum with custom regularizers considering spatial-
spectral correlations. Remark that, Mixture-Net is interpretable
in that the learned features and weights can be interpreted as
the abundances and endmembers, supporting remote sensing
tasks such as unmixing and material identification without
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running complementary routines. Simulations over six datasets
and three SI recovery tasks demonstrate the effectiveness of
the proposed interpretable Mixture-Net architecture.

The contributions of the paper are summarized as follows,

• Mixture-Net: An interpretable network architecture in-
spired by linear and non-linear low-rank mixture models,
where the learned weights and features can be interpreted
as the SI abundances and endmembers (Section III-B).

• A scheme of multiple deep-blocks, whose loss functions
contain particular model-based regularizers to improve
the SI learned spatial-spectral correlations (Section III-C).

• A non-data-driven DIP-based approach for SI denoising,
HSI-SR, and CSI reconstruction (Section III).

• A significant improvement for SI recovery in terms of re-
covery quality while reducing the processing complexity
through the non-data-driven approach (Section IV).

II. MATHEMATICAL SPECTRAL IMAGING BACKGROUND

Let f ∈ Rn, n = N×N×L, be the vector form of a SI with
N×N spatial pixels and L spectral bands. A SI with hundred
of bands is referred to as a hyperspectral image (HSI) [28]. A
SI usually contains a few number r � L of different materials
uniquely represented by the spectral response. Then, the ith

spatial pixel fi ∈ RL can be modeled as the linear combination
of the form fi = Eai, known as the linear mixture model
(LMM). E ∈ RL×r denotes an endmember matrix, whose
columns contain a unique spectral response, and ai ∈ Rr
denotes an abundance vector, whose elements contain the
fractional proportions of each endmember at the ith spatial
pixel. Consequently, f can be low-rank represented as

f = (E⊗ IN2)ā = Ēā, (1)

where ā ∈ RN2r
+ = [aT1 . . . aTi . . . aTN2 ]T stacks the

abundances; Ē ∈ RN
2L×N2r

+ encompasses the endmembers
spanning the SI; IN2 is an identity matrix of size N2 ×N2;
and ⊗ denotes the Kronecker product, introduced to apply the
endmembers along the spatial pixels in vector notation. For
details of the low-rank representation refer to [11]. Usually, the
LMM does not reliably describe the complex spatial-spectral
endmember interactions [29]. Therefore, non-linear mixture
models (NLMMs) aim to consider non-linear interactions and
scattering factors via flexible models described by

f = N (E, ā), (2)

where N stands for an implicit function that defines non-linear
interactions between the endmembers and the abundances [30].

The mixture models impose some physical constraints over
components E and ā. Precisely, the non-negativity considering
the nature of reflected light in spectral signatures, so that
the entries of the endmember matrix E have to be non-
negative values, and the sum-to-one constraint considering the
fractional proportions of each endmember at each pixel has to
be one, i.e., aTi 1 = 1,∀i ∈ N2, where 1 is a vector with all
values in 1.

A. Spectral Image Recovery Problems

The SI acquisition process usually produces degraded and
noisy measurements, described mathematically through the
general vector forward linear model given by

y = Φf + ω, (3)

where y ∈ Rm stands for the measurements, Φ ∈ Rm×n
stands for the sensing matrix, and ω ∈ Rm stands for added
noise. This paper addresses the following problems,

1) Denoising: when m = n, Φ = In ∈ Rn×n denotes the
identity matrix, and y models a noisy SI. This problem appears
by external factors of the optical system and environmental
conditions during the acquisition process.

2) Single Hyperspectral Super-Resolution: when m = n/d,
Φ = DB ∈ Rm×n, with B ∈ Rn×n being a blurring matrix,
and D ∈ Rm×n being a spatial downsampling matrix with
downsampling factor d ∈ Z++, and y models a spatially
degraded SI, referred to as low-resolution HSI (LR-HSI). This
problem occurs by the limited incident light affecting the
spatial resolution when acquiring several spectral bands.

3) Compressive Spectral Imaging Reconstruction: when
m � n, Φ = H ∈ Rm×n denotes a compressive sensing
matrix, and y ∈ Rm models the SI compressed measurements.
This problem is related to the compressive sensing theory that
simultaneously acquire and compress a signal.

The SI can be recovered from the noisy, LR-HSI or com-
pressed measurements by solving the inverse problem

f̂ ∈ argmin
f∈Rn

F (f |y) + λR(f), (4)

where F (·) : Rn × Rm → R denotes a data fidelity term,
R(·) : Rn → R denotes a regularizer that promotes SI prior
information, and λ > 0 denotes the regularization parameter.

III. PROPOSED SPECTRAL IMAGE RECOVERY METHOD

The proposed SI recovery method aims to include the prior
information implicitly in the architecture of a deep model that
generates the SI measurements by minimizing

θ̂ ∈ argmin
θ

L
(
y,ΦMθ(f

0)
)
, (5)

where f̂ :=Mθ̂(f
0) denotes the recovered SI, Mθ(·) : Rn →

Rn denotes the deep generative network with θ adjustable
weights, L (·) : Rm × Rm → R denotes a customized loss
function, and f0 ∈ Rn denotes the model input. Notice that (5)
only requires the measurements y, the acquisition operator Φ,
and the input f0, i.e., the proposed method is non-data-driven.

Figure 1 schematizes the three components of the proposed
SI recovery method. (i) The input structure is based on tensor
decomposition. (ii) The Mixture-Net interpretable architecture
generates the recovered SI, the learned features interpreted as
the abundances, and the adjusted weights interpreted as the
endmembers. (iii) The customized loss function includes the
forward model, the losses of each deep-block, and the mixture
model physical constraints.
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(i) Input (ii) Mixture-Net: Network with multiple interpretable deep-blocks Mθ(·) Output
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∑
k τkLk
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)
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(
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)
=
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Fig. 1: Proposed SI recovery method scheme. (i) The input f0 is learned as a tensor decomposition to impose a low-rank
structure. (ii) Mixture-Net is composed by a sequence of multiple interpretable deep-blocks Mθk(·). The kth interpretable
deep-block contains an abundance block-layer Akθ(fk−1), consisting of a CNN to learn the spatial correlations, an endmember
block-layer EE(āk) performing the matrix product according to the LMM, and a non-linearity block-layer Nθk(EEk(āk)
containing a CNN to learn the NLMM operator. (iii) The customized loss function L(f | y,Φ) is formulated as a weighted
sum of the single losses employed at each interpretable deep-block Lk

(
Mθk(fk−1)| y,Φ

)
, whose first term corresponds to

the data fidelity term
∥∥y −Φfk

∥∥2
2
, and second term relates the abundance sum-to-one constraint.

A. Input structure component

The input component determines the input structure for the
network Mθ(·). The proposed method computes the input as
an adjustable variable from a blind representation by solving

{θ̂, f̂0} ∈ argmin
θ,f0∈Rn

L
(
y,ΦMθ(f

0)
)
. (6)

Authors in [21] suggested that imposing a low-dimensional
input f0 will force obtaining a low-dimensional output, helpful
for capturing the spectral data structure even in the first layer
of the model [31]. Therefore, the input is learned according
to the Tucker decomposition as f0 = vec(Z), Z = Z0 ×1

U ×2 V ×3 W, where the variables Z0,U,V,W are fitted
by minimizing (6). The Tucker decomposition maintains the
SI 3D structure and guarantees low-dimensionality given that
Zo ∈ RNρ×Nρ×Lρ stands for a 3D low-rank tensor, where
Nρ < N and Lρ < L, and ρ is a scale factor.

B. Mixture-Net: Network architecture component

To implicitly capture the SI prior information, Mixture-
Net is composed of a sequence of K interpretable deep-
blocks inspired by low-rank mixture models, containing an
abundance, an endmember, and a non-linearity block-layer.

1) Abundance block-layer: The first block-layer consists of
a CNN that filters the input with the size of the reference SI to
obtain an output whose structure and dimensions should match
for being interpreted as the abundances. The abundance block-
layer of the k-th interpretable deep-block can be expressed as

āk = Akθ(fk−1), (7)

where Akθ(·) : RN2L → RN2r connotes the CNN with r
being a tunable hyper-parameter related to the SI rank. The
block-layer also includes the non-negativity and sum-to-one
physical constraints described in Section II. Precisely, the
sigmoid function is used as the activation of the last layer,
and the following regularization term is included in the loss
function

R(āk) =

N2∑
i=1

((
aki
)T

1− 1
)2
. (8)

2) Endemember block-layer: The second block-layer con-
sists of an operator that performs the matrix multiplication
between the learned features in the abundance block-layer āk

and the adjusted model weights in the endmember block-layer
Ek, whose dimensions should match to be interpreted as the
endmembers. The endmember block-layer can be expressed as
the linear component of the low-rank mixture model as

Lk = EEk
(
āk
)

= (Ek ⊗ IN2)āk, (9)

where EEk(·) : RN2r → RN2L models the fully connected
endmember block-layer following the LMM. The adjusted
weights Ek are meant to be interpreted as the endmembers,
so that their entries must be non-negative (Section II). An
activation function will not guarantee non-negativity since
the activations affect the layers’ outputs, not the weights.
Therefore, a projection to the positive real numbers is imposed
over the adjusted weights at each gradient step to guarantee
the weights interpretability, i.e., to project Ek into R+.

3) Non-Linearity block-layer: The third block-layer con-
sists of a convolutional operator determining the non-linear
transformation applied to the linear component obtained in the
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endmember block-layer Lk. The block-layer learns the non-
linear interactions providing an output whose structure and
dimension should match to be interpreted as the recovered
SI. The third block-layer can be expressed as the non-linear
component of the low-rank mixture model as

NLk = Nθk(EEk
(
āk
)
), (10)

where N k
θ (·) : RN2r → RN2L connotes a CNN that deter-

mines the non-linear transformation following the NLMM.
In summarizing, the kth interpretable deep-block estimates

the recovered SI, generating three outputs given by

Mθk(fk−1) = fk = (1− λ)Lk + λNLk,

Lk = EEk(Akθ(fk−1)),

NLk = Nθk(EEk(Akθ(fk−1)),

(11)

for k = 1, . . . ,K interpretable deep-blocks. Note that each fk

follows a low-rank representation since it results from an affine
combination between Lk in (9) and NLk in (10), interpreted as
the linear and non-linear components of the low-rank mixture
model balanced by the parameter 0 ≤ λ ≤ 1.

C. Customized loss function component

The loss function is decisive for the learning effectiveness
in each SI recovery problem. Therefore, the proposed method
admits a customized loss function considering the forward
model, the independent deep-blocks, and the physical con-
straints. First, the forward operator Φ is applied at each deep-
block output to predict the measurements. Subsequently, the
weights θ are adjusted by minimizing a loss that measures
the predicted measurements fidelity to the observed measure-
ments through a chosen data-fidelity term, F (fk|y,Φ), and
contains the mixture model physical constraint, R(Akθ(fk)) =∑N2

i=1

((
aki
)T

1− 1
)2

, where the sum of the fractional pro-
portions at each spatial location must sum one. Lastly, the loss
function is composed of the sum of the single losses at each
deep-block as follows

{θ∗} ∈ arg min
θ

∑
k

τkLk
(
fk| y,Φ

)
,

Lk(fk| y,Φ) = F (fk|y,Φ) + γkR(Akθ(fk)),

(12)

where, fk := Mθk(fk−1), Mθk(·) : RN2L → RN2L stands
for the kth interpretable deep-block, τk > 0 denotes the kth

loss function relative weight, and γk > 0 denotes the kth

regularization parameter that controls the trade-off between
the data-fidelity term F (fk|y,Φ) and the abundance sum-to-
one constraint defined in (8). The output at each deep-block
could be interpreted as the recovered SI; therefore, this paper
studies two options (i) using the last deep-block output, i.e.,
f̂ := fK and (ii) using the average between the last two deep-
blocks outputs, i.e., f̂ := (fK + fK−1)/2.

IV. SIMULATIONS AND RESULTS

The experiments to evaluate the Mixture-Net performance
were conducted over six publicly available spectral datasets.

The Pavia University dataset1, acquired with the ROSIS
sensor spanning the (0.43−0.86) µm spectral range. It contains
103 spectral bands, and 610×610 spatial pixels. A sub-region
of 400× 200 pixels is used following the setup in [32].

The hyperspectral Pavia Center dataset1, acquired with the
ROSIS sensor. It contains 102 spectral bands and 1096×1096
spatial pixels. Remark: Since only one image is adopted, the
training process follows the splitting scheme in [33]. Precisely,
the image’s central region (1096 ×715) is cropped and divided
into training and testing data. The left sub-region is extracted
to form the testing data, with four non-overlapped HSIs with
224 × 224 pixels. The remaining region is extracted to form
the training data with overlapped HSIs. Finally, the ten percent
of the training data is included as a validation set.

The multispectral Stuff-Toys and Fake images taken from
the CAVE dataset2 that contains 32 images of everyday objects
with 512 × 512 spatial pixels, and 31 spectral bands ranging
from 400nm to 700nm at 10nm steps [34].

The KAIST3 and the ARAD datasets4 with 512×512 spatial
pixels and 31 spectral bands [35], [36]. ARAD contains 480
images ranging from 400nm to 700nm at 10nm steps.

The Jasper Ridge dataset1 with 512 × 614 spatial pixels
and 224 spectral bands, ranging from 380nm to 2500nm at
9.46nm steps. Jasper Ridge contains four land classes: Road,
Soil, Water, and Tree, [37]. A sub-region of 100 × 100 × 66
spatial-spectral dimension aligned at the (105, 269)th location
in the original image is used following the setup in [37].

Mixture-Net was tested in three SI recovery tasks, SI
denoising, HSI-SR, and CSI reconstruction. For HSI-SR and
CSI reconstruction, the `2-norm was used as the data fidelity
term, given by F (fk|y,Φ) =

∥∥y −Φfk
∥∥2
2
. For SI denoising,

the state-of-the-art SURE loss was chosen to avoid over-fitting
for high levels of noise, described in [32] as

F (fk|y) =
∥∥y −Φfk

∥∥2
2
− σ2 +

2σ

N2L
divy(Φfk), (13)

where divy(Φfk) is the divergence of Φfk := ΦMθk(f0)
computed with the Monte-Carlo SURE strategy in [38] as

divy(Φfk)) ≈ bT
(

Φ(Mθk(f0 + ε))−ΦMθk(f0)

ε

)
. (14)

b ∈ RN2L is an i.i.d. Gaussian distribution with zero mean
and unit variance. The SURE loss entails two hyperparameters
ε and σ. ε is a small value with order 1× 10−5, and σ is the
noise level calculated by the band-wise mean of the median
absolute deviation estimator of the 2D wavelet transform [38].

The hyper-parameters τk and γk are tuned for each evalu-
ated scenario following the sweeping methodology described
in Supplementary Material, Section I.

The quality improvement is quantified through the spectral
angle mapper (SAM), the root mean squared error (RMSE),
the dimensionless global relative error of synthesis (ERGAS),
the peak signal-to-noise ratio (PSNR), and the structural sim-
ilarity (SSIM) metrics calculated as in [11], [28]. Simulations

1Available in Remote Sensing Datasets. Accessed: 09-Sep-2022.
2Available in Multispectral Image Dataset. Accessed: 09-Sep-2022.
3Available in KAIST Dataset. Accessed: 09-Sep-2022.
4Available in ARAD dataSet. Accessed: 09-Sep-2022.

https://rslab.ut.ac.ir/data
https://www.cs.columbia.edu/CAVE/databases/multispectral/
http://vclab.kaist.ac.kr/siggraphasia2017p1/
https://competitions.codalab.org/competitions/22226
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were run on an Intel Xeon W-3223 with 64GB of memory,
and an NVIDIA RTX 3090 GPU with 24GB of memory5.

A. Characterization of Mixture-Net

This section studies the components and hyper-parameters
tuning affecting Mixture-Net. (i) The input strategy, varying
the network input structure. (ii) The abundance block-layer
scheme, varying the number of layers and filters. (iii) The
non-linearity block-layer, varying the rank. (iv) The number
of deep-blocks K with single and multiple losses. The SI-
SR task is carried out over Pavia Center to visualize the
characterization results.

1) Input structure: This experiment evaluates the influence
of learning the structure of the input f0 ∈ Rn against using
a fixed input, i.e., the entries do not change during the
learning process. Precisely, four fixed input strategies imposing
a different structure were considered: A Constant input, using
a tensor with all values equal to 0.5, i.e., Z ∈ {0.5}N×N×L;
A Random input, generating a random tensor with a normal
Gaussian distribution; A Mesh-grid input, initializing the ten-
sor as in [20]. And, an Estimated input, roughly estimating
the image as vec(Z) = ΦTy. The proposed Learned strategy
learns a low-dimensional Tucker Decomposition from random
noise using ρ = 0.4 as described in Section III-A.

The input f0 is perturbed at each iteration of the learning
process to emulate external noise, improving the results quality
as shown in [20]. The perturbation is given by

f (0) = vec(Z) + βη, (15)

5The source code is publicly available in Mixture-Net code
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Fig. 2: Quantitative performance box plot measured in (left)
PSNR (purple) - SAM (green) and (right) SSIM (yellow) -
RMSE (red) metrics for the five strategies imposing a structure
in the input of Mixture-Net. The level of perturbation was
varied across the values [0, 1e−2, 3e−2, 5e−2, 8e−2, 1e−1].
The Abundance block-layer is a CNN with six layers using
thirty two filters, and the hyper-parameters were set to lr =
5e−3, λ = 0 (only the LMM), and r = 8.

where vec(·) denotes a vectorization operator, β ∈ R+ is a pa-
rameter controlling the perturbation level, and ηi,j ∼ N (0, 1)
stands for Gaussian additive noise.

Figure 2 shows the Mixture-Net quality results varying
the input structures. The Constant and Random inputs are
far away from being good inputs, where even the Mesh-grid
or Estimated strategies obtain a better quality. The proposed
Learned input emerges as the best strategy, with a variance no
greater than 0.47 [dBs] of PSNR and 0.27 degrees of SAM.

2) Abundance-block-layer: The abundance block-layer tun-
ing evaluates three architectures to learn the spatial features
leading to the estimated abundance maps. The Convolutional
refers to a sequence of 2D convolutional layers with padding
as in [39]. The Auto-encoder refers to a sequence of 2D
convolutional layers, where the first half increase at the double
at each feature, i.e., [`, 2`, . . . , 2υ`], and the remaining half
decrease [2υ`, (2υ−1)`, . . . , `] as in [35]. The ResNet refers
to a sequence of residual neural layers, where the first and the
last convolutional layers are concatenated as in [21]. Figure 3
shows the PSNR and SAM metrics across the architectures,
varying the number of layers and the learned features per layer.
It can be observed that the Convolutional architecture provides
the highest quality, showing the most stable behavior with
minimal variances when using thirty two features or more.

3) Non-linearity block-layer varying the rank: This ex-
periment evaluates the effect of introducing the non-linearity
block-layer and varying the rank. The rank can be addressed as
a hyper-parameter related to the number of different materials
in the SI. Figure 4 shows a quantitative comparison between
Mixture-Net with just the LMM (λ = 0 in (11)) and Mixture-
Net when the non-linearity block-layer is included, i.e., λ > 0.
A clear improvement in the quality can be observed, especially
for small values of the rank. This result indicates that using
many endmembers compensates for the non-linear relations in
the underlying scene. However, applications such as material
identification should be aware of just a few ground truth
endmembers that interact in non-linear ways to form the scene
instead of using a large number of endmembers that do not
match the spectral response of any material [29].

4) Number of interpretable deep-blocks with single and
multiple losses: This experiment evaluates the influence of
concatenating multiple interpretable deep-blocks and of using
a single or multiple losses scheme. The single scheme includes
the non-linearity block-layer and one loss only at the end of
the whole network; meanwhile, the multiple scheme includes
a loss at the end of each intermediate deep-block.

Mixture-Net is evaluated in two scenarios: (i) varying the
number of interpretable deep-blocks and (ii) fixing five deep-
blocks, calculating the quality of each intermediate deep-block
output fk, interpreted as a recovered image.

Figure 5 (left) plots the resulting quality in PSNR as a
function of the number of interpretable deep-blocks for the
single and multiple schemes. An increasing relationship can
be observed, where using multiple losses consistently achieves
higher performance than using a single loss. Figure 5 (right)
plots the quality at the intermediate deep-blocks when fixing a
total number of five deep-blocks. The multiple scheme obtains

https://github.com/TatianaGelvez/Mixture-Net
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a remarkably higher performance than the single loss scheme
from the first intermediate deep-block.

In both scenarios, the quality obtained with two deep-blocks
is comparable to the quality when using three, four, and five
deep-blocks. Therefore, the experiments in the rest of the
manuscript employ two deep-blocks, a trade-off between the
recovered image quality and the method complexity.

B. Mixture-Net Performance for Spectral Image Recovery

This section compares the Mixture-Met performance against
state-of-the-art methods for denoising, HSI-SR, and CSI.

1) Denoising: A SI can be corrupted by different types of
noise such as additive Gaussian, Poisson, and pepper [41].
This experiment evaluates the case of additive Gaussian noise
over Pavia University. Mixture-Net uses the SURE loss to
avoid over-fitting in the learning process. The comparison
methods cover the block-matching and 3D filtering denoiser
(BM3D) [42], the first order spectral roughness penalty
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Fig. 3: Quantitative performance in terms of PSNR (left) and
SAM (right) across three architectures. The hyper-parameters
are varied as follows: the number of layers varies in the range
[1 − 5] for the Convolutional and Res-Net architectures, and
in the range [3, 5, 7] for the Auto-encoder; and the number
of features per layer varies in the range [8, 16, 32, 64]. The
best learning-rate was found to be lr = 1e−3, and the noise
perturbation of the input was set to be β = 0.7.

for denoising (FORPDN) [12], the hyperspectral restora-
tion (HyRes) [14], the hyperspectral-DIP [23], the SURE-
CNN [35], and the unsupervised disentangled spatio-spectral
deep priors method (DS2DP) [25].

Table I summarizes the quantitative results regarding PSNR
and SSIM metrics, where the Input column refers to the noisy
image quality. Mixture-Net obtains a significant improvement,
especially in the SSIM metric, indicating that the recovered
SI intrinsic structures with Mixture-Net are improved over the
state-of-the-art methods as observed in Fig. 6. Further, the
zoomed version visualizes a noise reduction in smooth regions.

2) Single Hyperspectral Super-Resolution: This experiment
employs the Pavia Center and Stuff-Toys datasets for two
downsampling factors, d = [4, 8]. The comparison meth-
ods cover the bicubic interpolation; three gray/RGB im-
age SR methods, EDSR [43], RCAN [44], and SAN [45];
three single HSI-SR methods, 3DCNN [46], GDRRN [47],
and SSPSR [33]; and the non-data-driven Hyperspectral-DIP
method [23]. The optimization uses the Adam algorithm with
lr = 1e−3 and γk = 0.5. The rank r and the number of deep-
blocks K were set to r = 6 and K = 3, and r = 12 and
K = 4, for Pavia Center and Stuff-Toys, respectively.

Tables II and III compare the quantitative results for the sin-
gle HSI-SR over the evaluated methods. Our non-data-driven
Mixture-Net outperforms or achieves competitive quality even
against the data-driven methods such as the SSPSR for both
datasets, both downsampling factors, and all evaluated metrics.

↑PSNR [dBs] ↓SAM [Degrees]

Rank Rank

Fig. 4: Quantitative performance in terms of PSNR (left)
and SAM (right) when using the linear block-layer, i.e.,
λ = 0 in (11), and when including the non-linearity block-
layer with λ = 0.7. The rank value varies in the range
[3, 4, 5, 6, 7, 8, 9, 10, 15, 20]. The non-linearity block-layer is
composed of two consecutive spatial-spectral networks pre-
sented in [40], with the learning rate set to lr = 1e−3.

TABLE I: Denoising Quantitative Results for Pavia University

Noise
σ

Metric Input BM3D FORPDN HyRes DIP SURE
CNN DS2DP Mixture

-Net

100
255

↑PSNR 8.130 29.14 26.03 28.41 26.47 29.62 27.54 30.95
↓SSIM 0.025 0.754 0.597 0.738 0.683 0.802 0.718 0.869

50
255

↑PSNR 14.15 32.97 30.44 31.78 30.69 33.29 32.12 34.47
↓SSIM 0.102 0.881 0.799 0.855 0.846 0.905 0.896 0.942

25
255

↑PSNR 20.17 36.48 34.34 35.35 34.48 36.09 35.55 36.99
↓SSIM 0.286 0.942 0.906 0.927 0.917 0.945 0.951 0.965
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Fig. 5: (left) Mixture-Net performance, varying the number
of interpretable deep-blocks in the range [1 − 5] for single
and multiple losses. (right) Recovered image quality at each
intermediate deep-block when fixing five deep-blocks.
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Fig. 6: Visual RGB mapping of denoised Pavia University with
noise level σ = 50/255. The white box at the bottom of each
image shows the quantitative quality in PSNR. The zoomed
sub-region shows that Mixture-Net suppresses the Gaussian
noise in smooth regions while maintaining the shapes and
structures. Unlike, the noise is still visible in HSI-DIP, SURE,
and DS2DP methods, and the edges and structure are blurred
in the BM3D case. A spectral quality comparison is shown at
the bottom for two spatial pixels P1 and P2.

The spectral quality measured with the SAM metric results
remarkably improved for the Pavia Center dataset. Thus, the
intrinsic low-rank prior is more substantial when a higher
number of correlated spectral bands are considered. Figure 7
shows a visual comparison of the RGB mapping of some
super-resolved images for the Pavia Center dataset, where
Mixture-Net improves the spatial quality, particularly for high
down-sampling factors.

3) Compressive Spectral Imaging Reconstruction for KAIST
and ARAD datasets: This experiment compares the Mixture-
Net effectiveness for CSI reconstruction against data-driven
and non-data-driven state-of-the-art methods, including the

TABLE II: Single Hyperspectral Super-Resolution Quantita-
tive Results for Pavia Center

Method d SAM↓ RMSE↓ ERGAS↓ PSNR↑ SSIM ↑

Bicubic 4 6.1399 0.0437 6.8814 27.5874 0.6961

EDSR 4 5.8657 0.0379 6.0199 28.7981 0.7722
RCAN 4 5.9785 0.0376 6.0485 28.8165 0.7719
SAN 4 5.9590 0.0374 5.9903 28.8554 0.7740

3DCNN 4 5.8669 0.0396 6.2665 28.4114 0.7501
GDRRN 4 5.4750 0.0393 6.2264 28.4726 0.7530
SSPSR 4 5.4612 0.0362 5.8014 29.1581 0.7903

DIP 4 6.2665 0.0410 6.4845 28.1061 0.7365
Mixture-Net 4 4.2120 0.0352 5.8084 29.914 0.8396

Bicubic 8 7.8478 0.0630 4.8280 24.5972 0.4725

EDSR 8 7.8594 0.05983 4.6359 25.0041 0.5130
RCAN 8 7.9992 0.0604 4.6930 24.9183 0.5086
SAN 8 8.0371 0.0609 4.7646 24.8485 0.5054

3DCNN 8 7.6878 0.0605 4.6469 24.9336 0.5038
GDRRN 8 7.3531 0.0607 4.6220 24.8648 0.5014
SSPSR 8 7.3312 0.0586 4.5266 25.1985 0.5365

DIP 8 7.9281 0.0618 4.7366 24.7252 0.4963
Mixture-Net 8 6.7855 0.0485 4.0015 26.9041 0.7148

TABLE III: Single Hyperspectral Super-Resolution Quantita-
tive Results for Stuff-Toys

Method d SAM↓ RMSE↓ ERGAS↓ PSNR↑ SSIM ↑

Bicubic 4 4.1759 0.0212 5.2719 34.7214 0.9277

EDSR 4 3.5499 0.0149 3.5921 38.1575 0.9522
RCAN 4 3.6050 0.0142 3.4178 38.7585 0.9530
SAN 4 3.5951 0.0143 3.4200 38.7188 0.9531

3DCNN 4 3.3463 0.0154 3.7042 37.9759 0.9522
GDRRN 4 3.4143 0.0145 3.5086 38.4507 0.9538
SSPSR 4 3.1846 0.0138 3.3384 39.0892 0.9553

DIP 4 8.4935 0.0124 2.5358 38.1329 0.9631
Mixture-Net 4 5.3285 0.0110 2.1997 39.1640 0.9821

Bicubic 8 5.8962 0.0346 4.2175 30.2056 0.8526

EDSR 8 5.6865 0.0279 3.3903 32.4072 0.8842
RCAN 8 5.9771 0.0268 3.1781 32.9544 0.8884
SAN 8 5.8683 0.0267 3.1437 33.0012 0.8888

3DCNN 8 5.0948 0.0292 3.5536 31.9691 0.8863
GDRRN 8 5.3597 0.0280 3.3460 32.5763 0.8890
SSPSR 8 4.4874 0.0257 3.0419 33.4340 0.9010

DIP 8 8.3342 0.0231 2.3697 32.7324 0.9291
Mixture-Net 8 5.5027 0.0208 2.1061 33.6270 0.9432

non-data-driven Plug-and-Play (PnP) [48] and TL-DIP [21],
and the data-driven Deep Non-local Unrolling (DNU) [17],
Autoencoder (AE) [35], and Joint non-linear Representation
and Recovery Network (JR2Net) [49]. The CSI reconstruction
is carried out over the KAIST and ARAD datasets, where the
DNU and AE methods were trained with the publicly available
codes using a training dataset of 27 and 450 images for the
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Fig. 7: RGB representation of the reconstructed composite images of Pavia Center datatest for spatial downsampling factor
d = 4 (top) and d = 8 (bottom). Notice that, the spatial quality is especially improved for a factor d = 8.
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Fig. 8: Compressive sensing reconstruction quality comparison using the non-data-driven PnP and DIP methods, and the
training-data dependent DNU, and AE methods against the interpretable method Mixture-Net for the KAIST and ARAD
datasets. The quality is measured in terms of PSNR / SSIM.

TABLE IV: Compressive Spectral Imaging Reconstruction
Quantitative Results

KAIST

Metric PnP DNU AE TL-DIP JR2net Mixture-Net

↑PSNR 29.8± 2.6 32.6± 1.8 37.9± 1.1 32.8± 0.9 39.1± 2.5 40.3± 2.6

↑SSIM 0.92± 0.02 0.91± 0.01 0.96± 0.01 0.92± 0.01 0.97± 0.02 0.99± 0.01

↓SAM 10.9± 4.2 12.9± 1.8 9.20± 2.9 12.4± 2.7 6.00± 2.3 3.26± 1.1

ARAD

↑PSNR 31.5± 4.5 29.5± 4.5 33.5± 4.4 35.8± 3.8 36.5± 4.6 39.1± 4.1

↑SSIM 0.83± 0.08 0.82± 0.09 0.90± 0.05 0.95± 0.03 0.97± 0.01 0.98± 0.01

↓SAM 6.94± 2.7 8.26± 3.1 5.50± 1.7 4.45± 2.5 2.85± 0.95 2.04± 0.53

KAIST and ARAD datasets, respectively.
Table IV summarizes the average reconstruction quality

across all testing images for each database with the standard
deviation. For all metrics, Mixture-Net outperforms state-
of-the-art methods, showing the effectiveness to recover the

spatial and spectral details. Figure 8 visualizes the recovered
images with the reconstruction quality measured in PSNR and
SSIM. Mixture-Net improves the quality of reconstruction by
up to 7 [dB] and obtains the highest SSIM, outperforming even
the methods employing data during the training step. Figure 9
shows the recovered spectral signatures at a random spatial
location. The absolute errors at right confirm that Mixture-Net
obtains the best response estimation for both databases.

C. Remote Sensing Tasks Experiments
This experiment aims to evaluate the potential application of

Mixture-Net to perform remote sensing tasks such as unmixing
and material identification without running complementary
routines. For this, Mixture-Net takes advantage of its archi-
tecture’s interpretability, providing two outputs interpreted as
the abundances and endmembers.

The unmixing experiment is carried out using one single
shot of the Dual Disperser Coded Aperture Snapshot Spectral
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Fig. 9: Spectral signatures comparison at P1 for each dataset.
The absolute error plots confirm that the spectral signatures
obtained by the Mixture-Net method are more accurate than
those obtained by the comparison methods.

Imaging (DD-CASSI) [50] over the Jasper Dataset. The hyper-
parameters are the same as the experiment in Section IV-A2,
with λ = 0, i.e., considering only the linear component. Fig-
ure 10 depicts a false RGB representation of Jasper’s ground-
truth, the Mixture-Net estimation, and the learned features and
adjusted weights. The learned features in the abundance block-
layer and the adjusted weights in the endmember block-layer
converge to a rough estimation of the abundance maps and
endmembers, demonstrating that Mixture-Net could be used
for the unmixing problem at any additional cost.

The material identification experiment is carried out using a
single shot of the DD-CASSI and the Fake image containing a

Fig. 11: (left) RGB Ground truth and estimated Fake image.
(Top right) Two obtained features interpreted as the abun-
dances. (Bottom right) Binary maps after applying a threshold,
identifying the differences in the materials.

real and a fake plastic fruit with similar shape and color. The
image is spatially sub-sampled to 256× 256 pixels. Figure 11
shows the ground truth and a false RGB mapping of the
Mixture-Net estimation with r = 15. At the right top, the
figure shows two obtained features that can be interpreted as
abundances. Then, thresholding is applied over the abundances
obtaining the binary maps at the right bottom to determine if
the materials of both objects are the same. The color checker
shows that the obtained abundance can determine that the
materials are different, identifying the fake object without
running additional routines.

D. Real-Data Experiment

This experiment evaluates the proposed Mixture-Net for the
super-resolution task with real-data, acquired in the Optics
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Fig. 10: Unmixing remote sensing task application resulting from the interpretable learned features and adjusted weights of
Mixture-Net. RGB representation of the ground truth and the estimated recovered image, endmember, and abundance matrices.
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Laboratory at Universidad Industrial de Santander with a test-
bed composed of a SI and an RGB arm.

The SI arm is composed of an adjustable mechanical slit
(Thorlabs VA100C-30 mm, 8-32 Tap) in which the 4f system
focuses the scene. The entrance slit has a height of 13.59mm
and a width of 20µm. Then, a relay lens at 100 mm from the
slit forms a parallel beam that reaches the 600 grooves/mm
transmission grating that diffracts the light rays onto the
sensor. The push-broom imagery spectrogram illuminates the
slit with 1032 wavelengths in the spectral range 420− 700nm
with steps of 2.7nm. The SI acquisition performs 50 horizontal
steps with a resolution of 48µm, so that the acquired low-
resolution spectral image, referred to as LR-SI, has 100× 50
spatial pixels and 1032 spectral bands.

The RGB arm is composed of an RGB camera, where the 4f
system focuses the scene onto its detector array, so we employ
a sub-region of 1200× 600 spatial pixels as a reference RGB
image with high spatial resolution, referred to as HR-RGB.

Figure 12 (left) compares the super-resolved image, referred
to as HR-SI, against the LR-SI and the HR-RGB. The spatial
structure of the HR-SI results comparable to the observed in
the HR-RGB, and the HR-SI spectral signatures are estimated
accordingly to the LR-SI. In particular, the HR-SI contains

Super-resolution resultss Interpretability analysiss
LR-SI
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P2LR-SI
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Fig. 12: Real-data super-resolution.(Left-top) Spatial compari-
son of the estimated super-resolved image (HR-SI) against the
reference RGB (HR-RGB) and the acquired SI (LR-SI).(Left-
bottom) LR-SI spectral signatures at two spatial locations
P1 = (42, 32) and P2 = (62, 8) compared against the esti-
mated HR-SI spectral signatures at the corresponding locations
P1 = (493, 373) and P2 = (733, 85).(Right) Mixture-Net
interpretability analysis. The learned features and adjusted
weights appear to be the abundance maps and the endmembers
spanning the image. In particular, notice that the pairs (a1, e1),
(a6, e6), (a8, e8) can be interpreted as the maps and spectral
signatures of the red, yellow, and green pixels.

smoother spectral signatures in comparison to the LR-SI.
Figure 12 (right) illustrates the Mixture-Net interpretability,

where the depicted learned features match the features of a set
of abundance maps, and the plotted adjusted weights follow
the behavior of a set of endmembers. Therefore, besides super-
resolving the image, Mixture-Net provides a set of abundance
and endmembers maps that can be used for unmixing or
material identification purposes.

V. CONCLUSIONS

This paper proposes a non-data-driven spectral image re-
covery method based on deep image prior, where the low-
rank mixture models inspire the network dubbed Mixture-
Net. Beyond previous methods, Mixture-Net includes prior
knowledge implicitly in the architecture, addressing the black-
box nature of standard deep learning. Mixture-Net is divided
into three components, the input, imposing a low-dimensional
structure through the learning of a Tucker decomposition; the
interpretable Mixture-Net, following a sequence of multiple
deep-blocks to estimate the abundances, the endmembers, and
the spectral image with non-linear relations; and the custom
loss function that considers a regularization related to physical
constraints. The non-data-driven Mixture-Net effectiveness
was demonstrated over three spectral image recovery prob-
lems: spectral image denoising, single hyperspectral super-
resolution, and compressive spectral imaging reconstruction
in terms of different metrics, outperforming even data-driven
methods requiring the training of a vast amount of data.
Along with the experiments, we found that imposing a low-
dimensional structure over the input improves the quality of
the recovered image. On the other hand, the non-linearity
block-layer drastically improved the obtained quality by con-
sidering the non-linear relationships between the endmembers.
We remark that Mixture-Net can be extended to any other
spectral image recovery task, even using different loss func-
tions, where the interpretable advantage of Mixture-Net allows
to execute further remote sensing tasks as linear unmixing and
material identification without using additional routines.
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