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A B S T R A C T

Multi-view non-negative matrix factorization (NMF) provides a reliable method to analyze multiple views of
data for low-dimensional representation. A variety of multi-view learning methods have been developed in
recent years, demonstrating successful applications in clustering. However, existing methods in multi-view
learning often tend to overlook the non-linear relationships among data and the significance of the similarity
of internal views, both of which are essential in multi-view tasks. Meanwhile, the mapping between the
obtained representation and the original data typically contains complex hidden information that deserves to
be thoroughly explored. In this paper, a novel multi-view NMF is proposed that explores the local geometric
structure among multi-dimensional data and learns the hidden representation of different attributes through
centric graph regularization and pairwise co-regularization of the coefficient matrix. In addition, the proposed
model is further sparsified with 𝑙2,𝑙𝑜𝑔 -(pseudo) norm to efficiently generate sparse solutions. As a result, the
model obtains a better part-based representation, enhancing its robustness and applicability in complex noisy
scenarios. An effective iterative update algorithm is designed to solve the proposed model, and the convergence
of the algorithm is proven to be theoretically guaranteed. The effectiveness of the proposed method is verified
by comparing it with nine state-of-the-art methods in clustering tasks of eight public datasets.
1. Introduction

Massive data has been gathered from various origins in recent years,
encompassing heterogeneous properties from diverse feature perspec-
tives, which is referred to as multi-view data [1]. Typically, compatible
and complementary information can be found in such multiple repre-
sentations [2]. As a result, the multi-view learning paradigm has been
developed and investigated. The clustering approach, which effectively
harnesses multiple views to jointly contribute to the results, enables
accurate analysis of heterogeneous features and efficient utilization of
abundant features from different perspectives [3]. However, multi-view
data is often characterized by high dimensionality, making it unsuit-
able for direct use in pattern recognition tasks [4,5]. Consequently,
obtaining a more suitable representation using multi-view data for
downstream tasks like clustering remains a challenging endeavor [6].

By formulating a well-designed learning mechanism, the execution
of multi-view clustering can effectively unveil the latent structures
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embedded within the multi-view data, thereby enhancing the clus-
tering performance [7–9]. Many types of multi-view learning models
have emerged over recent years [10]. The crucial aspect of employing
multiple views to address the clustering problem involves rational
fusion, aiming to generate outcomes that are both accurate and ro-
bust [11]. Current approaches of multi-view learning are generally
categorized into multi-kernel learning [12–14], graph clustering [15,
16] and subspace clustering [17–19]. Multi-kernel learning integrates
multiple basis kernels through linear or non-linear combinations to de-
rive the optimal clustering kernel. The graph-based clustering approach
conceptualizes the multi-view task as a process of graph partitioning,
where the process for multi-view learning corresponds to the fusion of
multiple graphs. Subspace clustering endeavors to discover appropriate
low-dimensional representations and structures for each view through
matrix factorization. The representations are subsequently fused into a
unified representation that encompasses complementary information,
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with the goal of unveiling a shared underlying subspace among mul-
tiple views. Compared with other approaches, the method of matrix
factorization is constructed in a way which has low computational com-
plexity [20]. Among them, NMF is interpretable and is able to discover
part-based representation from raw data [21]. It has been successfully
applied in many areas, such as face recognition, social network analysis,
text clustering, image retrieval and visual tracking [22].

NMF is extensively employed for multi-view clustering owing to its
capability to handle high-dimensional data effectively. A multi-view
NMF for clustering tasks is presented to achieve a common consensus
for each view of the clustering solution while learning the basis and
coefficient matrices [23]. Although NMF performs well in handling
high-dimensional problems [24], it appears to be incapable of capturing
the internal structure among multi-dimensional data [25]. Therefore,
many researches have been made to explore the internal relationships
within views by applying manifold regularization. A multi-manifold
NMF is developed to consider the similarity of the coefficient ma-
trix of each view to the consensus matrix by utilizing centroid-based
co-regularization [26]. A diverse NMF is proposed with a novel regular-
ization term, which encourages a sufficient diversity of representations
from multiple views to capture comprehensive information [27]. A
novel manifold regularization utilizes orthogonality to adequately cap-
ture the diversity within the views [28]. A new model is introduced
that integrates high-level manifold consensus constraints to obtain the
underlying clustering structure for each view [29]. A method based on
the consistency of multi-view data is proposed, which employs a multi-
manifold regularized NMF algorithm to obtain uniform manifold and
global clustering [30]. Additionally, a new NMF method for clustering
multi-view data with manifold regularization is proposed, which is able
to evaluate the divergence terms between coefficient matrices and the
consensus matrix [31].

In multi-view NMF, the objective is to approximate the input data
matrix in each view using two non-negative factor matrices, allowing
each observation to be explained as a linear combination of non-
negative basis vectors. However, this approach ignores the non-linear
relationships between multi-dimensional data, which are considerably
more important in practical applications. To address this, the graph-
based learning approaches are often introduced to deal with multi-
dimensional data and explain non-linear relationships [32,33]. A multi-
view clustering method, which utilizes graph regularized NMF, is pro-
posed to enhance the extraction of useful information through graph
embedding and remove the redundant information through orthogo-
nality constraints for each view [34]. Additionally, a novel multi-view
clustering method is developed, incorporating deep graph regulariza-
tion into the NMF framework to extract a more abstract represen-
tation through the construction of a multi-layer NMF model [35].
A semi-supervised model is developed for adaptive learning of sim-
ilarity graphs, which utilizes must-link and cannot-link scenarios to
discover high-quality similarity graphs for achieving the final clus-
tering result [36]. And a new multi-view graph learning framework
is introduced, which explicitly addresses multi-view consistency and
inconsistency, effectively tackling quality and noise issues in multi-
view data [37]. However, it has been demonstrated that graph Laplace
regularization only models the characteristics of each node in the graph
without considering the relationships between the nodes [38]. Thus
propagation regularization is proposed as a novel graph constraint,
which is a variant of the regularization based on the graph Laplacian
and provides new supervisory signals for the nodes in the graph [38].

Noise is inevitably generated during the sampling of data. To re-
duce the noise impact, some robust multi-view NMF methods have
been proposed [27,39]. In [40], a robust algorithm is proposed by
employing joint non-negative matrix factorization, which explores both
discriminative and non-discriminative information present in common
and specific components across different views. In [41], a novel robust
2

multi-view NMF is proposed, which focuses on leveraging high-order
similarity information to comprehensively uncover neighborhood struc-
tural details. Previous study has shown that introducing 𝑙2,1 norm
with manifold regularization in clustering tasks can reduce the effect
of outliers [22]. Therefore, the 𝑙2,1 norm has been broadly applied
in instances to deal with the effects of noise [42,43]. In the con-
text of multi-view tasks, robust manifold NMF models are proposed,
which incorporate the 𝑙2,1 norm as a quality measure for the factor-
ization [22,44]. The 𝑙2,1 norm with column-wise sparsity adds the 𝑙2
norms of all columns with equal weights but often fails to achieve
sufficient sparseness for columns [45]. To overcome this limitation,
the 𝑙2,𝑙𝑜𝑔-(pseudo) norm is developed to enhance sparsity for noise
reduction [45]. However, the column sparsity problem is not yet well
addressed for multi-view clustering tasks.

While many multi-view clustering methods based on NMF have
made significant progress, there still remain several issues: (1) Redun-
dant information commonly exists in the data representations obtained
from multiple views. (2) The similarity between views is not fully
taken into account. (3) The graph Laplacian regularization only makes
representations of neighboring nodes closer but does not emphasize
mutual influences and information propagation between nodes. (4)
The 𝑙2,1 norm has limitations when addressing noise problems. To
address the mentioned issues, a novel method for multi-view clustering
is proposed in this paper, which is named centric graph regularized
log-norm sparse NMF for multi-view clustering. Fig. 1 presents the
overall framework of the proposed model and the contributions are
summarized in the following four points.

(1) A novel centric graph regularization is designed to enable each
node to capture information from more distant nodes, constructing a
graph with improved spatial structure.

(2) A pairwise co-regularization is employed to measure the sim-
ilarity between views, allowing more information between views and
making multi-view data space compact.

(3) A log-based sparse constrained multi-view NMF model is pro-
posed which utilizes 𝑙2,𝑙𝑜𝑔-(pseudo) norm to restrict column sparsity.
The model ensures that sparse solutions are generated at each view
to obtain a better part-based representation and reduce the mutually
redundant information in multiple views.

(4) An iterative optimization algorithm is devised for the proposed
optimization model. The objective function exhibits a non-increasing
monotonicity after each iteration of the optimization algorithm. Exten-
sive experiments are conducted on eight multi-view datasets. The ex-
perimental results demonstrate that the proposed method outperforms
state-of-the-art methods in terms of several metrics.

The remainder of this paper is organized as follows. In Section 2,
the NMF, propagation regularization, and sparsity-induction norm are
briefly outlined. Section 3 details the proposed multi-view NMF model.
Section 4 discusses the performance comparison and convergent results.
In the last section, the conclusion is drawn.

2. Preliminaries

Before detailing the proposed method, it is important to review
the closely related work about NMF, propagation regularization and
sparsity-induction norm.

2.1. Non-negative matrix factorization

The principle of NMF [46] is as follows. In the given data matrix
𝑿 ∈ 𝑅𝑝×𝑞 , where 𝑝 and 𝑞 represent the data dimension and sample
size, respectively. The objective of the NMF model is to discover the
non-negative matrices 𝑼 = [𝑢𝑖𝑗 ] ∈ 𝑅𝑝×𝑟 and 𝑽 = [𝑣𝑖𝑗 ] ∈ 𝑅𝑞×𝑟. Here, 𝑢𝑖𝑗
and 𝑣𝑖𝑗 represent the 𝑖𝑗th element in the matrix 𝑼 and 𝑽 , respectively,
and 𝑟 represents the desired reduced dimension. Using the basis matrix
𝑼 and the coefficient matrix 𝑽 , the relationship between the matrices is
approximated as 𝑿 ≈ 𝑼𝑽 𝑇 . The measure of similarity is accomplished

by computing the distance. The commonly employed distance metric is
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Fig. 1. The illustration of the proposed method. Firstly NMF is performed on the input matrix. Secondly, a novel graph constraint is applied to the coefficient matrix by centric
graph regularization. Thirdly, a similarity constraint is implemented on the coefficient matrix through pairwise co-regularization. Then the sparseness of factorized matrices is
enforced by 𝑙2,𝑙𝑜𝑔 -(pseudo) norm. Finally, clustering results are obtained by performing K-means on the consensus coefficient matrix 𝑽 ∗.
the Frobenius norm, which represents the squared Euclidean distance
between two matrices [47]. Thus, the NMF model is expressed as an
optimization problem:

min
𝑼 ,𝑽

‖𝑿 − 𝑼𝑽 𝑇
‖

2
𝐹 , s.t. 𝑼 ,𝑽 ≥ 0 (1)

where ‖ ⋅ ‖𝐹 represents the Frobenius norm. The constraints 𝑼 ≥ 0 and
𝑽 ≥ 0 indicate that all elements of matrices 𝑼 and 𝑽 are non-negative.
The objective function of problem (1) is known to be convex only in
either 𝑼 or 𝑽 , which makes it impossible to find the global minimum.
Therefore, the following multiplicative update rules are proposed to
achieve the optimal solutions:

𝑢𝑖𝑗 ← 𝑢𝑖𝑗
(𝑿𝑽 )𝑖𝑗

(𝑼𝑽 𝑇 𝑽 )𝑖𝑗
, 𝑣𝑖𝑗 ← 𝑣𝑖𝑗

(𝑿𝑇𝑼 )𝑖𝑗
(𝑽 𝑼𝑇𝑼 )𝑖𝑗

. (2)

2.2. Propagation regularization

The graph Laplace regularization is widely used for its ability to ef-
fectively discover the non-linear structural information of the data [48].
Moreover, to provide new supervisory signals to the nodes in the
graph and supply additional information to improve model reliability,
a propagation regularization is proposed based on the graph Laplacian
regularization [38]. The propagation regularization is expressed as

𝐿𝑝−𝑟𝑒𝑔 =
1
𝑞
𝜙(𝑽 , �̂�𝑽 ) (3)

where 𝑨 = [𝑎𝑖𝑗 ] ∈ 𝑅𝑞×𝑞 is the similarity matrix that describes the degree
of similarity between data points. And �̂� = 𝑫−1𝑨 is a normalized
similarity matrix, where 𝑫 = [𝑑𝑖𝑗 ] ∈ 𝑅𝑞×𝑞 is a diagonal degree matrix
with 𝑑𝑖𝑗 =

∑𝑞
𝑗=1 𝑎𝑖𝑗 . �̂�𝑽 is the further propagated output and 𝜙(𝑽 , �̂�𝑽 )

is a function to measure the difference between 𝑽 and �̂�𝑽 directly.
While using squared error as 𝜙 and denote it as 𝜙𝑆𝐸 , there is

𝜙𝑆𝐸 (𝑽 , �̂�𝑽 ) = 1
2

𝑞
∑

𝑖=1
‖(�̂�𝑽 )𝑇𝑖 − (𝑽 )𝑇𝑖 ‖

2
2 =

1
2
‖�̂�𝑽 − 𝑽 ‖

2
𝐹 (4)

where (.)𝑇𝑖 denotes the vector of the 𝑖th row in a matrix. 𝜙𝑆𝐸 (𝑽 , �̂�𝑽 )
is node-centric, which involves aggregating the information from a
node’s neighbors to serve as supervision targets [38]. This allows each
node to acquire additional categorical information from its neighbors,
aiding in better determining their positions and roles within the data,
particularly in capturing complex non-linear structures.
3

2.3. Sparsity-induction norm

In NMF, sparse solutions always lead to better parts-based represen-
tations, and further improve the robustness [49]. Therefore, 𝑙2,1 norm
with column-wise sparsity is used instead of the 𝑙2 norm, which is the
sum of the 𝑙2 norms of all column vectors in the matrix. For a matrix
𝑮 = [𝑔𝑖𝑗 ] ∈ 𝑅𝑝×𝑞 , it is defined as

‖𝑮‖2,1 =
𝑞
∑

𝑗=1
‖𝒈𝑗‖2. (5)

However, the 𝑙2,1 norm and 𝑙1 norm exhibit similar limitations in
achieving adequate column sparsity [45]. Specifically, as the size of the
input matrix increases, there is a tendency for the approximation error
to grow, potentially leading to inaccurate approximations and non-
optimal solutions. Hence, ‖𝑮‖𝑙𝑜𝑔 =

∑𝑝
𝑖=1

∑𝑞
𝑗=1 𝑙𝑜𝑔(1 + |𝑔𝑖𝑗 |) is proposed

to enhance the smoothness and reduce the solving complexity. And it
is further extended to the 𝑙2,1 norm by designing the following novel
𝑙2,𝑙𝑜𝑔-(pseudo) norm:

‖𝑮‖2,𝑙𝑜𝑔 =
𝑞
∑

𝑗=1
𝑙𝑜𝑔(1 + ‖𝒈𝑗‖2). (6)

In terms of denoising, 𝑙2,𝑙𝑜𝑔-(pseudo) norm can lead to more sparse-
ness than 𝑙2,1 norm [45]. Due to the log-based value being closer to
0 than the 𝑙2-based value, it provides a more accurate approximation
of the actual sparsity. In order to visually compare the robustness of
𝑙1 norm, 𝑙2 norm, 𝑙2,1 norm and 𝑙2,𝑙𝑜𝑔-(pseudo) norm to noise, using
the norms to normalize the matrix with added noise respectively. The
norms based loss functions are employed to measure the effect of a
certain noise intensity, the variation of norm value with noise intensity
is shown in Fig. 2. It can be observed that 𝑙2,𝑙𝑜𝑔-(pseudo) norm is
significantly more robust to noise than the other norms.

3. Main results

In this section, centric graph regularized log-norm sparse NMF
for multi-view clustering is formulated as an optimization problem in
detail. Then an iterative algorithm is designed, and the convergence
behavior as well as the computational complexity are analyzed.
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Fig. 2. Robust performance of 𝑙1 norm, 𝑙2 norm, 𝑙2,1 norm and 𝑙2,𝑙𝑜𝑔 -(pseudo) norm
against noise.

3.1. Centric graph regularized NMF for multi-view clustering

Let 𝑿(𝑚) ∈ 𝑅𝑝(𝑚)×𝑞 represents the 𝑚th view of the matrix, where
𝑚 = 1, 2,… , 𝑛𝑚. The data matrix for each view is factorized into
𝑼 (𝑚) ∈ 𝑅𝑝(𝑚)×𝑟 and 𝑽 (𝑚) ∈ 𝑅𝑞×𝑟, which are non-negative low-rank
matrices. Thus, the problem of multi-view clustering based on NMF can
be described as follows:

min
𝑼 (𝑚) ,𝑽 (𝑚)

𝑛𝑚
∑

𝑚=1
‖𝑿(𝑚) − 𝑼 (𝑚)𝑽 (𝑚)𝑇

‖

2
𝐹 , s.t. 𝑼 (𝑚),𝑽 (𝑚) ≥ 0, 𝑚 = 1,… , 𝑛𝑚.

(7)

To capture the structures among distinct views, pairwise
co-regularization is introduced to evaluate the similarity of the co-
efficient matrices of the paired views [11,50]. The method aims to
minimize ‖𝑽 (𝑚) − 𝑽 (𝑛)

‖

2
𝐹 for 𝑚, 𝑛 = 1,… , 𝑛𝑚 and 𝑛 ≠ 𝑚, to pursue the

maximum similarity between 𝑽 (𝑚) and 𝑽 (𝑛). Higher coefficient matrix
similarity serves a more important effect in clustering and the following
cost function is adopted for measuring the similarity between views:

min
𝑽 (𝑚)

𝑛𝑚
∑

𝑚,𝑛=1,𝑛≠𝑚
‖𝑽 (𝑚) − 𝑽 (𝑛)

‖

2
𝐹 , s.t. 𝑽 (𝑚) ≥ 0, 𝑚 = 1,… , 𝑛𝑚. (8)

The similarity of paired views captures the clustering structure
and facilitates the part-based representation. However, it falls to fully
consider non-linear associations among data. To solve the problem, a
novel graph regularization is designed based on Eq. (4), which is named
the centric graph regularization. The expression is as follows:

1
2𝑛𝑚

𝑛𝑚
∑

𝑚=1
‖�̂�(𝑚)𝑽 (𝑚) − 𝑽 (𝑚)

‖

2
𝐹 , s.t. 𝑽 (𝑚) ≥ 0, 𝑚 = 1,… , 𝑛𝑚. (9)

In the above optimization problem, 𝜙𝑆𝐸 (𝑽 (𝑚), �̂�(𝑚)𝑽 (𝑚)) is used to
discover the manifold structure of 𝑚th view. And it is normalized
with the number of views, which aims to maintain multi-view spatial
consistency. By incorporating centric graph regularization and pairwise
co-regularization into the multi-view NMF framework, reformulate the
problem (7) as follows:

min
𝑼 (𝑚) ,𝑽 (𝑚)

𝑛𝑚
∑

𝑚=1
‖𝑿(𝑚) − 𝑼 (𝑚)𝑽 (𝑚)𝑇

‖

2
𝐹 + 𝛽

𝑛𝑚
∑

𝑚=1

𝑛𝑚
∑

𝑛=1,𝑛≠𝑚
‖𝑽 (𝑚) − 𝑽 (𝑛)

‖

2
𝐹

+
𝛾

2𝑛𝑚

𝑛𝑚
∑

𝑚=1
‖�̂�(𝑚)𝑽 (𝑚) − 𝑽 (𝑚)

‖

2
𝐹 ,

(𝑚) (𝑚)

(10)
4

s.t. 𝑼 ,𝑽 ≥ 0, 𝑚 = 1,… , 𝑛𝑚
where 𝛽 ≥ 0 and 𝛾 ≥ 0 are the balancing parameters, which give
the model greater degrees of freedom. The first term in the opti-
mization problem is multi-view NMF. The second term corresponds to
the pairwise co-regularization, which constrains the similarity between
distinct views. The last term is the centric graph regularization, which
enhances the non-linear properties of the data within the transformed
low-dimensional space while incorporating additional remote node
information to facilitate the model in capturing the spatial structure
more efficiently.

3.2. Problem formulation

Due to the noises in data, sparse representation is needed for
enhancing the robustness of the formulation (10), the optimization
problem is expanded as:

min
𝑼 (𝑚) ,𝑽 (𝑚)

𝑛𝑚
∑

𝑚=1
‖𝑿(𝑚) − 𝑼 (𝑚)𝑽 (𝑚)𝑇

‖2,1 + 𝛽
𝑛𝑚
∑

𝑚=1

𝑛𝑚
∑

𝑛=1,𝑛≠𝑚
‖𝑽 (𝑚) − 𝑽 (𝑛)

‖

2
𝐹

+
𝛾

2𝑛𝑚

𝑛𝑚
∑

𝑚=1
‖�̂�(𝑚)𝑽 (𝑚) − 𝑽 (𝑚)

‖

2
𝐹 ,

s.t. 𝑼 (𝑚),𝑽 (𝑚) ≥ 0, 𝑚 = 1,… , 𝑛𝑚

(11)

where ‖ ⋅ ‖2,1 is the 𝑙2,1 norm in Eq. (5). The 𝑙2,1 norm remains
fixed, ensuring the preservation of spatial information in the examples.
However, optimizing the 𝑙2,1 norm under the non-negativity constraint
presents significant challenges. To facilitate the optimization process,
it commonly further factorizes the data matrix considering noise [45].
In the 𝑚th view, it is factorized into 𝑿(𝑚) = 𝑼 (𝑚)𝑽 (𝑚)𝑇 + 𝑺(𝑚), where
𝑺(𝑚) is a matrix with column-wise sparseness to interpret noise. Based
on the above assumption, a closed-form solution is employed, and the
optimization problem is relaxed as follows:

min
𝑼 (𝑚) ,𝑽 (𝑚) ,𝑺(𝑚)

𝑛𝑚
∑

𝑚=1
‖(𝑿(𝑚) − 𝑺(𝑚)) − 𝑼 (𝑚)𝑽 (𝑚)𝑇

‖

2
𝐹 + 𝛼

𝑛𝑚
∑

𝑚=1
‖𝑺(𝑚)

‖2,1

+ 𝛽
𝑛𝑚
∑

𝑚=1

𝑛𝑚
∑

𝑛=1,𝑛≠𝑚
‖𝑽 (𝑚) − 𝑽 (𝑛)

‖

2
𝐹

+
𝛾

2𝑛𝑚

𝑛𝑚
∑

𝑚=1
‖�̂�(𝑚)𝑽 (𝑚) − 𝑽 (𝑚)

‖

2
𝐹 , s.t. 𝑼 (𝑚),𝑽 (𝑚) ≥ 0, 𝑚 = 1,… , 𝑛𝑚

(12)

where 𝛼 ≥ 0 is a balancing parameter. It can be observed that the
relaxed optimization problem is easier to solve. However, it should
be noted that the 𝑙2,1 norm is computed in a closely related way to
the 𝑙1 norm, which sums the 𝑙2 norm of all columns. Therefore it can
be judged that the column-wise sparse property of 𝑙2,1 norm has the
same problem as the 𝑙1 norm, which means that the regularization
may be less efficient in approximating the real sparsity. Therefore,
𝑙2,𝑙𝑜𝑔-(pseudo) norm is introduced, which enhances the column sparsity
property and better takes into account the noise impact [45]. The log-
norm regularized sparse multi-view NMF model is obtained by utilizing
the 𝑙2,𝑙𝑜𝑔-(pseudo) norm in Eq. (6) to measure the matrix 𝑺(𝑚), and is
formulated as follows:

min
𝑼 (𝑚) ,𝑽 (𝑚) ,𝑺(𝑚)

𝑛𝑚
∑

𝑚=1
‖(𝑿(𝑚) − 𝑺(𝑚)) − 𝑼 (𝑚)𝑽 (𝑚)𝑇

‖

2
𝐹 + 𝛼

𝑛𝑚
∑

𝑚=1
‖𝑺(𝑚)

‖2,𝑙𝑜𝑔

+ 𝛽
𝑛𝑚
∑

𝑚=1

𝑛𝑚
∑

𝑛=1,𝑛≠𝑚
‖𝑽 (𝑚) − 𝑽 (𝑛)

‖

2
𝐹

+
𝛾

2𝑛𝑚

𝑛𝑚
∑

𝑚=1
‖�̂�(𝑚)𝑽 (𝑚) − 𝑽 (𝑚)

‖

2
𝐹 , s.t. 𝑼 (𝑚),𝑽 (𝑚) ≥ 0, 𝑚 = 1,… , 𝑛𝑚.

(13)

Since the log-based approximation is closer to 0 than 𝑙2 norm, the
elements of the 𝑺(𝑚) matrix contain only essentially small values. It
indicates that the matrix 𝑺(𝑚) represents noise and is indeed sparse.
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3.3. The proposed optimization algorithm

In this subsection, the optimization problem of centric graph regu-
larized log-norm sparse NMF for multi-view clustering is addressed.

3.3.1. 𝑺(𝑚) Minimization
In the 𝑚th view, 𝑚 = 1,… , 𝑛𝑚, for the minimization problem of the

atrix 𝑺(𝑚), the sub-problem is

in
𝑺(𝑚)

‖(𝑿(𝑚) − 𝑺(𝑚)) − 𝑼 (𝑚)𝑽 (𝑚)𝑇
‖

2
𝐹 + 𝛼‖𝑺(𝑚)

‖2,𝑙𝑜𝑔 . (14)

According to 𝑙2,𝑙𝑜𝑔 shrinkage operator theorem [45], in the 𝑚th
view, given the matrix 𝑯 (𝑚) = 𝑿(𝑚) − 𝑼 (𝑚)𝑽 (𝑚)𝑇 and the non-negative
parameter 𝜎 = 𝛼

2 , the problem is converted as follows:

in
𝑺(𝑚)

1
2
‖𝑯 (𝑚) − 𝑺(𝑚)

‖

2
𝐹 + 𝜎‖𝑺(𝑚)

‖2,𝑙𝑜𝑔 . (15)

The closed-form solution of 𝒔(𝑚)𝑖 is

𝒔(𝑚)𝑖 =

⎧

⎪

⎨

⎪

⎩

𝜓
‖𝒉(𝑚)𝑖 ‖2

𝒉(𝑚)𝑖 , if𝑓𝑖(𝑚)(𝜓) ≤
1
2‖𝒉

(𝑚)
𝑖 ‖

2
2, (1 + ‖𝒉(𝑚)𝑖 ‖2)2 > 4𝜎, 𝜓 > 0

0, otherwise,

(16)

where 𝑓𝑖(𝑚)(𝑡) = 1
2 (𝑡 − ‖𝒉(𝑚)𝑖 ‖2)2 + 𝜎𝑙𝑜𝑔(1 + 𝑡) and 𝜓 =

‖𝒉(𝑚)𝑖 ‖2−1
2 +

√

(1+‖𝒉(𝑚)𝑖 ‖2)2

4 − 𝜎.

3.3.2. Lagrange function construction
In the optimization problem (13), fixing 𝑺(𝑚), consider 𝑼 (𝑚) and

(𝑚), the associated sub-problem of each view is formulated as follows:

min
𝑼 (𝑚) ,𝑽 (𝑚)

‖(𝑿(𝑚) − 𝑺(𝑚)) − 𝑼 (𝑚)𝑽 (𝑚)𝑇
‖

2
𝐹

+ 𝛽
𝑛𝑚
∑

𝑛=1,𝑛≠𝑚
‖𝑽 (𝑚) − 𝑽 (𝑛)

‖

2
𝐹 +

𝛾
2𝑛𝑚

‖�̂�(𝑚)𝑽 (𝑚) − 𝑽 (𝑚)
‖

2
𝐹 ,

s.t. 𝑼 (𝑚),𝑽 (𝑚) ≥ 0, 𝑚 = 1,… , 𝑛𝑚.

(17)

Previous study has shown that all columns of 𝑿(𝑚) − 𝑺(𝑚) are the
non-negative values, so the matrix 𝑿(𝑚) − 𝑺(𝑚) is non-negative [45].
Therefore, the variables can be updated iteratively using the multi-
plication strategy. Let 𝜹(𝑚) = [𝛿(𝑚)𝑖𝑗 ] and 𝜼(𝑚) = [𝜂(𝑚)𝑖𝑗 ] be the Lagrange
multipliers of constraint 𝑼 (𝑚) ≥ 0 and 𝑽 (𝑚) ≥ 0, respectively. The
following Lagrange function 𝐿 is obtained according to problem (17):

𝐿 = 𝑡𝑟((𝑿(𝑚) − 𝑺(𝑚))(𝑿(𝑚) − 𝑺(𝑚))𝑇 − 2𝑼 (𝑚)𝑽 (𝑚)𝑇 (𝑿(𝑚) − 𝑺(𝑚))𝑇

+ 𝑼 (𝑚)𝑽 (𝑚)𝑇 𝑽 (𝑚)𝑼 (𝑚)𝑇 )

+ 𝛽
𝑛𝑚
∑

𝑛=1,𝑛≠𝑚
𝑡𝑟(𝑽 (𝑛)𝑽 (𝑛)𝑇 − 2𝑽 (𝑛)𝑽 (𝑚)𝑇 + 𝑽 (𝑚)𝑽 (𝑚)𝑇 )

+
𝛾

2𝑛𝑚
𝑡𝑟(�̂�(𝑚)𝑽 (𝑚)𝑽 (𝑚)𝑇 �̂�(𝑚)𝑇

− 2𝑽 (𝑚)𝑽 (𝑚)𝑇 �̂�(𝑚)𝑇 + 𝑽 (𝑚)𝑽 (𝑚)𝑇 ) + 𝑡𝑟(𝜹(𝑚)𝑼 (𝑚)) + 𝑡𝑟(𝜼(𝑚)𝑽 (𝑚)).

(18)

The iterative updating of 𝑼 (𝑚) and 𝑽 (𝑚) is discussed in the subse-
quent parts.

3.3.3. Fix 𝑽 (𝑚) and update 𝑼 (𝑚)

Let the partial derivative of 𝐿 with regard to 𝑼 (𝑚) be 0, gives

𝜹(𝑚) = 2(𝑿(𝑚) − 𝑺(𝑚))𝑽 (𝑚) − 2𝑼 (𝑚)𝑽 (𝑚)𝑇 𝑽 (𝑚). (19)

Following the Karush-Kuhn–Tucker (KKT) condition [51] 𝛿(𝑚)𝑖𝑗 𝑢
(𝑚)
𝑖𝑗 =

0, according to Eq. (19), we have:

(𝑚) (𝑚) (𝑚) (𝑚) (𝑚)𝑇 (𝑚) (𝑚) (20)
5

(2(𝑿 − 𝑺 )𝑽 − 2𝑼 𝑽 𝑽 )𝑢𝑖𝑗 = 0. a
Then we can obtain the updating rule of 𝑢(𝑚)𝑖𝑗 :

𝑢(𝑚)𝑖𝑗 ← 𝑢(𝑚)𝑖𝑗

((𝑿(𝑚) − 𝑺(𝑚))𝑽 (𝑚))𝑖𝑗

(𝑼 (𝑚)𝑽 (𝑚)𝑇 𝑽 (𝑚))𝑖𝑗
. (21)

.3.4. Fix 𝑼 (𝑚) and update 𝑽 (𝑚)

Let the partial derivative of 𝐿 with regard to 𝑽 (𝑚) be 0, it gives that

(𝑚) = 2(𝑿(𝑚) − 𝑺(𝑚))𝑇𝑼 (𝑚) − 2𝑽 (𝑚)𝑼 (𝑚)𝑇 𝑼 (𝑚) + 2𝛽
𝑛𝑚
∑

𝑛=1,𝑛≠𝑚
𝑽 (𝑛)

− 2𝛽(𝑛𝑚 − 1)𝑽 (𝑚) −
𝛾
𝑛𝑚

(�̂�(𝑚)𝑇 �̂�(𝑚)𝑽 (𝑚) − 2�̂�(𝑚)𝑇 𝑽 (𝑚) + 𝑽 (𝑚)).

(22)

Equivalently make 𝜂(𝑚)𝑖𝑗 𝑣
(𝑚)
𝑖𝑗 = 0, the following equation for 𝑣(𝑚)𝑖𝑗 is

btained:

2(𝑿(𝑚) − 𝑺(𝑚))𝑇𝑼 (𝑚) − 2𝑽 (𝑚)𝑼 (𝑚)𝑇 𝑼 (𝑚) + 2𝛽
𝑛𝑚
∑

𝑛=1,𝑛≠𝑚
𝑽 (𝑛)

− 2𝛽(𝑛𝑚 − 1)𝑽 (𝑚) −
𝛾
𝑛𝑚

(�̂�(𝑚)𝑇 �̂�(𝑚)𝑽 (𝑚) − 2�̂�(𝑚)𝑇 𝑽 (𝑚) + 𝑽 (𝑚)))𝑣(𝑚)𝑖𝑗 = 0.

(23)

The following updating rule is derived:

𝑣(𝑚)𝑖𝑗 ← 𝑣(𝑚)𝑖𝑗

((𝑿(𝑚) − 𝑺 (𝑚))𝑇𝑼 (𝑚) + 𝛽
∑𝑛𝑚
𝑛=1,𝑛≠𝑚 𝑽

(𝑛) + 𝛾
𝑛𝑚
�̂�(𝑚)𝑇 𝑽 (𝑚))𝑖𝑗

(𝑽 (𝑚)𝑼 (𝑚)𝑇𝑼 (𝑚) + 𝛽(𝑛𝑚 − 1)𝑽 (𝑚) + 𝛾
2𝑛𝑚

(�̂�(𝑚)𝑇 �̂�(𝑚)𝑽 (𝑚) + 𝑽 (𝑚)))𝑖𝑗
.

(24)

Algorithm 1 summarizes the optimization process with the con-
vergence condition defined as 𝑖𝑡𝑒𝑟 ≤ 𝑘𝑚𝑎𝑥, where 𝑖𝑡𝑒𝑟 represents the
number of iterations, and 𝑘𝑚𝑎𝑥 is the maximum allowed number of
iterations.

Algorithm 1 The description of the proposed multi-view clustering
algorithm.
Input:

Multi-view datasets 𝑿(1),𝑿(2), ...,𝑿(𝑛𝑚).
Balancing parameters 𝛼, 𝛽, 𝛾.
Maximum iteration 𝑘𝑚𝑎𝑥.

1: for 𝑚 = 1 to 𝑛𝑚 do
2: Normalize 𝑿(𝑚).
3: Initialize 𝑼 (𝑚), 𝑽 (𝑚), 𝑺(𝑚).
4: end for
5: while 𝑖𝑡𝑒𝑟 ≤ 𝑘𝑚𝑎𝑥 do
6: for 𝑚 = 1 to 𝑛𝑚 do
7: Fix 𝑽 (𝑚), update 𝑼 (𝑚) by Eq. (21).
8: Fix 𝑼 (𝑚), update 𝑽 (𝑚) by Eq. (24).
9: end for
0: end while
1: Calculate the consensus coefficient matrix by 𝑽 ∗ =

∑𝑛𝑚
𝑚=1 𝑽

(𝑚)

𝑛𝑚
.

Output:
Consensus coefficient matrix 𝑽 ∗. Execute 𝐾-means on 𝑽 ∗ to

accomplish clustering.

3.4. Convergence analysis

In (17), the second and third terms relate only to 𝑽 (𝑚). Moreover, it
s known that 𝑿(𝑚)−𝑺(𝑚) is non-negative if the initial values of 𝑼 (𝑚) and
(𝑚) are non-negative. Therefore, the update formula for 𝑼 (𝑚) is treated

n the method the same as in [46] by replacing 𝑿(𝑚) with 𝑿(𝑚) − 𝑺(𝑚).
ow it needs to display that the objective function of (17) is non-

ncreasing under the updating rule (24). Following the proof in [46],
n auxiliary function is firstly defined as follows:
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Definition 1. If the functions 𝐺(𝑣, 𝑣𝑡) and 𝐹 (𝑣) satisfy the following
conditions:

𝐺(𝑣, 𝑣𝑡) ≥ 𝐹 (𝑣), 𝐺(𝑣, 𝑣) = 𝐹 (𝑣), (25)

𝐺(𝑣, 𝑣𝑡) is an auxiliary function of 𝐹 (𝑣).

Lemma 1. If 𝐺(𝑣, 𝑣𝑡) is an auxiliary function of 𝐹 (𝑣), optimize the variable
𝑣 according to the following rule:

𝑣𝑡+1 = 𝑎𝑟𝑔min
𝑣
𝐺(𝑣, 𝑣𝑡), (26)

𝐹 (𝑣) is non-increasing after each update.

Proof. The proof can be easily verified via following inequalities:

𝐹 (𝑣𝑡+1) ≤ 𝐺(𝑣𝑡+1, 𝑣𝑡) ≤ 𝐺(𝑣𝑡, 𝑣𝑡) = 𝐹 (𝑣𝑡). (27)

The next step is to construct a suitable auxiliary function such that
the updating rule in (24) is equivalent to the update step in (26).
The objective function of problem (17) is expressed in the following
component form:

𝑂𝑚 = ‖(𝑿(𝑚) − 𝑺(𝑚)) − 𝑼 (𝑚)𝑽 (𝑚)𝑇
‖

2
𝐹 + 𝛽

𝑛𝑚
∑

𝑛=1,𝑛≠𝑚
‖𝑽 (𝑚) − 𝑽 (𝑛)

‖

2
𝐹

+
𝛾

2𝑛𝑚
‖�̂�(𝑚)𝑽 (𝑚) − 𝑽 (𝑚)

‖

2
𝐹

=
𝑝(𝑚)
∑

𝑖=1

𝑞
∑

𝑗=1
(𝑥(𝑚)𝑖𝑗 − 𝑠(𝑚)𝑖𝑗 −

𝑟
∑

𝑘=1
𝑢(𝑚)𝑖𝑘 𝑣

(𝑚)
𝑘𝑗 )

2 + 𝛽
𝑛𝑚
∑

𝑛=1,𝑛≠𝑚

𝑞
∑

𝑗=1

𝑟
∑

𝑘=1
(𝑣(𝑚)𝑗𝑘 − 𝑣(𝑛)𝑗𝑘 )

2

+
𝛾

2𝑛𝑚

𝑞
∑

𝑗=1

𝑟
∑

𝑘=1
(�̂�(𝑚)𝑗𝑗 𝑣

(𝑚)
𝑗𝑘 − 𝑣(𝑚)𝑗𝑘 )2.

(28)

Given an element 𝑣(𝑚)𝑎𝑏 in 𝑽 (𝑚), 𝐹 (𝑚)
𝑎𝑏 represents the part of Eq. (28)

that is only relevant to 𝑣(𝑚)𝑎𝑏 . The first and second order derivatives of
𝐹 (𝑚)
𝑎𝑏 with respect to 𝑣(𝑚)𝑎𝑏 can be obtained directly:

𝐹𝑎𝑏
′ = (

𝜕𝑂𝑚
𝜕𝑽 (𝑚)

)𝑎𝑏 = (−2(𝑿(𝑚) − 𝑺(𝑚))𝑇𝑼 (𝑚) + 2𝑽 (𝑚)𝑼 (𝑚)𝑇 𝑼 (𝑚))𝑎𝑏

+ 2𝛽((𝑛𝑚 − 1)𝑽 (𝑚) −
𝑛𝑚
∑

𝑛=1,𝑛≠𝑚
𝑽 (𝑛))𝑎𝑏 +

𝛾
𝑛𝑚

(�̂�(𝑚)𝑇 �̂�(𝑚)𝑽 (𝑚)

− 2�̂�(𝑚)𝑇 𝑽 (𝑚) + 𝑽 (𝑚))𝑎𝑏,

(29)

𝐹 ′′
𝑎𝑏 = (

𝜕𝐹𝑎𝑏(𝑚)
′

𝜕𝑽 (𝑚)
)𝑎𝑏 = (2𝑼 (𝑚)𝑇 𝑼 (𝑚))𝑏𝑏 + (2𝛽(𝑛𝑚 − 1) +

𝛾
𝑛𝑚

)𝐼𝑏𝑏

+
𝛾
𝑛𝑚

(�̂�(𝑚)𝑇 �̂�(𝑚) − 2�̂�(𝑚)𝑇 )𝑎𝑎.
(30)

As the updates are element-wise, it is adequate to establish that 𝐹 (𝑚)
𝑎𝑏

emains non-increasing under the updating rule presented in (24).

emma 2. The function

(𝑣(𝑚), 𝑣(𝑚)𝑎𝑏
𝑡
) = 𝐹𝑎𝑏(𝑣

(𝑚)
𝑎𝑏

𝑡
) + 𝐹 ′

𝑎𝑏(𝑣
(𝑚)
𝑎𝑏

𝑡
)(𝑣(𝑚) − 𝑣(𝑚)𝑎𝑏

𝑡
)

+
(𝑽 (𝑚)𝑼 (𝑚)𝑇 𝑼 (𝑚))𝑎𝑏 + (𝛽(𝑛𝑚 − 1) + 𝛾

2𝑛𝑚
)𝑽 (𝑚)

𝑎𝑏 + 𝛾
2𝑛𝑚

(�̂�(𝑚)𝑇 �̂�(𝑚)𝑽 (𝑚))𝑎𝑏

𝑣(𝑚)𝑎𝑏
𝑡

× (𝑣(𝑚) − 𝑣(𝑚)𝑎𝑏
𝑡
)2

(31)

s an auxiliary function of 𝐹𝑎𝑏.

roof. It is obvious that 𝐺(𝑣(𝑚), 𝑣(𝑚)) = 𝐹𝑎𝑏(𝑣(𝑚)), therefore it is only
necessary to prove that 𝐺(𝑣(𝑚), 𝑣(𝑚)𝑡 ) ≥ 𝐹𝑎𝑏(𝑣(𝑚)). And the Taylor series
expansion of 𝐹𝑎𝑏(𝑣(𝑚)) is

(𝑚) (𝑚)𝑡 ′ (𝑚) (𝑚)𝑡 ′′ (𝑚) (𝑚)𝑡 2
6

𝐹𝑎𝑏(𝑣 ) = 𝐹𝑎𝑏(𝑣𝑎𝑏 ) + 𝐹𝑎𝑏(𝑣 − 𝑣𝑎𝑏 ) + 𝐹𝑎𝑏(𝑣 − 𝑣𝑎𝑏 ) . (32) a
Take Eqs. (29) and (30) into (32), the proving of 𝐺(𝑣(𝑚), 𝑣(𝑚)𝑡 ) ≥
𝐹𝑎𝑏(𝑣(𝑚)) can be reformulated as the demonstration of the following
inequality

(𝑽 (𝑚)𝑼 (𝑚)𝑇 𝑼 (𝑚))𝑎𝑏 + (𝛽(𝑛𝑚 − 1) + 𝛾
2𝑛𝑚

)𝑽 (𝑚)
𝑎𝑏 + 𝛾

2𝑛𝑚
(�̂�(𝑚)𝑇 �̂�(𝑚)𝑽 (𝑚))𝑎𝑏

𝑣(𝑚)𝑎𝑏
𝑡

(𝑼 (𝑚)𝑇 𝑼 (𝑚))𝑏𝑏 + (𝛽(𝑛𝑚 − 1) +
𝛾

2𝑛𝑚
)𝐼𝑏𝑏 +

𝛾
2𝑛𝑚

(�̂�(𝑚)𝑇 �̂�(𝑚) − 2�̂�(𝑚)𝑇 )𝑎𝑎.

(33)

Since we have

(𝑽 (𝑚)𝑼 (𝑚)𝑇 𝑼 (𝑚))𝑎𝑏 =
𝑟
∑

𝑘=1
𝑣(𝑚)𝑎𝑘

𝑡
(𝑼 (𝑚)𝑇 𝑼 (𝑚))𝑘𝑏 ≥ 𝑣(𝑚)𝑎𝑏

𝑡
(𝑼 (𝑚)𝑇 𝑼 (𝑚))𝑏𝑏, (34)

𝛽(𝑛𝑚 − 1) +
𝛾

2𝑛𝑚
)𝑽 (𝑚)

𝑎𝑏 = (𝛽(𝑛𝑚 − 1) +
𝛾

2𝑛𝑚
)
𝑞
∑

𝑗=1
𝑣(𝑚)𝑎𝑗

𝑡
𝐼𝑗𝑏

≥ 𝑣(𝑚)𝑎𝑏
𝑡
(𝛽(𝑛𝑚 − 1) +

𝛾
2𝑛𝑚

)𝐼𝑏𝑏

(35)

nd

𝛾
2𝑛𝑚

(�̂�(𝑚)𝑇 �̂�(𝑚)𝑽 (𝑚))𝑎𝑏 =
𝛾

2𝑛𝑚

𝑞
∑

𝑗=1
(�̂�(𝑚)𝑇 �̂�(𝑚))𝑎𝑗𝑣

(𝑚)
𝑗𝑏

𝑡

≥ 𝛾
2𝑛𝑚

(�̂�(𝑚)𝑇 �̂�(𝑚))𝑎𝑎𝑣
(𝑚)
𝑎𝑏

𝑡
≥ 𝛾

2𝑛𝑚
(�̂�(𝑚)𝑇 �̂�(𝑚) − 2�̂�(𝑚)𝑇 )𝑎𝑎𝑣

(𝑚)
𝑎𝑏

𝑡
.

(36)

Therefore, Eq. (33) holds, which leads to 𝐺(𝑣(𝑚), 𝑣(𝑚)𝑡 ) ≥ 𝐹𝑎𝑏(𝑣(𝑚)).

heorem 1. The objective function of (17) is non-increasing under the
pdating rule (24).

roof. Replacing 𝐺(𝑣(𝑚), 𝑣(𝑚)𝑎𝑏
𝑡
) in Eq. (26) by Eq. (31), resulting in the

terative updating rule (see Eq. (37) in Box I).

This is essentially the updating rule of Eq. (24). As Eq. (31) is
n auxiliary function of 𝐹𝑎𝑏(𝑣(𝑚)), according to Lemma 1, it can be
oncluded that 𝐹𝑎𝑏(𝑣(𝑚)) is non-increasing under Eq. (24). Combining
he previous discussions about updating 𝑼 (𝑚), it is evident that the
roposed algorithm ensures the non-increasing change of objective
unction in problem (17).

.5. Computational complexity analysis

This subsection discusses the computational complexity of the pro-
osed model. The main computational cost of the model lies in the
terative updates of 𝑼 (𝑚) and 𝑽 (𝑚), where 𝑚 = 1, 2,… , 𝑛𝑚. The es-
ential step involves solving the optimization problem in (21), which
s performed for each column of 𝑼 (𝑚). The computational cost of the
pdating rule (21) is 𝑂(𝑝(𝑚)𝑞), resulting in a total cost of 𝑂(𝑟𝑝(𝑚)𝑞) for
(𝑚). Similarly, the computational cost of 𝑽 (𝑚) is 𝑂(𝑟𝑝(𝑚)𝑞).

In conclusion, the computational cost of optimizing the 𝑚th view
bjective function is 𝑂(𝑟𝑝(𝑚)𝑞) in combination with 𝑼 (𝑚) and 𝑽 (𝑚).
herefore, the total computational complexity of the proposed model

n all views is 𝑂(𝑟𝑛𝑚𝑝𝑞), where 𝑝 = 𝑚𝑎𝑥{𝑝(1), 𝑝(2),… , 𝑝(𝑛𝑚)}.

. Experimental results

Extensive experiments are provided in this section to substantiate
he effectiveness of the proposed method. The datasets and codes are
vailable at https://github.com/dyz200219/CRLSNMF.

.1. Description of datasets

The experiments utilize eight real-world datasets. These benchmark
atasets serve as the basis for evaluating the method’s performance,
nd the summary of eight datasets is presented in Table 1.

https://github.com/dyz200219/CRLSNMF
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.

(37)

Box I.
Table 1
The summary eight datasets.

Dataset Instances(N) Views(P) Cluster(C)

Yale 165 3 15
3Sources 169 3 6
BBCSport 544 2 5
Wisconsin 265 2 5
Handwritten 2000 5 10
20NewsGroups 500 3 5
Caltech20 2386 5 20
Scene 2688 3 8

∙ Yale1: The dataset consists of 165 black and white facial im-
ages representing 15 distinct individuals, resulting in 15 different
clusters. It contains facial features captured from three distinct
perspectives.

∙ 3Sources2: The data comes from three different news sources,
reporting a total of 169 stories. The stories are categorized into
six subject tags.

∙ BBCSport3: The dataset consists of 544 documents fetched from
websites, and each document is divided into two parts. The
subject of each news item is assigned to one of five topic tags,
resulting in five different clusters.

∙ Wisconsin4: The dataset consists of 265 web documents catego-
rized into five groups. Each document is expressed by two feature
bags.

∙ Handwritten5: The dataset contains 2000 instances of decimal
numbers from 0 to 9, resulting in 10 different clusters. The data
encompasses feature information from five different aspects.

∙ 20NewsGroups6: This is a multi-view dataset of newsgroups,
consisting of three views. Each view contains 500 instances,
which are divided into five clusters.

∙ Caltech207: The dataset contains 2386 images of objects belong-
ing to 20 classes. All images are described using five types of
features, which are Gabor, CENTRIST, HOG, GIST and LBP.

∙ Scene8: The dataset comprises 2688 images, divided into eight
groups. For each image, three different feature vectors are used,
including GIST, color moment, and HOG.

4.2. Compared methods

The proposed method is compared with the following state-of-the-
art clustering methods to demonstrate its effectiveness.

1 https://cvc.yale.edu/projects/yalefaces/yalefaces.html.
2 http://mlg.ucd.ie/datasets/3sources.html.
3 https://mlg.ucd.ie/datasets/segment.html.
4 https://lig-membres.imag.fr/grimal/data.html.
5 http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
6 https://lig-membres.imag.fr/grimal/data.html.
7 https://github.com/sudalvxin/2019-PR-Sparse-Multi-view-clustering/

ree/master/Data.
8

7

https://github.com/sudalvxin/SMSC/tree/master/data.
∙ NMF [46]: The standard NMF achieves dimensionality reduction
of the original matrix by seeking two non-negative matrices, re-
sulting in a reduced-dimensional matrix of data features. Perform
NMF on each view of the dataset and record the best results as
the final experimental outcomes.

∙ CoRegSPC9 [11]: This method makes different views appear to
have a common consensus by normalizing their view-specific fea-
ture vectors. The graph Laplacian operators of all views are also
combined so that each Laplacian produces a close to consistent
underlying structure. We set the range for the weight parameter
from 0.01 to 0.05, with an interval of 0.01.

∙ GNMF10 [52]: GNMF is an improved model based on NMF that
constructs an affine graph to encode geometric information in
pursuit of matrix factorization with graph structure constraints.
Execute GNMF on each view of the dataset, where the balancing
parameter is selected from {10−3, 10−2, 10−1, 1, 10, 102, 103}, and
record the best results as the final results.

∙ MVKKM [53]: The method executes the multi-view clustering
task through unsupervised multi-kernel learning. It assigns differ-
ent weights to each view’s kernel matrix according to the view
quality. According to the original paper, the value of parameter
𝑝 is chosen from the set {1, 1.3, 1.5, 2, 4, 6}.

∙ MultiNMF11 [23]: This is a manifold-based multi-view NMF
method that explores the correlation among internal views and
incorporates local graph regularization. Therefore, MultiNMF in-
tegrates the local geometric information for each view. In each
view, the regularization parameter is set to 0.01, which is the
parameter value recommended in the original paper.

∙ RMKMC12 [54]: RMKMC extends the traditional 𝐾-means clus-
tering to a robust multi-view 𝐾-means clustering. It integrates
heterogeneous representations of large-scale data. The parameter
𝛾 can be configured, and according to the original paper, log10 𝛾
varies within the range of 0.1 to 2 with an incremental step of
0.2.

∙ DiNMF [27]: The purpose of DiNMF is to enhance the diversity
of data. It explores the diversity from different views and reduces
redundancy between multi-view representations. Additionally, it
makes the learning process in a linear execution time. For param-
eters 𝛼 and 𝛽, values are chosen from {10−4, 10−3, 10−2, 10−1, 1, 10,
102, 103} for each parameter.

∙ AMvDMD13 [20]: This method unveils the hierarchical semantics
in data through a layered approach and captures hidden repre-
sentations of distinct attributes. Consequently, it generates a new
deep multi-view clustering model. We conduct experiments using
the layer sizes as set in the original paper and record the best
experimental results.

9 https://sites.google.com/site/feipingnie/publications.
10 http://www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html.
11 http://jialu.info/.
12 https://sites.google.com/site/feipingnie/publications.
13
 https://github.com/huangsd/DeepMVC.

https://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://mlg.ucd.ie/datasets/3sources.html
https://mlg.ucd.ie/datasets/segment.html
https://lig-membres.imag.fr/grimal/data.html
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://lig-membres.imag.fr/grimal/data.html
https://github.com/sudalvxin/2019-PR-Sparse-Multi-view-clustering/tree/master/Data
https://github.com/sudalvxin/2019-PR-Sparse-Multi-view-clustering/tree/master/Data
https://github.com/sudalvxin/SMSC/tree/master/data
https://sites.google.com/site/feipingnie/publications
http://www.cad.zju.edu.cn/home/dengcai/Data/GNMF.html
http://jialu.info/
https://sites.google.com/site/feipingnie/publications
https://github.com/huangsd/DeepMVC
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Table 2
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on Yale (%).

Method ACC NMI Purity

NMF 50.18(3.97) 53.39(3.15) 51.58(3.49)
CoRegSPC 60.24(5.61) 63.75(4.31) 61.58(5.41)
GNMF 46.85(2.37) 52.33(2.07) 48.18(2.56)
MVKKM 58.18(0.00) 61.99(0.00) 60.00(0.00)
MultiNMF 59.64(1.65) 61.97(1.40) 59.64(1.65)
RMKMC 44.61(4.01) 50.67(3.64) 45.70(3.88)
DiNMF 59.21(3.23) 61.72(2.87) 59.39(3.26)
AMvDMD 43.76(5.68) 48.93(5.73) 45.39(4.59)
DMFPA 56.42(6.33) 61.04(4.37) 57.52(5.65)
Ours 64.36(3.54) 65.88(3.01) 64.85(3.37)

Table 3
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on 3Sources (%).

Method ACC NMI Purity

NMF 59.05(3.84) 54.25(2.34) 74.02(0.76)
CoRegSPC 55.86(3.65) 50.74(1.88) 69.76(1.56)
GNMF 58.17(3.83) 51.73(2.74) 72.25(1.54)
MVKKM 35.50(0.00) 6.58(0.00) 39.05(0.00)
MultiNMF 50.36(3.53) 45.99(2.34) 61.18(2.54)
RMKMC 46.75(6.82) 32.59(6.00) 59.11(3.38)
DiNMF 54.97(6.78) 49.40(4.81) 68.34(4.13)
AMvDMD 56.75(9.67) 35.96(15.52) 60.53(9.70)
DMFPA 56.33(2.10) 55.81(3.11) 75.27(2.57)
Ours 76.92(5.37) 66.62(4.91) 81.83(3.14)

Table 4
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on BBCSport (%).

Method ACC NMI Purity

NMF 66.08(6.48) 48.16(5.71) 70.57(2.90)
CoRegSPC 48.92(1.97) 28.33(1.37) 52.39(0.61)
GNMF 72.21(2.65) 54.71(2.26) 75.62(2.52)
MVKKM 35.66(0.00) 1.23(0.00) 36.21(0.00)
MultiNMF 62.94(7.48) 45.43(3.91) 67.32(4.14)
RMKMC 65.13(6.03) 53.79(6.25) 70.96(4.88)
DiNMF 70.22(5.95) 53.74(4.82) 72.96(4.81)
AMvDMD 56.36(9.39) 41.95(9.11) 63.46(6.49)
DMFPA 56.89(1.63) 39.71(0.58) 63.36(1.36)
Ours 78.03(3.69) 63.28(2.34) 79.08(1.68)

∙ DMFPA14 [25]: The method employs deep matrix factorization
to gain the partition representation for each view and combines
it with the optimal partition representation to achieve partition
alignment. The parameters are set according to the original paper.

To perform a comprehensive assessment, three distinct evaluation
etrics are employed: accuracy (ACC), normalized mutual information

NMI) and Purity. The detailed definitions for these metrics are given
n [45]. Higher values for all three metrics indicate better clustering
erformance. By using different measurements, various aspects of the
lustering performance are evaluated, allowing for a comprehensive
ssessment. Each comparison experiment is performed 10 times, and
he mean values and standard deviations are recorded.

.3. Comparison of clustering performance

Tables 2 to 9 present the clustering performance measured in terms
f ACC, NMI, and Purity. The bold values indicate the best performance
mong the 10 advanced approaches. Through comparison, it can be
bserved that the proposed method is competitive among a series of
dvanced methods and outperforms other comparative methods in most

14 https://github.com/zhangchen234/MVC-DMF-PA.
8

Table 5
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on Wisconsin (%).

Method ACC NMI Purity

NMF 56.83(3.68) 35.83(4.47) 72.26(3.70)
CoRegSPC 55.36(2.55) 33.28(3.74) 71.70(2.55)
GNMF 57.32(1.20) 42.64(1.64) 74.08(1.31)
MVKKM 52.45(0.00) 13.45(0.00) 54.72(0.00)
MultiNMF 46.91(1.87) 11.48(3.55) 53.13(1.12)
RMKMC 45.21(4.69) 16.93(2.53) 60.38(2.97)
DiNMF 47.74(5.85) 18.67(6.93) 58.68(4.26)
AMvDMD 45.55(4.85) 16.08(6.41) 56.11(6.51)
DMFPA 44.79(0.84) 1.09(0.59) 46.19(0.48)
Ours 60.60(1.84) 42.45(3.42) 75.92(2.64)

Table 6
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on Handwritten (%).

Method ACC NMI Purity

NMF 68.57(5.74) 62.53(4.77) 70.66(4.59)
CoRegSPC 74.00(5.18) 70.36(2.57) 75.18(4.36)
GNMF 85.63(8.29) 82.69(5.10) 87.18(6.53)
MVKKM 73.15(0.00) 68.31(0.00) 73.15(0.00)
MultiNMF 79.02(4.37) 70.95(2.51) 79.38(3.73)
RMKMC 74.65(4.16) 72.98(2.93) 77.72(3.41)
DiNMF 71.35(4.84) 65.19(3.30) 72.07(4.46)
AMvDMD 79.57(7.46) 75.30(3.73) 80.70(5.39)
DMFPA 69.04(3.85) 64.06(1.43) 70.21(2.12)
Ours 93.22(0.57) 86.96(0.91) 93.22(0.57)

Table 7
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on 20NewsGroups (%).

Method ACC NMI Purity

NMF 60.48(6.47) 42.54(2.71) 61.68(5.62)
CoRegSPC 28.22(3.33) 4.85(2.47) 29.16(3.76)
GNMF 58.50(4.19) 38.37(2.42) 58.66(3.88)
MVKKM 21.00(0.00) 1.03(0.00) 21.00(0.00)
MultiNMF 23.40(1.48) 3.37(1.38) 23.92(1.73)
RMKMC 41.04(6.93) 15.32(6.30) 42.10(6.81)
DiNMF 52.66(10.08) 37.94(9.08) 55.54(8.75)
AMvDMD 39.60(7.38) 28.75(11.42) 40.58(8.02)
DMFPA 40.38(3.28) 17.32(3.69) 41.16(3.37)
Ours 81.88(5.68) 65.67(4.33) 81.92(5.56)

Table 8
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on Caltech20 (%).

Method ACC NMI Purity

NMF 36.70(1.65) 46.37(0.57) 69.58(0.80)
CoRegSPC 35.57(2.03) 41.09(0.66) 65.27(0.72)
GNMF 36.65(1.87) 39.42(0.91) 62.20(1.98)
MVKKM 40.53(0.00) 53.07(0.00) 74.43(0.00)
MultiNMF 37.26(1.93) 46.45(1.79) 69.91(1.30)
RMKMC 41.58(4.12) 45.18(2.61) 66.27(1.96)
DiNMF 33.09(1.93) 42.38(1.73) 67.92(1.35)
AMvDMD 41.04(2.92) 50.49(1.56) 71.75(2.10)
DMFPA 35.93(2.91) 15.66(4.70) 45.69(3.40)
Ours 46.24(3.33) 53.78(1.35) 73.90(1.55)

cases. Based on the information presented in these tables, the following
conclusions can be drawn.

∙ As shown in Table 3, on the 3Sources, the improvement of the
method over the second best method is about 17.87%, 12.37%,
and 7.81% for ACC, NMI, and Purity, respectively. In Table 7, on
the 20NewsGroups, the improvement is about 21.40%, 23.13%,
and 20.24%. Despite a 0.19% decrease in NMI on the Wisconsin
dataset and a 0.53% decrease in Purity on the Caltech20 dataset
compared to the second best methods, the differences are small,

https://github.com/zhangchen234/MVC-DMF-PA
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Fig. 3. The proposed method and DiNMF use t-SNE [55] on 3Sources, BBCSport, Handwritten and 20NewsGroups. In each subfigure, the left part shows the effect of DiNMF
visualized using t-SNE, and the right part shows the visualization of the proposed method. Different clusters for each dataset are indicated by different colors.
Table 9
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on Scene (%).

Method ACC NMI Purity

NMF 61.54(0.95) 44.90(0.88) 61.54(0.95)
CoRegSPC 64.04(1.08) 49.62(0.60) 64.14(0.99)
GNMF 41.03(2.22) 32.76(0.55) 44.90(2.03)
MVKKM 57.92(0.00) 45.26(0.00) 57.92(0.00)
MultiNMF 59.23(6.80) 46.54(3.25) 60.52(5.08)
RMKMC 48.31(5.22) 37.33(3.94) 50.41(4.57)
DiNMF 51.63(2.47) 39.27(1.29) 53.87(2.02)
AMvDMD 57.50(6.33) 45.65(3.40) 58.65(5.06)
DMFPA 52.93(1.45) 40.10(0.86) 56.48(1.41)
Ours 67.23(2.24) 50.34(1.89) 67.23(2.24)

and the other two metrics remain the best results as well. Over-
all, the proposed model generally outperforms the comparison
methods.

∙ By comparing with the CoRegSPC and GNMF methods, which
as well use graph regularization, evidently the proposed method
demonstrates the best overall performance across all metrics. This
indicates that the innovative utilization of the graph regulariza-
tion variant, centric graph regularization, actually provides more
valid information.

∙ On the majority of datasets, the proposed method outperforms
other comparative approaches, providing evidence for the supe-
riority of log-based regularization. In contrast to the Frobenius
norm employed by most methods, after the novel and meaningful
log-based sparse representation of the original objective function,
a more part-based representation is obtained, which is of practical
interest for NMF.

In addition, a two-sample t-test is used to determine if the proposed
method significantly outperforms other clustering methods [56]. When
significance level is set at 5%, the null hypothesis states that ‘there is
no difference between the proposed method and other methods’, while
the alternative hypothesis posits that ‘the proposed method is superior
to other methods’. The statistical test results for ACC, NMI, and Purity
are displayed in Tables 10 to 12, respectively.

From Table 10, it can be observed that there is no significant differ-
ence between the proposed method and CoRegSPC on the Yale dataset.
However, apart from this case, the 𝑝-values between the proposed
method and each compared method are all less than 0.05, indicating
that the proposed method achieves higher accuracy on these eight
9

datasets. In Table 11, the NMI of the proposed method is lower than
CoRegSPC on the Wisconsin dataset. Nevertheless, in most cases, the
proposed method obtains higher NMI compared to the state-of-the-art
methods. In Table 12, except for cases where there is no significant
difference with specific comparison methods on the Yale, Wisconsin,
and Caltech20 datasets, the proposed method achieves superior Purity
in most cases.

4.4. Experiments of robustness

In this subsection, the proposed method is further evaluated on
datasets with Gaussian and Poisson noise. Specifically, all methods
are tested under different noise levels on the BBCSport dataset. Re-
garding the synthetic noise dataset for BBCSport, here is the provided
information.

∙ BBCSportG1: This is a synthetic dataset where Gaussian noise
with a mean of 0 and a variance of 0.005 is incorporated into
each view of the original BBCSport dataset.

∙ BBCSportG2: This dataset introduces Gaussian noise to the origi-
nal BBCSport. In this dataset, the Gaussian noise has an intensity
characterized by a mean of 0 and a variance of 0.01.

∙ BBCSportG3: This dataset similarly incorporates Gaussian noise
into the original BBCSport, with the Gaussian noise intensity
characterized by a mean of 0 and a variance of 0.015.

∙ BBCSportP: This is a synthetic dataset where Poisson noise is
added to each view of the original BBCSport dataset using func-
tions from the MATLAB toolbox.

Tables 13 to 16 respectively provide the experimental results for
four synthetic noise datasets. For four different types of noise, the
proposed method exhibits better performance compared to the other
methods. It can be observed that the proposed method is less affected
by both Gaussian and Poisson noise. With increasing Gaussian noise,
the performance of all methods generally decreases, confirming the
adverse effects of noise. However, the proposed method is relatively
less affected by the increase in noise. Therefore, the experiments on
the four noise-inclusive datasets validate the robustness of the proposed
method.

4.5. Visualization of the evolution of 𝑽 (𝑚)

To demonstrate the effectiveness of the coefficient matrix 𝑽 (𝑚),
(𝑚)
where 𝑚 = 1, 2,… , 𝑛𝑚, the coefficient matrix 𝑽 is visualized to



Signal Processing 217 (2024) 109341Y. Dong et al.
Table 10
𝑃 -values of comparisons between the proposed method and other clustering methods in terms of ACC.

Comparisons Datasets

Yale 3Sources BBCSport Wisconsin Handwritten 20NewsGroups Caltech20 Scene

NMF 1.15e−07 9.31e−08 1.61e−04 1.22e−02 2.30e−07 3.13e−07 1.98e−07 3.24e−05
CoRegSPC 6.52e−02 6.05e−09 1.80e−14 7.55e−13 7.93e−07 1.16e−15 7.97e−08 7.37e−04
GNMF 8.08e−10 4.45e−08 7.39e−04 1.69e−04 1.78e−02 4.34e−09 2.75e−07 8.48e−16
MVKKM 3.72e−04 1.57e−09 4.48e−11 2.05e−07 1.91e−15 8.34e−11 4.21e−04 3.56e−07
MultiNMF 2.18e−03 1.27e−10 2.00e−05 2.64e−12 2.36e−06 3.37e−17 7.65e−07 4.70e−03
RMKMC 7.87e−10 2.05e−09 1.81e−05 1.49e−08 1.42e−07 2.49e−11 1.23e−02 1.76e−07
DiNMF 3.22e−03 2.34e−07 3.02e−03 4.12e−05 1.37e−07 2.51e−07 2.70e−09 1.62e−11
AMvDMD 1.34e−08 1.82e−05 2.18e−05 1.21e−06 2.57e−04 2.68e−11 1.61e−03 7.41e−04
DMFPA 2.78e−03 1.22e−07 2.37e−12 5.06e−12 5.96e−09 9.49e−14 7.68e−07 1.64e−12
Table 11
𝑃 -values of comparisons between the proposed method and other clustering methods in terms of NMI.

Comparisons Datasets

Yale 3Sources BBCSport Wisconsin Handwritten 20NewsGroups Caltech20 Scene

NMF 3.95e−08 7.41e−06 5.38e−06 1.55e−03 3.03e−08 2.76e−11 1.67e−09 3.02e−02
CoRegSPC 2.16e−01 7.82e−07 2.20e−16 1.99e−05 5.88e−10 9.17e−19 6.44e−16 2.74e−01
GNMF 7.36e−10 1.26e−07 1.40e−07 8.77e−01 2.70e−02 1.05e−12 3.02e−16 3.10e−11
MVKKM 2.76e−03 2.57e−11 2.50e−14 6.68e−10 2.44e−13 4.27e−12 1.33e−01 1.37e−05
MultiNMF 2.69e−03 5.07e−10 3.08e−10 1.07e−13 6.13e−10 1.14e−19 5.47e−09 4.96e−03
RMKMC 6.88e−09 4.7e−11 8.23e−04 2.34e−13 2.34e−08 4.78e−14 2.95e−08 2.24e−08
DiNMF 5.42e−03 2.83e−07 2.43e−05 2.28e−07 1.22e−09 7.03e−08 2.92e−12 9.32e−12
AMvDMD 1.51e−07 1.03e−04 2.75e−05 2.03e−08 2.18e−06 7.99e−07 8.64e−05 1.87e−03
DMFPA 9.90e−03 1.44e−05 2.44e−11 1.05e−11 1.53e−19 5.54e−16 1.29e−10 6.81e−12
Table 12
𝑃 -values of comparisons between the proposed method and other clustering methods in terms of Purity.

Comparisons Datasets

Yale 3Sources BBCSport Wisconsin Handwritten 20NewsGroups Caltech20 Scene

NMF 7.92e−08 1.72e−05 1.08e−06 2.02e−02 6.33e−08 2.06e−07 2.29e−06 2.41e−07
CoRegSPC 1.22e−01 5.87e−08 2.54e−20 1.85e−03 2.84e−07 2.18e−15 9.09e−10 8.75e−04
GNMF 2.75e−10 8.89e−07 2.01e−03 6.24e−02 1.69e−02 2.51e−09 1.78e−11 6.47e−15
MVKKM 1.38e−03 9.87e−12 3.53e−14 1.08e−09 1.91e−15 6.84e−11 3.07e−01 3.56e−07
MultiNMF 7.14e−04 3.74e−12 1.38e−07 2.89e−05 6.85e−07 3.37e−17 7.03e−06 2.30e−03
RMKMC 6.69e−10 6.85e−12 4.06e−04 3.02e−10 1.04e−07 2.78e−11 1.55e−08 1.01e−07
DiNMF 1.71e−03 1.66e−07 2.87e−03 2.36e−09 8.59e−08 2.25e−07 3.18e−08 4.08e−11
AMvDMD 2.69e−09 3.35e−06 2.15e−05 1.32e−06 4.03e−05 8.38e−11 1.80e−02 3.33e−04
DMFPA 2.42e−03 7.24e−05 8.63e−15 1.89e−11 8.47e−12 1.12e−13 7.12e−12 1.68e−10
4
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Table 13
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on BBCSportG1 (%).

Method ACC NMI Purity

NMF 69.30(6.59) 48.73(6.49) 71.86(5.02)
CoRegSPC 54.61(7.52) 38.83(8.91) 63.86(8.56)
GNMF 56.45(8.82) 45.85(8.00) 65.72(7.60)
MVKKM 36.03(0.00) 1.11(0.00) 36.58(0.00)
MultiNMF 64.96(2.60) 50.37(1.98) 69.56(2.50)
RMKMC 63.71(9.27) 50.11(7.69) 69.89(6.37)
DiNMF 68.24(6.95) 48.08(4.32) 70.31(4.10)
AMvDMD 54.30(9.93) 30.74(12.55) 57.61(8.73)
DMFPA 56.64(3.17) 29.63(1.50) 60.70(0.83)
Ours 77.28(2.69) 60.28(2.95) 78.31(2.14)

evaluate its learning effect. Therefore, the t-SNE algorithm is performed
on 𝑽 (𝑚) [55]. Based on data labels, clusters with different colors are
generated.

Fig. 3 shows the comparative effect of 𝑽 (𝑚) in the proposed method
and DiNMF. 3Sources, BBCSport, Handwritten and 20NewsGroups are
used in this experiment. The visualizations demonstrate that the co-
efficient matrix 𝑽 (𝑚) of the proposed method acquires significant and
clear clustering structures. Compared to DiNMF, the coefficient matrix
10
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Table 14
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on BBCSportG2 (%).

Method ACC NMI Purity

NMF 66.78(5.81) 45.24(5.65) 70.53(4.55)
CoRegSPC 56.71(6.46) 42.66(5.22) 67.19(5.99)
GNMF 56.38(8.20) 42.48(4.93) 64.96(6.43)
MVKKM 36.03(0.00) 1.11(0.00) 36.58(0.00)
MultiNMF 64.19(1.26) 50.43(0.97) 68.84(1.27)
RMKMC 62.13(9.52) 43.61(11.24) 64.43(8.08)
DiNMF 66.47(8.46) 48.46(5.38) 69.23(8.30)
AMvDMD 54.61(9.03) 33.95(8.81) 59.26(7.32)
DMFPA 57.35(3.06) 36.32(1.30) 63.97(2.37)
Ours 77.13(5.00) 62.84(2.65) 79.17(2.47)

of the proposed method is more centralized for categories and has less
overlapping. Such results clearly show the usefulness of the learned
𝑽 (𝑚) in clustering.

.6. Convergence experiments

In Fig. 4, the evolution of the objective values during the iterations
re plotted. It is evident that for the majority of datasets, the objec-
ive function values decrease dramatically within 100 iterations, then
emain slight decreases after 200 iterations. However, for data with
omplex features, such as 3Sources, the model costs more iterations
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Fig. 4. Convergent results on eight datasets.
Table 15
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on BBCSportG3 (%).

Method ACC NMI Purity

NMF 68.44(6.23) 48.20(4.84) 71.31(5.26)
CoRegSPC 55.22(6.64) 40.20(7.76) 65.72(7.42)
GNMF 54.52(5.65) 44.92(3.51) 65.04(4.14)
MVKKM 36.03(0.00) 1.11(0.00) 36.58(0.00)
MultiNMF 63.81(5.89) 49.42(6.76) 68.93(4.65)
RMKMC 59.61(9.80) 39.32(8.60) 63.62(7.62)
DiNMF 64.08(7.49) 46.72(6.79) 67.21(7.15)
AMvDMD 51.51(7.77) 28.36(7.79) 55.02(7.61)
DMFPA 57.28(1.78) 39.53(0.54) 66.01(0.52)
Ours 74.94(5.71) 59.20(4.37) 77.48(2.29)

Table 16
Mean values and standard deviations of ACC, NMI, and Purity for clustering results
with the proposed method and nine baseline methods on BBCSportP (%).

Method ACC NMI Purity

NMF 67.32(6.09) 46.12(6.60) 69.69(4.98)
CoRegSPC 58.73(1.39) 44.60(1.13) 69.15(0.70)
GNMF 62.13(4.29) 42.58(3.92) 66.89(3.85)
MVKKM 38.24(0.00) 4.03(0.00) 38.42(0.00)
MultiNMF 65.75(0.17) 51.19(0.52) 69.85(0.17)
RMKMC 64.89(7.89) 49.63(9.08) 69.98(7.97)
DiNMF 66.87(6.57) 47.95(4.83) 69.01(5.29)
AMvDMD 53.92(5.82) 35.67(8.55) 59.85(5.38)
DMFPA 62.17(2.44) 40.67(0.93) 66.73(1.21)
Ours 75.09(3.25) 57.69(3.38) 75.96(2.82)

to find the solution. Therefore, it shows that the proposed method
converges effectively on most datasets.

4.7. Parameter sensitivity

In practical applications, determining the optimal parameters for
unsupervised learning methods can be challenging. Therefore, the in-
sensitivity of the performance of unsupervised methods to parameter
settings is crucial. The sensitivity to balancing parameters of the pro-
posed method is demonstrated in this experiment. While preserving
generality, the results for four datasets, including Yale, 3Sources, BBC-
Sport, and Handwritten, are displayed. Similar patterns can be observed
in other datasets as well.

The proposed model consists of three essential parameters, 𝛼, 𝛽 and
𝛾. The sensitivity analysis of a parameter is performed by first fixing the
11
other two parameters and varying the value of the parameter within
the range. Due to the transformation relationship of the balancing pa-
rameter between the formulation (14) and (15), the values of 𝛼

2 , 𝛽 and
𝛾 are modified, and the range is {1, 10, 102, 103, 104, 105, 106, 107, 108}.
Figs. 5–7 display the experimental results.

The outcomes indicate that the proposed method exhibits improve-
ment when 𝛼 is relatively larger. This indicates that a larger value of
𝛼 means that the model can eliminate noises better. For 𝛽, the model
achieves a higher performance over a wider range of parameter choices.
The parameter 𝛾 obtains better performance at larger values. This
indicates that graph structure has an important role in the clustering
task. Similar patterns can be observed on other datasets, which suggests
that larger values may be set for the balancing parameters in practical
applications.

5. Conclusion

In this paper, a centric graph regularized log-norm sparse NMF is
proposed for multi-view clustering. To reliably learn the underlying
geometric structure which is embedded in multi-view data, the graph
structure of the multi-view coefficient matrix is extracted by using
centric graph regularization, which obtains more information about the
spatial structure than using traditional graph regularization. Addition-
ally, the pairwise co-regularization is used to reduce the redundant
information within views. Finally, the log-based sparsification is in-
troduced to improve the robustness of the model. An efficient update
algorithm is derived for the formulated optimization problem, while its
convergence and complexity are theoretically analyzed. Comparative
experiments on eight real-world datasets with nine state-of-the-art
methods demonstrate the effectiveness of the model.

CRediT authorship contribution statement

Yuzhu Dong: Software, Writing – original draft. Hangjun Che:
Supervision, Methodology. Man-Fai Leung: Writing – review & editing,
Investigation. Cheng Liu: Formal analysis, Investigation. Zheng Yan:
Writing – review & editing.

Data availability

Data will be made available on request.



Signal Processing 217 (2024) 109341Y. Dong et al.
Fig. 5. The sensitivity analysis of 𝛼
2

on four datasets.
Fig. 6. The sensitivity analysis of 𝛽 on four datasets.
Fig. 7. The sensitivity analysis of 𝛾 on four datasets.
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