
The Impa
t of Programming Paradigms onthe EÆ
ien
y of an Individual-basedSimulation Model
David J. Barnes, Tim R. HopkinsComputing Laboratory, University of Kent at Canterbury, Canterbury, Kent CT27NF, UK

Abstra
tIndividual-based models are a popular te
hnique for simulating a wide range of e
o-logi
al systems. However, to be su

essful, they must not only deliver an a

uraterepresentation of the system they are seeking to model, but must do so using viableamounts of 
omputing resour
e. Models involving very large numbers of individualswill tend to have large memory requirements, while the need to vary parametersettings over multiple runs means that pro
essor requirements must be kept withinreasonable bounds. In order to address the issue of resour
e requirements, we assessthe impa
t of using di�erent programming paradigms for the implementation ofan individual-based models. We do this by looking in detail at a number of imple-mentations of a simulation of the spread of Barley Yellow Dwarf Virus. The model
onsiders expli
itly ea
h individual plant and aphid, therefore it requires spe
ial
are to redu
e the amount of storage used whilst still produ
ing a 
omputationallyeÆ
ient 
ode. We present implementations of the model in both imperative andobje
t-oriented programming languages, parti
ularly noting aspe
ts relating to easeof implementation and run-time performan
e. Finally, we attempt to quantify the
ost of some of the de
isions made in terms of their memory and pro
essor timerequirements.
Key words: Barley Yellow Dwarf Virus; Simulation; Programming Languages;Java; C++; Fortran 95.
1 Introdu
tion
The in
reased power and availability of 
omputers in re
ent years has led to thedevelopment of two new types of e
ologi
al simulation model: individual-basedmodels and spatially-expli
it models. In the former, ea
h biologi
al entity inthe model is simulated at the level of the individual organism rather than
Preprint submitted to Elsevier S
ien
e 14 De
ember 2001



the population level (see DeAngelis and Gross, 1992; Judson, 1994; Kawataand Toquenaga, 1994, for reviews). Among other things, this allows individualvariation to be simulated (Huston et al., 1988).
The number of individual-based models reported in the literature has growndramati
ally over the last de
ade (Grimm, 1999). Su
h models inevitably pla
esigni�
ant demands upon the available 
omputing resour
e; often requiringlarge amounts of both memory and pro
essor time for realisti
 simulations.Studies of �sh 
ommunities, for instan
e, 
ould easily require of the orderof 1012 individuals to be modelled (Shin and Cury, 2001). Even when thenumber of individuals being modelled is relatively small, as in Ahearn et al.(2001), run time must be kept within tra
table limits to support the needfor multiple runs with varying parameter 
ombinations (Cowan et al., 1996).Where pragmati
 implementation issues are 
onsidered within the literature,however, the fo
us tends to be either on the ease of modelling | for whi
hthe obje
t-oriented paradigm is often adopted (Ahearn et al., 2001; Shin andCury, 2001) | or simply keeping the run time within reasonable limits. Withrare ex
eptions (Congleton et al., 1997), there is little a
knowledgement thatmemory requirements play a signi�
ant part in the viability of large simula-tions (S
he�er et al., 1995), and have a dire
t impa
t upon run times throughthe use of virtual memory.
In the remainder of this paper we present an extended example to investigatehow the use of the two main programming paradigms, pro
edural and obje
t-oriented, a�e
ts the eÆ
ien
y of implementation. The example is based on areasonably simple but realisti
 model for the spread of Barley Yellow DwarfVirus (BYDV). BYDV is an e
onomi
ally important pest of 
ereal 
rops andwild grasses worldwide (Power, 1996). It 
auses yellowing of the leaves andoften results in signi�
ant yield losses in 
ereals. The approa
h used here is tomodel the individual plants in a 
ereal 
rop and the aphids that infe
t them.Su
h a model might be used in an attempt to obtain a better understandingof the population dynami
s of the aphid and the me
hanisms involved in thespread of the virus. However, that is not our prin
ipal aim in developing thissimulation.
In se
tion 3 we look in detail at the steps involved in the simulation and followthat with a 
areful 
onsideration of the general storage requirements of themodel. In se
tion 5 we dis
uss the model's implementation in the stru
turedprogramming language Fortran 95 (ISO/IEC, 1997). There we 
onsider a num-ber of ways in whi
h we 
an redu
e the amount of memory required to storedata and dis
uss some of the impli
ations these may have on the resultantrun times. Se
tion 6 provides some timing and performan
e measurementsobtained from running the resultant Fortran 95 implementation on a mediumand a large simulation.

2



A model de�ned primarily in terms of plants and aphids strongly suggests theuse of an obje
t-oriented design pro
ess (Boo
h, 1994) as an alternative toa stru
tured programming approa
h. Se
tion 7 dis
usses the implementationof the model in the Java (Arnold et al., 2000) and C++ (Stroustrup, 1997)programming languages along these lines for a small simulation. Be
ause ofthe very large amounts of data involved, the naive approa
h used with thepure obje
t-oriented implementations is doomed to failure due to storage 
on-siderations.
We 
on
lude the paper with an evaluation of the alternative implementations.

2 Barley Yellow Dwarf Virus
Barley Yellow Dwarf Virus infe
ts a wide range of grasses worldwide, in
luding
ereals. It is one of the most e
onomi
ally important diseases of grasses (Power,1996). The virus 
an only be transmitted from one plant to another by aphidssu
h as Rhopalsiphum padi (L.) feeding on the phloem of the host plant (Power,1996). BYDV does not repli
ate within the aphid.
The disease is spread in two ways by the aphids (Morgan, 1989)
� Primary infe
tion takes pla
e when infe
tive, winged (alate) aphids migrateonto the 
rop from reservoir populations of the virus elsewhere;� Se
ondary infe
tion results from dispersal of the o�spring of the migrantaphids. Note that these aphids �rst have to a
quire infe
tion by feeding onan infe
ted plant before they 
an pass it on to another plant.
Control measures aimed at halting the spread of BYDV are targeted at these
ondary infe
tion phase by redu
ing or eliminating the spread of BYDV bythe o�spring of the infe
tive immigrant aphids. This is a
hieved by applying anaphi
ide spray to 
ontrol the aphids. Comparatively little is known about thefa
tors whi
h determine the rate at whi
h this se
ondary spread of the diseaseadvan
es through the 
rop. However, a re
ent simulation model developedby M
Elhany et al. (1995) has indi
ated that fa
tors su
h as the preferen
eof the aphid ve
tor for diseased or healthy hosts plants 
an be importantin determining the rate of se
ondary spread. Other models of the spread ofBYDV have been more or less su

essful in predi
ting the spatial and temporaldynami
s of the disease and the fa
tors whi
h in
uen
e its spread (Morgan,1989; Morgan et al., 1988).

3



3 The Simulation Model
We attempt to simulate the spread of BYDV in a 
ereal �eld by keeping tra
kof the position and state of the individual aphids and by 
onsidering theire�e
t on individual barley plants. A detailed des
ription of the model maybe found in Hopkins and Morse (1997). In brief, the simulation 
onsists of asequen
e of days during whi
h the following events take pla
e in the orderindi
ated:(1) Immigration of aphids: over a de�ned period of 
onse
utive days at thebeginning of the simulation period a predetermined number of wingedaphids are randomly pla
ed on the individual barley plants in the �eld.(2) Based on given daily temperature data, the development and reprodu
-tive rates for all the aphids in the simulation are 
al
ulated.(3) For ea
h aphid in the �eld,(a) Its age is updated based on the daily development rate 
al
ulated instep 2 above.(b) Based on the daily reprodu
tive rate, newly born aphids appear onthe same plant as their parents.(
) Its position may 
hange; movement o

urs when a given probabilitythreshold is ex
eeded. The 
urrent simulation allows a 
hoi
e of twodispersal models(i) purely random: the aphid is transported to a random point inthe �eld.(ii) movement is restri
ted to a nearest neighbour move with proba-bilities 
hosen to re
e
t the tenden
y of aphids to move betweenplants in the same row in a 
ereal �eld (Power, 1996). This move-ment preferen
e re
e
ts the fa
t that inter-plant spa
ing is 
loserwithin rows than it is between rows of plants.(4) The virus states of the aphid and the plant on whi
h the aphid is feed-ing are updated. An infe
ted aphid always feeds upon its 
urrent plant,passing on the infe
tion. A healthy aphid is always infe
ted if it settleson an infe
ted plant.For the simulation reported a square grid of p plants in ea
h dire
tion (i.e.,p2 plants in total) with 0:002p2 immigrant aphids on ea
h of the �rst fourdays was used. The immigrant aphids were all winged aphids aged 0:5 witha probability of 0.1 of being infe
ted with BYDV. The simulation took pla
ebetween days 70 and 100.The timings reported were obtained on a SUN Ultra 60, Model 2450 with dual450MHz pro
essors and 512Mb of memory. Timing information was obtainedusing the ma
hine as single user although it was 
onne
ted to a lo
al net-work. For Fortran 95 the built-in intrinsi
 fun
tion system 
lo
k was used; for

4



C++ 
lo
k gettime was used; and for Java 
urrentTimeMillis was used. Clo
kresolution of better than 10% is repeatable.
4 General Storage Requirements of the Model
Hopkins and Morse (1997) argued that a realisti
 model might require between27 Mbytes and 270 Mbytes of storage, depending on the size of the model.Their argument ran as follows. Assume a planting density of 300 plants/m2and a square �eld plot whi
h is of the order of 200m in ea
h dire
tion. Furtherassume that there is an immigrant aphid population of between two and twentythousand aphids per day during the immigration period. For 106 plants theyspe
i�ed an immigrant population of 2000 aphids/day for four days and for107 plants, 20000 aphids/day for four days. The resultant populations after 30days were 8� 105 and 8� 106 aphids respe
tively.The simulation model must maintain data on the following variables:� for ea
h individual aphid, its� 
urrent age (a real value in the range [0,1℄)� life stages (one of newly born, wingless, winged or dead)� position in the �eld (x, y 
oordinate { a pair of integers)� BYDV status (one of infe
ted, in
ubating, or uninfe
ted)� in
ubation period (the number of days the virus has been in
ubating {used to update the BYDV status from in
ubating to infe
ted).� and, for ea
h individual plant, its� BYDV status (one of infe
ted, in
ubating, or uninfe
ted)� in
ubation period (the number of days before a plant, bitten by an infe
tedaphid, itself be
omes infe
ted { used to update the BYDV status fromin
ubating to infe
ted).A naive storage s
heme might use �ve integers (one ea
h for the life stage, theBYDV status, the x-
oordinate, the y-
oordinate and the in
ubation period)and a real number (the age) for ea
h aphid and two integers for ea
h plant(the BYDV status and the in
ubation period). (The 
oordinate informationfor the plants being impli
itly obtained using a two dimensional array.) Thisgives 
onservative storage requirements of106 plants +8 � 105 aphids = 27 Mbytes107 plants +8 � 106 aphids = 270 Mbyteswhere both integers and reals are assumed to require 32 bits. In an obje
t-oriented programming language, the spa
e requirements for an obje
t are sup-plemented by the need to identify an obje
t's runtime type in order to imple-

5



ment its 
orre
t behaviour. Typi
ally, this will add an overhead of a further 4bytes per obje
t or 72Mbytes for the 
ase of 107 plants, above.There are several ways in whi
h the naive approa
h 
an be further improvedupon to redu
e the memory requirements of the model (Hopkins and Morse,1997). For example,(1) The plant data 
an be dire
tly mapped into a one dimensional array be-
ause the 
oordinates of ea
h plant are only required for nearest neighbour
al
ulations and any �nal visualisation of the data.(2) The infe
tion status of the plants may be stored as an array of bits andthe 
oordinates of the in
ubating plants (those plants whi
h have beeninfe
ted but are not themselves infe
tious) stored as a 
ir
ular list oflinked lists. On 
ompleting the in
ubation period these plant lists wouldbe used to update the bit array and the storage is reused.In the following se
tion we dis
uss these improvements in the 
ontext of animplementation in a stru
tured programming language, Fortran 95. Furtherdetails of how these data stru
tures were used may be found in Hopkins andMorse (1997). The storage spa
e required is then redu
ed to 106=8+8n1 bytesfor 106 plants and 107=8 + 8n2 bytes for 107 plants where n1 and n2 are themaximum number of plants in
ubating at any one time. With the model usedhere the maximum number of plants being stored was around 0.25% of thetotal number of plants.
5 A Fortran 95 Implementation
Fortran is generally regarded amongst the s
ienti�
 programming 
ommunityas being one of the languages of 
hoi
e if highly eÆ
ient 
ode is required; thelong history of the language and the wealth of experien
e in writing optimising
ompilers has led to most 
ommer
ial Fortran systems generating extremelygood 
ode.Re
ent years have seen the development of Fortran 90 and Fortran 95 in anattempt to keep Fortran, at least partially, up-to-date with new programminglanguage trends.In Fortran 77 the array spa
e required to store the aphid and plant data needsto be de
lared at 
ompile time and, at best, separate arrays used to store thereal and integer data asso
iated with ea
h plant and aphid. The alternativeapproa
h in Fortran 95 is to store teh asso
iated aphid data as re
ords (userde�ned types) where ea
h re
ord 
ontains the age, life stage, position, BYDVstatus and in
ubation period of a single aphid. This approa
h is similar to the

6



aggregation that an aphid 
lass would provide in an obje
t-oriented language.eavailability of pointers then allows us to 
onstru
t dynami
ally sized sets ofthese obje
ts (for example, linked lists) whi
h relieves the user of having toestimate the maximum size of the aphid population. We note here that theallo
atable array available in Fortran 95 is not suÆ
iently 
exible to provide aneÆ
ient alternative sin
e it is not possible to extend su
h arrays on
e 
reated;rather a new, larger array needs to be 
reated, the old data 
opied over andthe original spa
e returned to the heap.In addition, the module fa
ility available in the new Fortran standard allowsthe use of information hiding that parallels the 
lass en
apsulation features ofobje
t-oriented languages. This means that it is possible to build the simula-tion software so that details of the underpinning data stru
tures are hiddenfrom higher levels. Indeed the e�e
ts of any 
hange to the data stru
ture arelo
alised within a single module and, sin
e all a

ess to this module is at asubroutine level, no 
hanges are required elsewhere in the simulation 
ode.For example, the aphid-
ontrol module 
ontains a number of publi
ally 
allableroutines whi
h allow(1) an aphid's re
ord to be unpa
ked into its 
omponents and repa
ked intoa, possibly 
ompressed, re
ord. Fortran 95 de�nes new intrinsi
 fun
tionsfor the simple manipulation of bit strings.(2) newly born aphids to be added to the list and dead ones deleted;(3) a 
ount to be kept of the number of aphids at ea
h life stage, and so on.A similar approa
h may be used for manipulating the plant data, both forstoring the in
ubating plants and for re
ording those infe
ted.Finally there are a number of ways in whi
h Fortran 
ode may be ported toparallel ar
hite
tures either automati
ally (for example, using the automati
parallelisation provided by the Lahey/Fujitsu Fortran 95 
ompiler (Lahey,2000)) or by using additional libraries (OpenMP, 2000, for example,)).
6 Performan
e of the Fortran 95 Simulation Software
We 
onsidered a number of di�erent implementations of the model in orderto as
ertain what e�e
ts the underlying data stru
tures would have on runtimes.Version 1 used a linked list to store the individual aphid details, this involveda re
ord of the formTYPE aphid

7



PRIVATEREAL (sp) :: aphid_ageINTEGER :: life_stage, 
oord, bydv_status, time_to_infe
tionTYPE (aphid), POINTER :: next_aphidEND TYPE aphidVersion 2 was the same as Version 1 but stored the data asso
iated withea
h aphid in pa
ked format as des
ribed in Hopkins and Morse (1997).Version 3 used an array of type aphid, where ea
h element of the array wasa re
ord of the form des
ribed in Version 1 but without the POINTER �eld.The required array spa
e was allo
ated on
e and, therefore, �xed at somemaximum size, at the start of the simulation.Version 4 used a set of disjoint arrays to store the relevant details of theindividual aphids. Although this sounds extremely 
rude it does allow aFortran 77 implementation to be generated very easily. This provided anadditional 
omparison of the eÆ
ien
y of the two language 
ompilers onthe same hardware.The Fortran 95 
ode for all four versions was su

essfully 
ompiled and exe-
uted using the following systems(1) Edinburgh Portable Compilers Fortran 90 version 1.5.2.6,(2) Sun WorkShop 6 update 1 Fortran 95,(3) NAGWare Fortran 95 
ompiler Release 4.0a(309)without any sour
e 
ode 
hanges.The results reported in this se
tion refer to simulations as des
ribed in se
-tion 3 with p = 100, 500, 1000, 1500 and 2000.Table 6 shows timings for the four di�erent implementations in Fortran 95run using the Sun f95 
ompiler with the -fast 
ompiler 
ag whi
h attemptsto optimise for speed of exe
ution. This option is 
laimed to provide 
lose tomaximum attainable performan
e for many realisti
 appli
ations.By the e�e
tive use of modules the 
ode 
hanges required to use linked listsinstead of arrays are restri
ted to a small number of short routines withina single module. The vast majority of the software (approximately 80% interms of lines) remained un
hanged. These timings therefore show that, forthe Sun f95 
ompiler, a

ess to data through user 
ontrolled pointers ratherthan array indexing in
reases the run time by around 25%. The main bene�tto the user is that there is no requirement to guess in advan
e the size ofthe �nal aphid population in order to reserve enough array spa
e. Using the
urrent implementation of versions 3 and 4, underestimating this maximumvalue results in the simulation being aborted part way through; this problem
ould be over
ome by reallo
ating more array spa
e and 
opying the old datainto the new spa
e as required. Su
h a s
heme was not implemented as it was
8



Table 1Exe
ution times in se
onds for Fortran 95 implementations using the Sun f95 
om-piler p Unpa
ked Pa
ked Array SeparateLinked List Linked List of Re
ords Arrays100 0.10 0.10 0.08 0.18500 2.43 2.38 1.86 1.891000 10.20 9.76 7.70 7.691500 24.31 22.48 17.49 17.352000 46.38 42.63 33.30 33.64felt that the 
osts of temporarily doubling the memory requirements and then
opying the data were prohibitive.No timing penalty resulted from using an array of aphid re
ords as opposed toseparate arrays of data; i.e., the 
ost of a

essing �ve pie
es of data via arrayindexing is the approximately the same as extra
ting the individual �elds froma re
ord. Although in the un
ertainty levels of the timer the exe
ution timeswere 
onsistently between 2 and 5% faster using type arrays. The use of arraysof re
ords makes the 
ode easier to read and less prone to in
onsistent arrayindexing errors; a 
ost free bene�t of using the extra fa
ilities available inFortran 95.Thirdly when 
omparing the two linked list versions we found that the pa
kingof data not only lessened the storage requirements but, perhaps surprisingly,also de
reased the run time slightly; again this redu
tion is slight but 
onsis-tent.Although di�erent in absolute terms the other 
ompilers used showed verysimilar exe
ution time behaviours for the four implementations. There wasone pe
uliarity that is worth mentioning. Unlike the EPC and Sun 
ompilerswhere the ratio of exe
ution times for the linked list version over the arrayversion stayed almost 
onstant, the NAG 
ompiler showed an in
rease from1.34 to 1.84 as p in
reased from 1000 to 2000; apparently the overhead of usinglinked lists grows with the length of the list.Finally, using the Sun f77 
ompiler (Sun WorkShop 6 update 1 FORTRAN77 5.2) with the -fast 
ag, the Fortran 77 version of version 4 ran almost20% faster than the Fortran 95 separate arrays version. This version did notallo
ate arrays and held all arrays in labelled 
ommon blo
ks; in
lude �les,whi
h were not standard for Fortran 77, were used to minimise the number oftextual 
hanges required when 
hanging de
lared array lengths. In addition, itwas ne
essary to store the plant information as an integer array whose length
9



was the number of plants in the �eld and whose elements store only a singlebit of information (infe
ted or uninfe
ted). This 
ould have been 
ompressedto a bit level but would have required either non-standard or ineÆ
ient meansof setting and retrieving individual plant information. There is thus a trade-o�between in
reased run-time eÆ
ien
y and in
reased storage requirements.

7 An Obje
t-Oriented Design
The desire to model the behaviour of ea
h individual plant and aphid stronglysuggests an obje
t-oriented design for the simulation. Four major 
lasses fallnaturally from the model: Plant, Field, Climate and Aphid. A plant obje
tmaintains its BYDV status and a dynami
ally expanding 
olle
tion of refer-en
es to the aphids 
urrently o

upying it. A �eld obje
t 
ontains a �xed-sizearray of the plant obje
ts and provides methods to report on the status ofthe plants and aphids at the end of ea
h day. A singleton 
limate obje
t(Gamma et al., 1995) provides the data for 
al
ulating daily ageing and re-produ
tive rates. Most 
omplex is the 
orre
t representation of aphids in anobje
t-oriented design. The requirement for some distin
t life-stage behaviourfor infants, morphs and winged aphids suggests the use of a 
lass hierar
hyrather than a single 
lass. An obje
t-oriented language allows an aphid super
lass to implement those aspe
ts of state and behaviour that are 
ommon toall life stages | su
h as age, BYDV status and a referen
e to the plant anaphid o

upies. Further sub 
lasses of this super 
lass then only need to im-plement the distinguishing 
hara
teristi
s of ea
h life stage, su
h as the abilityto reprodu
e or 
y. The fa
t that an individual aphid 
hanges its behaviouras it moves through di�erent life stages suggests the use of the state pattern(Gamma et al., 1995) to 
apture this e�e
t. Using the state pattern, ea
haphid is represented to the simulation by an obje
t of a separate 
ontext 
lasswhose interfa
e makes it look as if it is an aphid. A 
ontext obje
t 
ontainsa referen
e to an obje
t of one of the genuine life-stage 
lasses, to whi
h itdelegates all the intera
tion it re
eives from the simulation. When an aphidmoves from one life stage to another, the obje
t representing the previous lifestage is repla
ed within the 
ontext obje
t by a new obje
t of the next life-stage 
lass. All details of these 
hanges are hidden from the simulation by theuse of the state pattern.
Implementations of a design based on these 
lasses were 
reated in two ofthe most popular 
urrent obje
t-oriented languages; Java and C++. Table 7shows 
omparative timings for these two versions, plus a further C++ versionwhose details are des
ribed in se
tion 7.2.

10



Table 2Exe
ution times in se
onds for Java and C++ implementationsp Java C++ C++Full plants Full plants Partial plants100 1.84 0.43 0.15500 60.72 13.93 4.671000 211.92 62.13 22.71
7.1 Performan
e of the Obje
t-Oriented Implementations
The Java implementation was developed using version 1.3.1 of the Java 2Platform, Standard Edition (J2SE)(Sun Mi
rosystems In
., 2001). The C++version was developed using version 2.95.2 of the GNU C++ 
ompiler (GNUProje
t, 2001). The Java version was developed �rst and took approximatelyone day to 
ode from a detailed design, reinfor
ing the view that the modellent itself well to an obje
t-oriented design. Java's good ex
eption handlingfeatures enabled the sour
e of 
ommon runtime errors, su
h as array bounda

esses and invalid referen
e (i.e. `pointer') a

esses, to be qui
kly identi�edand 
orre
ted during its development. Standard 
olle
tion 
lasses supportedthe need for a dynami
 data stru
ture to hold the growing numbers of aphidson a single plant, and avoided 
on
erns with low-level manipulation of �xed-size arrays or hand-
rafted dynami
 data stru
tures. The C++ version 
loselyfollowed the Java version in style.
A 
omparison of the exe
ution times for these two similar versions shows sig-ni�
ant di�eren
es. Java is essentially an interpreted language whereas C++is a 
ompiled language. While te
hnologies exist for Java to improve its perfor-man
e | su
h as runtime 
ompilation of performan
e-
riti
al 
ode | it wouldappear that interpretation still had a signi�
ant impa
t on the exe
ution speedof the simulation.
In addition, quite large amounts of memory were required by the Java version.A �eld with p = 500 required a 64Mbyte memory allo
ation pool while a p =1000 �eld required a 512Mbyte memory pool. The large memory requirement(
ompared with the minimum values 
al
ulated in se
tion 4) is a re
e
tion, inpart, of the large memory requirement of obje
ts in the Java runtime system.These �gures should not be too surprising, however, given the fa
t that thedesign and implementation did not attempt to optimise representation of themodel at the expense of program 
larity.

11



7.2 Partial Plant Creation
In an e�ort to seek further improvements to the CPU and memory require-ments of the obje
t-oriented versions, an optimisation was made to the stru
-ture of the C++ version. In the original version, ea
h plant in the �eld is
reated as a separate obje
t at the start of the simulation. Ea
h day, the sim-ulation iterates over the plants in the �eld in order to advan
e the in
ubationstage of plants that have been bitten, and ages the aphids a

ording to the
limate model. One obje
t per plant in the �eld is not stri
tly ne
essary be-
ause plants are almost entirely passive obje
ts. They only a�e
t the out
omeof the simulation when they are either infe
ted by an aphid or are requiredto pass on an infe
tion to their aphid population. In the modi�ed version, anobje
t to represent a plant was only 
reated when needed; that is, when anaphid landed on it. Only the simulation loop and the Field 
lass were a�e
ted,and no modi�
ations were required to either the Plant or Aphid 
lasses. Whena new aphid arrived in the �eld, or an existing one moved to another plant,the host plant was 
reated in the �eld if it did not already exist there. Thison-demand version represented a signi�
ant improvement in run time.Clearly, further modi�
ations to the C++ version are possible, su
h as thosedes
ribed in se
tion 4. However, there 
omes a point where su
h modi�
ationse�e
tively mean that the implementation no longer possesses those 
hara
ter-isti
s that distinguish it as obje
t-oriented, and the merits of implementing itin a spe
i�
ally obje
t-oriented language no longer apply.
8 Summary and Con
lusions
We have developed both obje
t-oriented and stru
tured programming lan-guage implementations of a relatively simple individual-based model for thespread of BYDV within a 
ereal �eld. The model was well suited to a naiveimplementation of an obje
t-oriented design, but both the memory and CPUoverhead of this approa
h are prohibitive for other than small s
ale simula-tions. An alternative Fortran 95 version produ
ed a signi�
antly more eÆ
ientimplementation. The new pointer fa
ilities available in Fortran 95 allowed usto experiment with data stru
tures that grew with the aphid population andthe bit level intrinsi
 fun
tions provided a portable, memory eÆ
ient meansof storing the state (infe
ted/uninfe
ted) of ea
h plant. These same intrinsi
fun
tions also meant that we 
ould 
ompress the data des
ribing ea
h indi-vidual aphid as far as possible and this allowed mu
h larger problems to besolved with a negligible overhead from pa
king and unpa
king the data.The use of linked lists rather than arrays in
reases the run times by around

12



20% but relieves the user from having to supply an upper bound for the �nalaphid population. Using re
ords to store individual aphid data rather thanseparate arrays has no e�e
t on run time while improving the readability ofthe 
ode.
Referen
esAhearn, S. C., Smith, J. L. D., Joshi, A. R., Ding, J., 2001. TIGMOD: anindivual-based spatially expli
it model for simulating tiger/human intera
-tion in multiple use forests. E
ologi
al Modelling 140, 81{97.Arnold, K., Gosling, J., Holmes, D., 2000. The Java Programming Language,3rd Edition. Addison Wesley, Reading, MA, Java is a trademark of SunMi
rosystems In
.Boo
h, G., 1994. Obje
t-Oriented Analysis and Design with Appli
ations, 2ndEdition. Addison Wesley, Reading, MA.Congleton, W. A., Pear
e, B. R., Beal, B. F., 1997. A C++ implementationof an individual/lands
ape model. E
ologi
al Modelling 103, 1{17.Cowan, Jr., J. H., Houde, E. D., Rose, K. A., 1996. Size-dependent vulner-ability of marine �sh larvae to predation: an individual-based numeri
alexperiment. ICES Journal of Marine S
ien
e 53, 23{37.DeAngelis, D., Gross, L., 1992. Individual-based models and approa
hes ine
ology. Chapman & Hall, London.Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns |Elements of Reusable Software. Addison Wesley, Reading, MA.GNU Proje
t, 2001. Gnu 
ompiler 
olle
tion.URL http://www.gnu.org/software/g

/g

.htmlGrimm, V., 1999. Ten years of individual-based modelling in e
ology: whathave we learned and what 
ould we learn in the future? E
ologi
al Modelling115, 129{148.Hopkins, T., Morse, D., 1997. The implementation and visualization of a largespatial individual-based model using Fortran 90. In: Denzer, R., Swayne, D.,S
himak, G. (Eds.), Environmental Software Systems, Volume 2. Chapman& Hall, London, pp. 284{291.URL http://www.
s.uk
.a
.uk/pubs/1997/527Huston, M., Deangelis, D., Post, W., 1988. New 
omputer-models unify e
o-logi
al theory. Bios
ien
e 38 (10), 682{691.ISO/IEC, 1997. Information Te
hnology { Programming Languages { Fortran- Part 1: Base Language (ISO/IEC 1539-1:1997). ISO/IEC Copyright OÆ
e,Geneva.Judson, O., 1994. The rise of the individual-based model in e
ology. Trends inE
ology & Evolution 9 (1), 9{14.Kawata, M., Toquenaga, Y., 1994. From arti�
ial individuals to global pat-terns. Trends in E
ology & Evolution 9 (11), 417{421.

13



Lahey, 2000. Lahey/Fujitsu Fortran 95 User's Guide Linux Edition. LaheyComputer Systems, In
., In
line Village, NV, Revision B Edition.M
Elhany, P., Real, L., Power, A., 1995. Ve
tor preferen
e and disease dy-nami
s | a study of barley yellow dwarf virus. E
ology 76 (2), 444{457.Morgan, D., 1989. A simulation model of BYDV epidemiology. Pro
eedings ofCYMMIT Workshop on Barley Yellow Dwarf Virus | 1987 , 300{304.Morgan, D., Carter, N., Jepson, P., 1988. Modelling prin
iples in relation tothe epidemiology of barley yellow dwarf virus. Bulletin IOBC/WPRS 11,27{32.OpenMP, Nov. 2000. OpenMP Fortran Appli
ation Program Interfa
e.OpenMP Ar
hite
ture Review Board.URL http://www.openmp.org/spe
s/mp-do
uments/fspe
20.psPower, A., 1996. Competition between viruses in a 
omplex plant-pathogensystem. E
ology 77 (4), 1004{1010.S
he�er, M., Bave
o, J., DeAngelis, D., Rose, K., van Nes, E. H., 1995. Super-individuals a simple solution for modelling large populations on an individ-ual basis. E
ologi
al Modelling 80, 161{170.Shin, Y.-J., Cury, P., 2001. Exploring �sh 
ommunity dynami
s through size-dependent trophi
 intera
tions using a spatialized individual-based model.Aquati
 Living Resour
es 14 (2).Stroustrup, B., 1997. The C++ Programming Language, 3rd Edition.Addison-Wesley, Reading, MA.Sun Mi
rosystems In
., 2001. Java 2 platform.URL http://java.sun.
om/j2se/

14


