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Abstract

We consider a method for the detection and approximation of fault
lines of a surface, which is known only on a finite number of scattered
data. In particular, we present an adaptive approach to detect surface
discontinuities, which allows us to give an (accurate) approximation of
the detected faults. First, to locate all the nodes close to fault lines, we
consider a procedure based on a local interpolation scheme involving
a cardinal radial basis formula. Second, we find further sets of points
generally closer to the faults than the fault points. Finally, after apply-
ing a nearest-neighbor searching procedure and a powerful refinement
technique, we outline some different approximation methods. Numer-
ical results highlight the efficiency of our approach.

Keywords: scattered data, surface discontinuities, adaptive detection,
approximation methods, radial basis functions.

Mathematics Subject Classification 2000: 65D05, 65D10, 65D17.

1 Introduction

In this paper we propose an adaptive approach for the detection and approx-
imation of surface discontinuities, which are known only on a finite number
of scattered data. In geology a surface discontinuity is often named with the
word “fault”, which means discontinuity in a layer caused by severe move-
ments of the earth’s crust. In geological applications, such as oil finding,
fault localization is particularly important, because it provides useful infor-
mation on the occurrence of oil reservoirs [10]. It is well known that the
interpretation of faults in seismic data is today a time-consuming manual
task, and reducing time from exploration to production of an oil field has
great economical benefits [11].
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Besides geology, the problem of detecting surface discontinuities, often
referred as fault lines or edges (i.e. jumps in a surface), is encountered
frequently in a wide variety of scientific fields, such as image processing,
medicine, geophysics, oceanography, tomography, cartography, etc.. Either
the fault detecting and approximating problem, or the discontinuous surface
approximating problem have been dealt with extensively in the literature
and several authors have proposed different techniques and methodologies
(see, for instance, [5, 16, 13, 8, 9, 15, 12] and references therein).

In the following, for simplicity, we will consider surface discontinuities of
the type of geological vertical faults and will refer to these simply as faults.

In [2] we presented a method for the localization of unknown fault lines
of a surface, moving from a large set of data points or nodes irregularly
distributed in a plane region and the corresponding function values. In the
present paper we improve the detection scheme proposed in [2], introducing
an adaptive detection process (see Section 5 for more details). Moreover, we
discuss different methods to approximate fault lines, considering polygonal
lines, least squares, and best l∞ approximations [3].

Note that in some real applications, e.g. in geology, the searching of
information, i.e. discontinuity points, can be very expensive, since it is
required to drill or explode mines in subsoil. Moreover, in general, one does
not know the location of the fault lines on the surface or even whether or not
the surface is faulted [4]. So, the adaptive procedure can reveal itself very
useful, because this approach produces a considerable reduction of cost.

The paper is organized as follows. In Section 2 we explain the detection
algorithm for the fault lines, relating to cardinal radial basis interpolants
(CRBIs), whose properties are widely discussed in [1]. In Section 3 we
briefly describe the different techniques of approximation. Section 4 con-
tains some useful remarks. In Section 5 several numerical results show the
effectiveness of our approach. Finally, in Section 6, we give an idea of pos-
sible developments.

2 Detection Scheme

In this section we present the basic ideas which allow us to pick out the data
points on or close to the fault lines, named fault points. To characterize
these points, first, we consider a procedure based on local data interpolation
by CRBIs, where the difference between any known function value and the
related value of the interpolant is computed and compared with a threshold
parameter. Second, we introduce and define a new set of points, named
barycentres, generally closer to the faults than the fault points. Finally,
manipulating the barycentres, we find further sets of points subjected or
not to any refinement. They supply more information on the faults.

Let Sn = {Pk, k = 1, . . . , n} be a set of distinct and scattered data
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points in a domain D ⊂ R
2, and {f(Pk), k = 1, . . . , n} a set of corresponding

values of an unknown function f : D → R, which is discontinuous across a
set Γ = {Γj , j = 1, . . . , m} of fault lines

Γj = {γj(t) : t ∈ [0, 1]} ⊂ D,

where γj are unknown parametric continuous curves. On D \Γ the function
f is supposed to be smooth. The domain D is bounded, closed, simply
connected, and contains the convex hull of Sn.

The detection algorithm is divided into five steps:

(i) A cell-based search method is applied to find the data point set NPk

neighboring to each node Pk of the data set Sn [6]. It is a classical nearest-
neighbor searching procedure, in which we make a subdivision of the domain
D in cells and identify the points closest to a data point within each cell.
Then, to determine the fault points, a CRBI is built on each set NPk

, (k =
1, . . . , n), excluding Pk. As a significant example of CRBI we recall Shepard’s
formula (see [1])

F (x) =
n

∑

i=1

fi

d(x, xi)
−p

∑n
j=1 d(x, xj)−p

, F (xi) = fi, i = 1, . . . , n,

where d(x, xi) is the Euclidean distance in R
2 and p > 0.

(ii) We evaluate the absolute value of the difference σ(Pk) between the
function value f(Pk) and the value of the interpolant at Pk, viz. σ(Pk) =
|f(Pk) − F (Pk)|. Supposing the interpolant gives a good approximation to f
in D, then σ(Pk) gives a measure of the smoothness of the function around
Pk. If we choose a suitable threshold value σ0 > 0, we can compare the
values σ(Pk) and σ0: σ(Pk) is less than or equal to σ0 when f is smooth in a
neighborhood of Pk, otherwise it is greater than σ0 when a steep variation of
f at Pk is found, and accordingly Pk will be marked as a fault point. When
the detection procedure of the nodes is concluded, we have characterized the
set of fault points F(f ; Sn) = {Pk ∈ Sn : σ(Pk) > σ0} consisting of all the
nodes either belonging to the faults or, at least, close to them.

(iii) Given a fault point Pk ∈ F(f ; Sn) and the corresponding nearest-neigh-
bor set NPk

, we define DPk
= {P ∈ D : d(P, Pk) ≤ RPk

}, where RPk
=

max{d(Pi, Pk) : Pi ∈ NPk
}. Then we order the NPk

+ 1 points in N̄Pk

= NPk
∪ {Pk}, being NPk

= card(NPk
), so that f(Pk1) ≤ f(Pk2) ≤ · · ·

≤ f(PkNPk
+1). The expected jump δk of f in the subdomain DPk

is evaluated
by

δk = max
1≤l≤NPk

∆f(Pkl),

where ∆ is the forward difference operator. We set lk the lowest value of
the index l ∈ {1, . . . , NPk

} for which δk is obtained.
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The part Πk = DPk
∩Γ of a fault line separates the set ∆L

k = {Q ∈ N̄Pk
:

f(Q) ≤ f(Pklk)} of all nodes of N̄Pk
with lower function values from the set

∆H
k = {Q ∈ N̄Pk

: f(Q) > f(Pklk)} of all nodes of N̄Pk
with higher function

values. If ∆L
k or ∆H

k is the empty set, then we enlarge NPk
and repeat the

process, so that N̄Pk
contains points lying in the two parts of the subdomain

separated by the fault line. Having determined ∆L
k and ∆H

k in this way, we
calculate the barycentres AL

k and AH
k of ∆L

k and ∆H
k , respectively. Then we

find Ak = (AL
k + AH

k )/2 and put it in A(f ; Sn), the set of the barycentres.

(iv) We subdivide the domain D by a regular grid and point out the grid
cells containing points of A(f ; Sn), i.e. barycentres. Since each grid cell
contains at least a barycentre, we calculate the barycentre of the points of
A(f ; Sn) in each cell, namely, the barycentre of the barycentres for each
cell. In this way, we have a further set B(f ; Sn) containing points that are
generally closer to the faults than the barycentres. The points that belong
to B(f ; Sn) are ordered by applying the following nearest-neighbor searching
procedure:

1. detection of any point of B(f ; Sn) nearest to a side of the domain D
and assumption of this one as the first probe point;

2. search of the nearest-neighbor point to the actual probe point and
assumption of this one as the new probe point, excluding the points
already considered;

3. stopping the process, when all points of B(f ; Sn) are ordered.

It follows that the sorting process identifies the ordered set C(f ; Sn) =
{Ci, i = 1, . . . , m}, where m is the number of points of B(f ; Sn).

(v) We consider the following refinement technique. Starting from the set
C(f ; Sn), we take Ci−1, Ci and Ci+1, i = 2, · · · , m−1. They are the vertices
of a triangle. Therefore, holding C1 and Cm fixed, we find m − 2 triangles

and calculate the barycentre C
(1)
j , 2 ≤ j ≤ m−1, for each triangle. This last

stage can be repeated, so obtaining the barycentres C
(k)
j , for j = 2, . . . , m−1,

k = 1, 2, . . .

In general, step (v) is required mainly when the used approximation
scheme has not in itself the smoothing property, such as the polygonal line
method described below.

3 Approximation Scheme

We sketch different approaches to approximate fault lines, namely the polyg-
onal line method, the least squares method and the best l∞ approximation
method (see [3] for an exaustive presentation of the methods).
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Polygonal line method. The polygonal line method we consider repre-
sents an improvement of the procedures developed by Gutzmer and Iske [13]
and by Allasia, Besenghi and De Rossi [2].

The ordered points of C(f ; Sn) are connected by straight line segments,
obtaining a polygonal line which approximates the fault line.

Least squares method. The least squares method can be used to approx-
imate a data set, {(xi, yi), i = 1, . . . , m} by an algebraic polynomial

Ps(x) = c0 + c1x + · · · + cs−1x
s−1 + csx

s (1)

of degree s < m − 1. In our problem we choose the constants c0, c1, . . . , cs

to solve the least squares problem

min
c0,...,cs

m
∑

i=1

[yi − Ps(xi)]
2 ,

where (xi, yi) ∈ C(f ; Sn). Replacing the coefficients c0, c1, . . . , cs in (1) with
the values obtained by the least squares method, we get the polynomial
approximating the fault line.

Best l∞ approximation method. The best l∞ approximation method
can be considered as a tool for finding polynomial approximations to fault
lines starting from the set C(f ; Sn) or from some its refinement.

Given the abscissae xk and the corresponding ordinates yk, for k =
1, 2, . . . , m, the polynomial in (1) is sought to solve the minimax problem

min
c0,...,cs

max
k

|Ps(xk) − yk| . (2)

Denoting by M = maxk |Ps(xk)−yk| > 0 the largest absolute value, we have

|Ps(xk) − yk| ≤ M, k = 1, 2, . . . , m, (3)

and the inequalities (3) can be rewritten in the form

∣

∣

∣

∣

∣

∣

s
∑

j=0

( cj

M

)

xj
k −

(

1

M

)

yk

∣

∣

∣

∣

∣

∣

≤ 1, k = 1, 2, . . . , m.

The linear programming problem (2) becomes

maximize Z = ts+2,

subject to the constraints

t1 + xkt2 + x2
kt3 + . . . + xs

kts+1 − ykts+2 ≤ 1,

t1 + xkt2 + x2
kt3 + . . . + xs

kts+1 − ykts+2 ≥ −1,
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for k = 1, 2, . . . , m, and
ts+2 ≥ 0,

with the unknowns

t1 =
c0

M
, t2 =

c1

M
, t3 =

c2

M
, . . . , ts+1 =

cs

M
, ts+2 =

1

M
.

Now, applying the simplex method, we obtain the coefficients c0, c1, . . . , cs

of (1) and identify an approximating polynomial to the fault line.

4 Some Remarks

Threshold value choice. In the detection algorithm a crucial point is
the optimal choice of the threshold value σ0. It is, in general, a difficult
task, because the finite number of data is the only available information.
Computing the largest deviation

S = max{|fi − fj | : i > j, for all i, j = 1, 2, . . . , n},

we achieve a useful information on the variation of f and we can set σ0 = ǫS,
with 0 < ǫ < 1. Repeated tests pointed out that the procedure works well
when 1/25 ≤ ǫ ≤ 1/23, and it ends successfully if the function f is smooth
on D \ Γ. On the contrary, if the function f shows steep variations, the
procedure must be repeatedly applied with increasing values of ǫ.

Smoothness. The performance of the approximation procedures depends,
in particular, on the number of points and the form of the faults. Least
squares and best l∞ approximations give smooth curves, whereas polygonal
lines have a simpler formulation. If a polygonal line appears too irregular
and poorly accurate, we can yield another smoother (and, possibly, more
accurate) polygonal line, using the refinement technique and connecting the

barycentres C
(k)
j by straight line segments. Iterating some times the refine-

ment technique, we construct smooth, planar curves rather than polygonal
curves. This is a meaningful advantage if compared with the Gutzmer-Iske
method [13].

Complex surface discontinuities. The proposed approximation methods
work well, when there is only one fault in D. Otherwise, if we deal with
complex situations, such as several faults, intersections or bifurcations of
faults, these methods cannot be directly applied, but a suitable subdivision
of C(f ; Sn) is required. Dealing with two or more surface discontinuities we
need to split up the set C(f ; Sn) in a number of subsets greater or equal
to the number of fault lines before approximating the discontinuities. This
procedure is suggested also when a fault line is not of open type. Acting in
this way, very good results are obtained. Finally, when a fault line is parallel
or nearly parallel to y-axis, it is convenient to make first a rotation of the
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coordinate axes and then to apply the least squares method or the best l∞
approximation method.

Connection errors. When we have to deal with complex surface disconti-
nuities, applying least squares and best l∞ approximations require a further
subdivision of data. This situation can create small errors at points in which
two piecewise curves join, but the introduction of the refinement technique
reduces considerably the occurrence of these errors of connection. Neverthe-
less, the decision of how subdividing the domain can hide several difficulties
(see [9]). Obviously, in particularly difficult cases, the refinement technique
can be used and iterated in both the least squares method and the best l∞
approximation method.

5 Numerical Results

In this section we propose a few of several numerical and graphical results,
obtained by computational procedures developed in C/C++, Matlab and
Maple environments.

In various tests we consider n randomly scattered data points Pi =
(xi, yi) in the square [0, 1] × [0, 1] ∈ R

2 and the corresponding function
values fi, for i = 1, . . . , n. The detection and approximation schemes are
successfully tested against several functions with different kinds of faults,
varying the dimension n of the sample generated by a uniform distribu-
tion and the threshold value σ0. The results have been obtained by using
Shepard’s formula (p = 2), but other choices of CRBIs could work as well.

The cell-based search method and the CRBIs allow to partition the do-
main, to process the data in different stages, and to insert or remove nodes.
These features are particularly important in surveying phenomena, such as
geodetic or geophysical ones, whose data are distributed in regions with
different characteristics.

We sketch the results yielded by our method considering five significant
functions among those tested. Choosing the optimal value of ǫ, numerous
tests pointed out that few thousand data points are sufficient to produce an
accurate approximation.

Now, we briefly describe the adaptive approach to detect accurately the
surface discontinuities. It consists of following steps:

Step 1. Starting from few hundreds of data points (here, we take n = 250)
in the unit domain D, we apply the detection algorithm, locating roughly
the position of possible fault lines. The process determines, first, the set of
fault points F(f, Sn), then, the set of barycentres A(f, Sn) and, finally, the
set of barycentres of barycentres B(f, Sn) and its ordered form C(f, Sn).

Step 2. We increase the number of nodes, generating a certain number
of “local” scattered data on rectangular neighborhoods centred at Ci, i =
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1, · · · , m, the points of the set C(f, Sn) (in general, 15–20 nodes for each
neighborhood are sufficient).

Step 3. From the enlarged set of nodes we obtain more fault points, dis-
carding eventually false fault points previously considered, and accordingly
we obtain more barycentres and barycentres of barycentres.

Step 4. Stop, if the faults are well individuated, else go back to Step 2.

In practice, a suitable choice of the (local) neighborhood size in step 2 is
essential. It is advisable to change the rectangular neighborhood size, first
considering greater dimension neighborhoods (here, side length and width
are taken between 0.12 and 0.16) and then, in subsequent adaptive detection
phases, reducing their sizes at about one half.

Note that the process allows us to evaluate only the new generated data
points, exploiting the previous evaluations due to Shepard’s formula. Obvi-
ously, if we have some information about the position of fault lines, we can
locate from the beginning a reduced searching region.

It is remarkable that, also taking a starting sample with few hundreds
of scattered data, the method of detection holds its efficiency. Nevertheless,
reducing considerably the value of n, a loss of approximation accuracy is
unavoidable. It depends essentially on the reduced information, that is, the
number of data points. Hence, it is not convenient to take a too small sample
dimension, namely n less than one hundred.

In the following, we present the graphics of the considered test functions,
the corresponding fault line approximations and a picture of the adaptive
detection process. An error analysis is showed as well. It gives an idea of
the goodness of our approach.

Test function 1

The test function (see [7, 2])

f1(x, y) =







y − x + 1, if 0 ≤ x < 0.5,
0, if 0.5 ≤ x < 0.6,
0.3, if x ≥ 0.6,

is a surface with discontinuities in x = 0.5 and x = 0.6, i.e.

Γ = Γ1 ∪ Γ2 = {(0.5, t) : 0 ≤ t ≤ 1} ∪ {(0.6, t) : 0 ≤ t ≤ 1}.

Figure 1 (left) shows that, outside the discontinuities, the function f1(x, y)
is constant for x > 0.5, whereas changes enough quickly for x ≤ 0.5, produc-
ing a variation of the jump size in Γ1. Moreover, Figure 1 (right) provides
the graphical representation of the least squares curves from the 75 points
of the set C(f ; Sn). In Figure 2 we show step by step the adaptive de-
tection procedure, representing (bottom, from left to right) the subsequent
enlarged sets of data points and (top, from left to right) the corresponding
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sets C(f ; Sn). Precisely, in Figure 2 (A), we report the picture of the points
belonging to C(f ; Sn) and obtained by applying the detection procedure
from 250 scattered data (not represented). Figure 2 (B) and (C) refer to
the sets C(f ; Sn) of the points, obtained by increasing the number of nodes
on or close to possible fault lines, as showed in Figure 2 (X) and (Y) re-
spectively. Then, Figure 2 (Z) contains the enlarged set of data points from
which we get the final set C(f ; Sn) and the relative approximation lines (see
Figure 1 (right)). These are obtained from the last set C(f ; Sn), subdividing
it into two subsets.

In the detection phase, to obtain an accurate approximation of the faults,
we employ 3479 data points (this number is purely indicative and may vary
considerably). In some cases, nevertheless, if a rough knowledge of faults
(e.g. position, behaviour, etc.) is sufficient, the number of the considered
points can be considerably reduced (say, at about a quarter). In doing so,
we may reduce the number of steps in the adaptive detection process (see
Figure 2 (B) or (C)), but obviously do not attain the accutacy obtained in
this paper.

All these remarks hold also for the following test functions.
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Figure 1: Test function f1 (left) and least squares approximation curves
(right).

Test function 2

The test function [14]

f2(x, y) =

{

0, if x > 0.4, y > 0.4, y < x + 0.2,
(x − 1)2 + (y − 1)2, otherwise,
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Figure 2: Output of the adaptive detection procedure for f1.

is a surface with discontinuities across the set

Γ = Γ1 ∪ Γ2 ∪ Γ3 = {(t, 0.4) : 0.4 ≤ t ≤ 1} ∪ {(0.4, t) : 0.4 ≤ t ≤ 0.6}

∪ {(t, t + 0.2) : 0.4 ≤ t ≤ 0.8},

as showed in Figure 3 (left). Moreover, we can observe that the jump size
of fault lines varies in Γ1, Γ2 and Γ3.

Figure 3 (right) provides the graphical representation of the best l∞ ap-
proximation curves from the 45 points belonging to the set C(f ; Sn). Figure
4 presents, instead, a picture of the adaptive detection procedure. The fault
line is obtained from the set C(f ; Sn), subdividing the original set into three
subsets.

The adaptive detection process ends successfully using 2099 scattered
data.

Test function 3

The third discontinuous surface, already studied in [13, 2, 14],

f3(x, y) =

{

1 + 2
⌊

3.5
√

x2 + y2
⌋

, if (x − 0.5)2 + (y − 0.5)2 < 0.16,

0, otherwise,
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Figure 3: Test function f2 (left) and best l∞ approximation curves (right).
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Figure 4: Output of the adaptive detection procedure for f2.
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has the discontinuity set given by

Γ = Γ1 ∪ Γ2 ∪ Γ3 = {(x, y) ∈ R
2 : (x − 0.5)2 + (y − 0.5)2 = 0.16}

∪ {(x, y) ∈ R
2 : x2 + y2 = 16/49, (x − 0.5)2 + (y − 0.5)2 ≤ 0.16}

∪ {(x, y) ∈ R
2 : x2 + y2 = 36/49, (x − 0.5)2 + (y − 0.5)2 ≤ 0.16}.

The surface is always constant in D \ Γ.
In Figure 5 test function f3(x, y) (left) and graphic obtained by polygo-

nal line method from the ordered 108 points of C(f ; Sn) (right) are shown.
Figure 6 presents the results of the adaptive detection procedure. Also in
this case, we consider a subdivision of the set C(f ; Sn). Finally, to obtain a
greater smoothness, we apply the refinement technique three times.

In this test, to obtain the result of Figure 5 (right), 5185 nodes are
considered in input.
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Figure 5: Test function f3 (left) and polygonal line approximation curves
(right).

Test function 4

The next test considers the function (see [16, 2, 14, 15]),

f4(x, y) =

{

(2 − (x − 0.8)2)(2 − (y − 0.8)2), if y > l(x),
(1 − (x − 0.5)2)(1 − (y − 0.2)2), otherwise,

with l(x) = 0.5 + 0.2 sin(5πx)/3. The fault set is given by

Γ = {(t, l(t)) : 0 ≤ t ≤ 1}

and its jump size is almost constant on all the domain.
Figure 7 contains the test function f4 (left) and the fault approximation

obtained by least squares curve from the 49 points of the set C(f ; Sn) (right),
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Figure 6: Output of the adaptive detection procedure for f3.

while Figure 8 shows step by step the adaptive detection procedure. Splitting
up C(f ; Sn) in subsets do not produce considerable advantages.

To end the adaptive process, the number of the employed points is 2705.

Test function 5

Last, we consider the function (see [5])

f5(x, y) =







g(x, y), if y < min(1/3x, 0.25),
h(x, y), if min(1/3x, 0.25) ≤ y < 2x − 0.5,
6, otherwise,

with

g(x, y) = 1 + 1.4375
(

2 − (x − 1)2
)

exp(5 (1 − x) (4y − 1)),

h(x, y) = 1 +
(

2 − (x − 1)2
) (

2 − (y − 1)2
)

,

and discontinuity set

Γ = Γ1 ∪ Γ2 =

{(

t,
1

3
t

)

: 0 ≤ t ≤ 0.75

}

∪

{(

t, 2t −
1

2

)

: 0.3 ≤ t ≤ 0.75

}

.

We observe that the jump size of fault line Γ1 vanishes when x tends to 0.75.
In Figure 9 we set the test function and the best l∞ approximation

curves derived from the 46 points belonging to C(f ; Sn). Figure 10 shows
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Figure 7: Test function f4 (left) and least squares approximation curve
(right).
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Figure 8: Output of the adaptive detection procedure for f4.
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the output of the adaptive detection process. All these results are obtained,
subdividing the C(f ; Sn) set into two subsets.

The entire detection procedure is completed using 2263 data points.

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: Test function f5 (left) and best l∞ approximation curves (right).

For each test function, we compute the maximum absolute error (MAE),
the maximum relative error (MRE) and the root mean square error (RMSE),
evaluating each fault line at 100 equispaced points in 0 ≤ x ≤ 1. If a fault
line is parallel or nearly parallel to y-axis, it is convenient first to rotate the
coordinate axes and then to compute the errors. The results are reported in
Table 1 and Table 2. For simplicity, we compare only least squares and best
l∞ approximation curves. In fact, also a polygonal line could be expressed
analytically as a linear piecewise polynomial, but there would be too many
pieces.

Test Function MAE MRE RMSE

f1(x, y) 1.87486 · 10−3 3.12477 · 10−3 7.29411 · 10−4

f2(x, y) 3.97532 · 10−3 9.93829 · 10−3 1.97662 · 10−3

f3(x, y) 4.84865 · 10−2 4.56550 · 10−1 5.86301 · 10−3

f4(x, y) 5.35214 · 10−3 1.77711 · 10−2 2.44892 · 10−3

f5(x, y) 6.30713 · 10−3 3.16528 · 10−1 3.88514 · 10−3

Table 1: Errors obtained by the least squares method.
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Figure 10: Output of the adaptive detection procedure for f5.

Test Function MAE MRE RMSE

f1(x, y) 7.39352 · 10−3 1.23225 · 10−2 3.02462 · 10−3

f2(x, y) 7.41478 · 10−3 1.23230 · 10−2 2.57417 · 10−3

f3(x, y) 5.75570 · 10−2 5.08761 · 10−1 7.57615 · 10−3

f4(x, y) 1.67485 · 10−2 5.20277 · 10−2 5.71694 · 10−3

f5(x, y) 1.29125 · 10−2 6.48021 · 10−1 7.74472 · 10−3

Table 2: Errors obtained by the best l∞ approximation method.
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6 Final Remarks

In this paper, we have presented a method for the adaptive detection and
approximation of fault lines in a discontinuous surface from scattered data.
The approach we propose ensures good results, although the number of data
points is meaningfully reduced. Indeed, in some applications, the search
of information (data) is very expensive, so that a reduction of cost is a
remarkable goal.

In our analysis, we suppose that the considered surface is smooth outside
faults. If this does not happen, then the detection algorithm may identify
false fault points. If the jump size varies rather fastly or vanishes, it follows
that the optimal choice of a global threshold parameter σ0 is an essential
task. In future, a possible development could consist in splitting up the
domain in a uniform grid and find a (local) threshold parameter for each
grid cell. This idea should allow us to localize only the actual points of
discontinuity, reducing the possibility of finding false fault points. However,
it is yet an open problem and we are considering it.

Finally, we have tested the possibility to use a variable and adaptive grid
in the cell-based search method, but the results have not showed meaningful
advantages.
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