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Abstract

Integrated performance simulation of buildings and heating, ventilation and air-

conditioning (HVAC) systems can help reducing energy consumption and increasing

occupant comfort. However, no single building performance simulation (BPS) tool

o�ers su�cient capabilities and �exibilities to analyze integrated building systems

and to enable rapid prototyping of innovative building and system technologies. One

way to alleviate this problem is to use co-simulation to integrate di�erent BPS tools.

Co-simulation approach represents a particular case of simulation scenario where at

least two simulators solve coupled di�erential-algebraic systems of equations and

exchange data that couples these equations during the time integration.

This article analyzes how co-simulation in�uences consistency, stability and accu-

racy of the numerical approximation to the solution. Consistency and zero-stability

are studied for a general class of the problem, while a detailed consistency and abso-

lute stability analysis is given for a simple two-body problem. Since the accuracy of

the numerical approximation to the solution is reduced in co-simulation, the article

concludes by discussing ways for how to improve accuracy.
Key words: co-simulation, building system performance simulation, integrated

building simulation
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1. Introduction

The building industry is one of the most important industrial and economical

sectors in�uencing the quality of life and the environment. It is a known fact that

in developed countries, buildings account for 30%-40% of the energy consumed.

Depending on the building type, heating, ventilation and air-conditioning (HVAC)

systems are responsible for 10%-60% of the total building energy consumption. The

long life-cycle of buildings further compounds the importance of architectural and

engineering design decisions.

Challenging goals are set by new initiatives and energy policies. For example,

the European Union has de�ned ambitious goals for reducing emissions of CO2 for

the industrialized countries, which should be achieved by 2020. Also, the U.S. De-

partment of Energy and ASHRAE have de�ned their vision for 2030 [2] in a form

of net zero energy buildings. Thus, modern buildings are required to be energy e�-

cient while adhering to the ever increasing demand for better indoor environmental

quality.

Further, new buildings consist of numerous dynamically interacting components

that are nonlinear, dynamic, and complex. This requires an integrated approach

that treats buildings and the systems that service them as complete entities, not as

separately designed subsystems.

To enable energy e�cient designs in this complex setting, the concept of inte-

grated building performance simulation (BPS) has been developed. BPS o�ers the

potential to cope adequately with building performance related concerns. Its main

purpose is to (i) analyze the energy consumption and comfort performance, and (ii)

understand the relationship between the design parameters, the energy use, and the

comfort characteristics of buildings. Experience shows that, if used properly, BPS

can indeed result in a signi�cant reduction of emission of greenhouse gases, and give

substantial improvements in fuel consumption and comfort levels.

Due to the high time-cost of building performance prediction [3; 4; 5; 6] and the
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low market interest, the signi�cant e�ort required to develop BPS tools has been

left to a fragmented research community. This has resulted in a slower development

and inferior capabilities compared to simulation tools used in larger industry sectors,

such as in the automotive, electronics or aerospace sector.

Due to the fragmented development of BPS tools and the rapid innovations in

building and system technologies, state of the art BPS tools are not equally suited

for modeling and simulation of the relevant building aspects. Moreover, the user's

requirements often exceed the tool's functionality. As it has been previously argued

[7; 8], in the area of system simulation there is still an enormous amount of work to

be done.

The state of the art BPS tools are di�cult and costly to extend. Adding new

features requires from the tool developer to have in-depth knowledge of the pro-

gramming languages used, of the underlying architecture, and of the tool-speci�c

modeling strategies. Furthermore, switching to equation-based tools does not satisfy

the near-term needs. Although they are better suited for rapid model prototyping

than the BPS tools, they typically lack the vast range of state of the art models

(e.g., for solar and wind processes) and domain-relevant input/output processing.

To successfully continue with developments of the tools that will drive innovation

and help reaching the ambitious goal of reducing the emission of CO2, the focus

should be on enabling more analysis of innovative designs rather than investing in

�reinventing the wheel.� An e�cient way forward would be to provide a facility to

combine features from di�erent tools, sharing developments and reusing component

models. A tool should be coupled with a complementary tool in such a way that the

integrated result provides more value to the end user than the individual tool does

itself.

One way to alleviate this problem is to use co-simulation. The co-simulation

approach represents a particular case of simulation scenario where at least two sim-

ulators solve coupled systems of di�erential-algebraic equations and exchange data
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that couples these equations during the time integration. It allows various aspects of

building systems to be modeled and simulated in domain-speci�c tools and link them

during simulation. Compared to the traditional approach, it o�ers increased func-

tionality and more �exibility for integrated simulation-based analysis of innovative

HVAC system technologies.

1.1. Co-simulation implementation strategies

In general, co-simulation can be implemented using di�erent strategies, of which

a few will be mentioned here. In particular, from the coupling point of view, the

implementation can be done using strong or loose coupling, as illustrated in Figure

1.

• Strong coupling [9], also called fully-dynamic [10] or onion coupling [11], re-

quires an iterative solution that involves both simulators. The iteration stops

when the coupling data satisfy a convergence criteria. In strong coupling,

simulators must have a mechanism to rewind their states if requested by a

co-simulation manager. In addition, since each simulator may include iter-

ative solutions of equations, strong coupling leads to nested iteration loops,

consisting of an inner iteration within the individual simulators, and an outer

iteration to achieve convergence of the coupled simulators. To ensure conver-

gence, the inner iterations need to be solved at higher accuracy than the outer

iterations. This may be impractical to accomplish in BPS tools that do not

allow controlling the precision of the numerical error. Thus, to realize strong

coupling, signi�cant code modi�cations may be required.

• In loose coupling [9], also called quasi-dynamic [10] or ping-pong coupling

[11], coupled simulators use the coupling data that is computed using only

data from preceding time steps. There is no iteration between the coupled

simulators. However, because of the time-lagged data, shorter coupling time
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steps are needed compared to strong coupling. We distinguish two types of

loose coupling strategies (see Figure 1):

� loose coupling with sequential staggered solution [12], also called zigzagged

coupling, where the coupled simulators are executed in sequence, and

� loose coupling with naive modi�cation for parallel processing [12], also

called cross coupling, where the coupled simulators are executed in par-

allel.

The co-simulation discussed in this article implements zigzagged coupling, in

which the sending and the receiving sequence di�ers between the coupled simula-

tors. For that reason, we call the simulators the base and the external simulator.

The base simulator starts the communication by sending the coupling data to the

communication interface. The external simulator starts the communication by read-

ing those data from the communication interface.

Depending on which data are delayed in time, [13] de�nes two partitioning strate-

gies:

• Implicit-implicit - if the coupling data depends only on the state variables

of the coupled subsystem.

• Implicit-explicit - if the coupling data depends on the state variables of both

subsystems.

The experiments in this article will use two di�erent system-decomposition strate-

gies:

• Intra-domain system decomposition, in which the system is decomposed

within one functional domain, such as within the HVAC domain only.

• Inter-domain system decomposition, in which the system is decomposed

between di�erent functional domains, such as between the building and the

HVAC system domain.
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1.2. Examples of co-simulation implementation

There are a few examples of co-simulation in the �eld of BPS. Examples include

the integration of computational �uid dynamics simulation (FLUENT) with building

energy simulation (ESP-r) [14]. In the domain of HVAC simulation tools, examples

include the integration of TRNSYS with several other programs, such as MATLAB

[http://software.cstb.fr/] and EES [15]. These BPS tools couple two simulators

directly with each other, with one tool serving as the master and the other as

the client. A di�erent architecture has been implemented in the Building Controls

Virtual Test Bed (BCVTB) that uses a middleware to manage the data exchange

between di�erent simulators, with each simulator acting as a client [16]. However

until now, there exists no general standardized framework for integration of BPS

simulators, nor do there exist guidelines for implementation of co-simulation with

regards to stability and accuracy.

1.3. Co-simulation prototype

The co-simulation prototypes developed by the authors and reported earlier [1]

implement both loose and strong coupling strategies. The prototypes are based on

state of the art BPS tools such as TRNSYS and EnergyPlus. Flow-charts of the

information �ow in the prototypes are give in Figure 2 and 3.

In the case of loose coupling, the coupling data is exchanged only in the �rst

iteration for the current time step in both simulators. Strong coupling requires an

iteration between the simulators. In our prototype, simulator 1 in Figure 3 controls

the iteration process. The iteration criterion is based on the di�erence between two

subsequently received values of coupling data from TRNSYS. If the di�erence is

greater than a speci�ed value, EnergyPlus will request another iteration.

Numerical experiments [1] have shown that strong coupling allows using longer

time steps than loose coupling at the same accuracy. It was also shown that loosely

coupled co-simulation with su�ciently small time steps can generate results with

the same accuracy as mono-simulation. However, based on the computation time
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and ease of implementation, the loose coupling strategy with smaller time steps was

recommended.

1.4. Problem statement

The BPS tools typically contain legacy code with more than 100 000 lines of

code that mixes code to implement physical equations, data exchange and numerical

solution algorithms. This makes it di�cult to reinitialize state variables to previous

values, which is necessary for strong coupling. However, loose coupling is easier to

implement, but the time-delay of the coupling data causes the original numerical

time integration methods to be modi�ed. Consequently, the stability and accuracy

properties of the original time integration method are no longer guaranteed.

The focus of this article is to investigate the characteristics of co-simulation that

uses loose coupling. Although the stability and accuracy of di�erent time integration

methods are well understood [17; 18; 19], the stability and accuracy of the methods

resulting from partitioning are not well analyzed. It is di�cult, if not impossible, to

determine these properties formally for a general class of problems [20].

In this article, the co-simulation problem is stated for a general class of prob-

lems that are encountered in BPS. Then the stability and accuracy properties are

deduced formally for linear one-step numerical integration methods, applied to two

coupled �rst-order linear initial value problems. Finally, numerical experiments are

presented.

2. Numerical integration methods - Theoretical background

We consider problems de�ned by the �rst order initial value ordinary di�erential

equation

ẏ(t) = f(y, t), (1a)

y(a) = η, (1b)
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where f : Rm × R → Rm, t ∈ [a, b] for some a, b ∈ R, with a < b, m ∈ N and

η ∈ Rm. We assume f(·, ·) is once Lipschitz continuously di�erentiable in y and t.

This ensures that a unique solution of equation (1) exists.

Numerical integration methods are used to approximate the solution of the initial

value problem (1). In equidistant discretization, the continuous interval [a, b] is

replaced by the discrete point set {tn ∈ R | tn = a+n∆t, n ∈ {0, 1, 2, . . . , N}, ∆t =

(b − a)/N}. A numerical integration method produces a sequence {yn ∈ Rm}N
n=0,

which approximates the solution of equation (1) ({y(tn)}N
n=0) at the discrete points

{tn}N
n=0. The rule for computing yn is de�ned in terms of the values of yn at

preceding discretization points. In a k-step numerical integration method, yn is

computed using {yn−1, . . . ,yn−k}.
To approximate the solution of the initial value problem represented by equation

(1), we will use a k-step numerical integration method. The general form of the

method is

k∑
j=0

αjyn+j = ∆tφf(yn+k, . . . ,yn, tn; ∆t), (2)

with yµ = ηµ and µ ∈ {0, 1, . . . , k − 1} [18]. The subscript f on the right hand side

indicates that the function φ, which characterizes the particular method, depends

on f(·, ·).
For linear multi-step methods, the system represented by equation (2) can be written

as

k∑
j=0

αjyn+j = ∆t

k∑
j=0

βjf(yn+j, tn+j), (3)

where {αj, βj ∈ R|j ∈ {0, 1. . . . , k}} are method-speci�c parameters.

Let α be the implicitness factor of a linear one-step numerical integration method.
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For members of the α - family of linear one-step numerical integration methods,

equation (3) leads to

yn+1 − yn = ∆t[(1− α)f(yn, tn) + αf(yn+1, tn+1)], (4)

where 0 ≤ α ≤ 1.

2.1. Consistency

Consistency of a numerical integration method is concerned with the truncation

errors that result from the numerical integration method. The following de�nitions

are taken from [18].

De�nition 2.1 (Local truncation error). The local truncation error is de�ned as

the error produced in a single integration step starting from the exact solution.

For the k-step numerical integration method (2), the local truncation error is

LTEn+k(∆t) =
∑k

j=0 αj y(tn+j)−∆tφf(y(tn+k), . . . ,y(tn), tn; ∆t).

De�nition 2.2 (Unit local truncation error). The unit local truncation error is

de�ned as ULTEn+k(∆t) = LTEn+k(∆t)
∆t

.

De�nition 2.3 (Consistency). A numerical integration method is said to be consis-

tent if, for initial value problems of the form (1) that satisfy the Lipschitz condition,

the unit local truncation error satis�es lim∆t→0 ULTEn+k(∆t) = 0.

2.2. Stability

In terms of stability properties of numerical integration methods, a distinction

is made between zero-stability and absolute stability.

2.2.1. Zero-stability

Zero-stability is concerned with the asymptotic behavior in the limit as ∆t → 0.

It is a property of the numerical integration method (2) and not of the di�erential
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equation (1). Assuming that f(·, ·) in equation (1) is once Lipschitz continuously dif-

ferentiable, the linear numerical integration method (3) tends to the linear constant

coe�cient di�erence system, i.e.,
∑k

j=0 αjyn+j to 0, as ∆t → 0. Its characteristic

polynomial, ρ(r) =
∑k

j=0 αjr
j, is the �rst characteristic polynomial of the numerical

integration method. Let the roots of ρ(r) = 0 be {ri ∈ C | i ∈ {1, 2, . . . , k}}. The

numerical integration method is said to be zero-stable if all the roots of the �rst

characteristic polynomial satisfy |ri| ≤ 1, and any root for which |ri| = 1 is simple.

2.2.2. Absolute stability

For some numerical integration methods, there exists a value ∆t0 of the step-

length such that for �xed ∆t > ∆t0 the method is unstable. Absolute stability

considers the behavior of a numerical integration method for a �nite value of ∆t

[17; 18; 21]. The absolute stability of the method (3) depends not only on the

numerical integration method, but also on equation (1). The standard analysis of

absolute stability of linear numerical integration methods is based on the second

characteristic polynomial [17; 18; 21] and a constant matrix J = ∂f
∂y . However, co-

simulation leads to a partitioning of the right-hand side of (2) and therefore the

second characteristic polynomial cannot be used. Hence, to study absolute stability,

we will use methods di�erent from the ones in [17; 18; 21].

2.3. Convergence

We will now de�ne convergence [18].

De�nition 2.4 (Convergence). Consider the problem represented by equation (1)

and for N ∈ N, N > 0, let τN , {tn ∈ R | tn = a + n ∆t, n ∈ {0, 1, . . . , N}, ∆t =

(b−a)/N}. A numerical integration method is said to be convergent if for all tn ∈ τN ,

lim
N→∞

yn = y(tn). (5)
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A necessary and su�cient condition for a numerical integration method to be

convergent is that it is both consistent and zero-stable [17; 18].

3. Consistency of co-simulation

In the co-simulation discussed in this article, the system of equations (2) is �rst

partitioned algebraically, and then solved in coupled simulators. At the (n + k)-th

time step, where n + k ≤ N , the coupling data depends on {yn+j ∈ Rm | j ∈
{0, 1, 2, . . . , k}, n ∈ {0, 1, . . . , N}, N = (b − a)/∆t}. If the simulators are loosely

coupled, the coupling data at tn+k is not available to (both) coupled simulators and

needs to be predicted based on the data of the preceding time steps. Thus, in the

right-hand side of (2), the argument yn+k is replaced yn+k
P , which is the prediction

of the state vector. Consequently, in loosely coupled co-simulation, equation (2)

becomes

k∑
j=0

αjyn+j = ∆tφf(yn+k
P ,yn+k−1, . . . ,yn, tn; ∆t), (6)

and equation (4) becomes

yn+1 − yn = ∆t[(1− α)f(yn, tn) + αf(yn+1
P , tn+1)]. (7)

To determine the consistency of co-simulation, we directly use De�nition 2.3. For

the numerical approximation (7), the unit local truncation error is

ULTEn+1(∆t) =
1

∆t

(
y(tn+1)− y(tn)

−∆t
[(

1− α
)
f
(
y(tn), tn

)
+ αf

(
yP (tn+1), tn+1

)])
, (8)

where yP (tn+1) is an approximation of y(tn+1) based on the known values {y(tn−j) ∈
Rm | j ∈ {0, 1, . . . , n}}. Adding and substracting αf(y(tn+1), tn+1) to the right hand

side and collecting terms that correspond to the unit local truncation error of the
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original, non-partitioned numerical method, yields

ULTEn+1(∆t) = ULTEn+1
non-partitioned(∆t)

+ α
[
f
(
y(tn+1), tn+1

)− f
(
yP (tn+1), tn+1

)]
. (9)

Applying the norm on both sides of equation (9) yields

‖ULTEn+1(∆t)‖ ≤ ‖ULTEn+1
non-partitioned(∆t)‖

+ αL‖(y(tn+1)− yP (tn+1)
)‖, (10)

where L is a Lipschitz constant.

To evaluate the order of the error, the exact solutions of the state vectors in the two

subsequent time steps, y(tn+1) and y(tn), is expressed using a Taylor series around

tn + α∆t, for any α ∈ [0, 1]. When substituted into equation (10) for the zero-order

prediction yP (tn+1) = y(tn), one obtains

‖ULTEn+1(∆t)‖ ≤ ‖ULTEn+1
non-partitioned(∆t)‖+ α L O(∆t). (11)

It follows from equation (11) and from lim∆t→0 α L O(∆t) = 0

that if the original non-partitioned numerical method is consistent, i.e.,

lim∆t→0 ‖ULTEn+1
non-partitioned(∆t)‖ = 0, then the partitioned numerical method

is consistent as well. Furthermore, the unit local truncation error introduced

by the partitioning is of order one. Hence, the order of �rst order accurate

methods will not be changed by the partitioning. However, for the Crank-Nicholson

method (α = 1/2), which is a second order method, the order will be reduced by

partitioning.

In Section 5, the in�uence of system parameters on the unit local truncation

error introduced by partitioning will be further analyzed using a two-body problem.
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4. Zero-stability and convergence of co-simulation

By inspection of the partitioned linear numerical integration method (7), it can be

seen that the partitioning changes only the right-hand side of the equation. The �rst

characteristic polynomial that determines zero-stability of a numerical integration

method depends only on the coe�cients on the left-hand side of equation (7) and thus

remains unchanged. Consequently, the partitioning does not disturb the properties

of the zero-stability of the non-partitioned numerical integration method.

Since by equation (11) it was shown that the numerical integration method (7)

is consistent, and since the zero-stability of the original numerical method is not

changed with partitioning, it follows that the numerical integration method (7) is

convergent.

The absolute stability of the partitioned numerical integration method (7) will

be examined in the following section using a speci�c two-body system.

5. Analysis of co-simulation for a two-body system

To gain insight into the solution characteristics of the partitioned numerical

simulation of building and HVAC simulations, we will analyze the system shown in

Figure 4. The example is a simpli�ed representation (but still based on the same

subset of physical laws) of problems tackled by BPS tools. It constitutes of two

subsystems with lumped capacities. Each subsystem is represented by a single state

variable. Each subsystem interacts with the surrounding environment through heat

transfer by conduction and convection and with each other through �uid �ow. The

subsystems are connected by a �uid loop.

In case of co-simulation, the �ow of information is as presented in Figure 2, where

simulator 1 simulates the subsystem denoted with index 1 and simulator 2 simulates

the subsystem denoted with index 2. For the analysis purpose of this paper both
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subsystems are modeled and simulated in Mathematica 61.

5.1. Mathematical model

The system in Figure 4 is modeled as an initial value problem for t ∈ [a, b]:

CṪ(t) + ST(t) = g(t),

T(a) = T0, (12)

where

T(t) =




T1(t)

T2(t)


 ,C =




C1 0

0 C2


 ,S =




ṁcp + K1 −ṁcp

−ṁcp ṁcp + K2


 ,g(t) =




g1(t)

g2(t)


 .

T(·) is a temperature vector, C is a non-singular diagonal matrix for the capacity,

S is a matrix that couples the subsystems and g(·) is a forcing function. As for

problem (1), we assume that g(·) is once Lipschitz continuously di�erentiable. The

subscripts 1 and 2 refer to the subsystems in Figure 4, and the subscript∞ refers to

the environment, Ci is the overall heat capacity, Ki , UiAi, where Ui is the overall

heat transfer coe�cient (assumed invariant) and Ai is the heat exchange surface

area, ṁ is the working �uid mass �ow, cp is the speci�c heat capacity of the working

�uid and gi(t) = KiT∞ is the forcing function acting upon the i-th subsystem.

In general, the �ow rate is a function of time and the heat transfer coe�cient is

a function of temperature and therefore the matrix S is time variant. The matrices

C and S are also temperature dependent. However, to simplify the analysis, the

problem described by equation (12) is regarded as a linear time-invariant system.

In Section 5.2.1, we comment on the situation where the coe�cients of the matrix

S are time varying.

1However, it should be noted that state of the art tools in BPS are used our prototypes that
are used to simulate whole buildings[1].
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5.1.1. Numerical approximation to the solution

Applying a linear one-step numerical integration method (4) to approximate the

solution of (12), and rearranging equations to place the known terms on the right-

hand side and the unknown terms on the left-hand side, yields

[C + α∆tS]Tn+1 = ∆t[α g(tn+1) + (1− α)g(tn)] + [C− (1− α)∆tS]Tn,(13)

with initial condition T0 = T0.

5.1.2. Partitioning of the numerical integration method

In loosely coupled co-simulation, the numerical integration method (13) changes

to

[C + α∆tSI ]Tn+1 = ∆t[α g(tn+1) + (1− α)g(tn)]

+ [C− (1− α)∆tS]Tn − α∆tSETn+1
P (14)

where Tn+1
P is the predicted temperature vector at tn+1, based on the known temper-

ature vectors from the preceding steps, and SI and SE are partitions of the matrix

S. Di�erent decomposition strategies lead to di�erent partitioning of the matrix S.

Implicit-implicit partitioning leads to

S = SI + SE =




ṁcp + K1 −ṁcp

0 ṁcp + K1


 +




0 0

−ṁcp 0


 , (15)

whereas implicit-explicit partitioning leads to

S = SI + SE =




K1 −ṁcp

0 ṁcp + K1


 +




0 0

−ṁcp ṁcp


 . (16)

Equations (15) and (16) will be used in Section 5.3 to de�ne criteria for absolute

stability.
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5.2. Consistency

Analyzing the unit local truncation error ULTEn+1(∆t) allows getting insights

on how the systems characteristics, such as the thermal capacity, in�uence the error

introduced by the partitioning. To accomplish this, �rst, the numerical integration

method (14) is written in the form of equation (4), which gives

Tn+1 −Tn = ∆ t
[
(1− α)C−1(gn − STn)

+ αC−1(gn+1 − SI Tn+1 − SE Tn+1
P )

]
. (17)

Then, using De�nitions 2.1 and 2.2, the unit local truncation error of the numerical

integration method (17) yields

ULTEn+1(∆t) =
1

∆t

(
T(tn+1)−T(tn)

−∆t[(1− α)C−1
(g(tn)− ST(tn) )

+ αC−1(g(tn+1)− SI T(tn+1)

−SE TP (tn+1) )]
)
. (18)

Since we assumed g(·) to be Lipschitz continuously di�erentiable, it follows that

T(·) is Lipschitz continuously di�erentiable. Hence, we will use the zero-order pre-

diction TP (tn+1) = T(tn), and express g(tn+1) and g(tn), and T(tn+1) and T(tn),

around time tn + α∆t, for any α ∈ [0, 1], by a Taylor series. Then, equation (18)

yields

ULTEn+1(∆t) = C−1
(
CṪ(tn + α∆t) + ST(tn + α∆t) − g(tn + α∆t)

)

− 1

2
(1− 2α) T̈(tn + α∆t) ∆t

−αC−1SE Ṫ(tn + α∆t) ∆t + O(∆t2). (19)

Substituting equation (12), evaluated at time tn + α∆t, into equation (19) the unit
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local truncation error yields

ULTEn+1(∆t) =
1

2
(1− 2α) T̈(tn + α∆t) ∆t

+ αC−1SE Ṫ(tn + α∆t) ∆t + O(∆t2). (20)

The term 1
2
(1−2α) T̈(tn+α∆t) ∆t+O(∆t2) is caused by the original non-partitioned

numerical integration method (13), while the term αC−1SE Ṫ(tn+α∆t) ∆t+O(∆t2)

is introduced by the partitioning.

This shows that the unit local truncation error due to the partitioning is pro-

portional to the factor α, and thus it is zero for the explicit numerical integration

method, as expected. The greater the capacity of the external subsystem, the smaller

the unit local truncation error is. The smaller the rate of change of the delayed data

at tn + α∆t and the smaller ∆t, the smaller the unit local truncation error is.

The accuracy of the partitioned numerical integration method that uses a �rst-

order prediction of the form (30) (see Section 5.5.1) for the coupling data can be

evaluated in a similar way, by using the exact solutions of the temperature vectors

in the two subsequent time steps, T(tn−1) and T(tn), expressed around tn + α∆t

by means of a Taylor series. Substituting these expressions into the expression for

ULTEn+1(∆t), one obtains

ULTEn+1(∆t) =
1

2
(1− 2α) T̈(tn + α∆t) ∆t

− 1

2
αC−1(αS− SI + SE) T̈(tn + α∆t) ∆t2 + O(∆t3).(21)

Here, the term αC−1SE T̈(tn +α∆t) ∆t2 +O(∆t3) is introduced by the partitioning.

The introduced error is of order two and it can be concluded that the prediction of

the coupling data enhances the accuracy of co-simulation.
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5.2.1. In�uence of the time-varying matrix that couples the subsystems

We will now comment on the in�uence of time variant coe�cients of the matrix

S to the unit local truncation error introduced by the partitioning. For this purpose,

we will assume that the heat conduction system of equation (12) is coupled to an

algebraic system of equations that is used to model the �uid �ow rate. In particular,

the �uid �ow rate is modeled as a linear function of the subsystems' states. In co-

simulation, this algebraic system of equations is partitioned as well.

Let S(tn+1; ∆t) , S∗(tn+1; ∆t) + ∆S(tn+1; ∆t) be the unknown exact value and let

∆S(tn+1; ∆t) contain the unit local truncation error introduced by the partitioning

in one time step. Following the same procedure as before, the unit local truncation

error yields

ULTEn+1(∆t) =
1

∆t

(
T(tn+1)−T(tn)

−∆t[(1− α)C−1
(gn − [S(tn; ∆t) ]T(tn) )

+ αC−1(gn+1 − [S∗I(tn+1; ∆t) + ∆SI(t
n+1; ∆t)]T(tn+1)

− [S∗E(tn+1; ∆t) + ∆SE(tn+1; ∆t)]TP (tn+1) )]
)
. (22)

The error introduced by the partitioning can be written as

ULTEn+1
partitioning(∆t) = αC−1∆S(tn+1; ∆t)T(tn + α∆t) + O(∆t) (23)

and thus, for the unit local truncation error to vanish, the term ∆S(tn+1; ∆t) need

to vanish as ∆t → 0.

5.3. Absolute stability

As described in Section 2.2.2, due to the partitioning, the second characteristic

polynomial cannot be used to determine the absolute stability of the partitioned

integration method. Instead, the absolute stability of the mutated numerical inte-

gration methods (7) (used with the sequential staggered solution) will be analyzed
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using the Routh-Hurwitz stability criterion as reported in [13] and [22].

The stability of the partitioned numerical integration method (14) can be exam-

ined by seeking nontrivial solutions for g(tn) = 0, n ∈ {1, 2, . . . N} and Tn+1
P = Tn

in the form Tn+1 = ATn, or

Tn+1 = γTn, (24)

where γ represents one of the eigenvalues {γi ∈ C | i ∈ {1, 2, . . . , m}} of A. The

eigenvalue γ is also known as the solution ampli�cation factor. The system is stable

when max |γi| ≤ 1 for all i ∈ {1, . . . ,m}. To analyze the Routh-Hurwitz criterion,

γi is replaced by

γi =
1 + zi

1− zi

, (25)

where zi ∈ C for i ∈ {1, 2, . . . ,m}. Equation (25) maps the unit circle de�ned by

|γi| ≤ 1 into the negative real half-plane Re(z) ≤ 0. This implies that as long as

Re(z) ≤ 0, the numerical integration method (14) will be stable.

Substituting (24) and (25) in equation (14) the following system is obtained:

J(z)Tn = 0, (26)

where J(z) = [2C+α∆t(SI−SE)−(1−α)∆tS]z+∆tS. To obtain nontrivial solutions

of equation (26), detJ(z) needs to be zero. If the substitutions τ1 = ṁcp + K1, τ2 =

ṁcp +K2, µ = ṁcp, ζ1 = C1, and ζ2 = C2 are used for implicit-implicit partitioning

(15), then equation (26) yields

det




[2ζ1 + (2α− 1)∆tτ1]z + ∆tτ1 (∆tµ− 2α∆tµ)z −∆tµ

∆tµz −∆tµ [2ζ2 + (2α− 1)∆tτ2]z + ∆tτ2


 = 0, (27)

or

a0z
2 + a1z + a2 = 0, (28)
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where

a0 = [2ζ1 + (2α− 1)∆tτ1][2ζ2 + (2α− 1)∆tτ2] + (2α− 1)∆t2µ2,

a1 = [2ζ1 + (2α− 1)∆tτ1]∆tτ2 + [2ζ2 + (2α− 1)∆tτ2]∆tτ1

+ 2(1− α)∆t2µ2, and

a2 = ∆t2τ1τ2 −∆t2µ2.

The Routh-Hurwitz criterion [23] de�nes conditions for the coe�cients a0, a1,

and a2, in order to have all the roots, z, of the equation (28) in the left half plane

Re(z) ≤ 0. The criterion is that all the roots of the polynomial (28) have negative

real parts if and only if the inequalities a0 > 0, a1 ≥ 0 and a2 ≥ 0 hold.

If α ≥ 1/2 then both a0 and a1 are positive. The criterion τ1τ2 ≥ µ2 is addition-

ally required in order to satisfy the third inequality. It is obvious that this is satis�ed,

as (ṁcp + K1)(ṁcp + K2) ≥ (ṁcp)
2 always holds. Therefore, the co-simulation is

unconditionally stable if α ≥ 1/2.

If α < 1/2, the co-simulation is conditionally stable. The necessary stability

criteria is ∆t20 < 4ζ1ζ2
(1−2α)2(τ1τ2−µ2)

.

For implicit-explicit partitioning the stability criterion di�ers. The coe�cient a2

remains unchanged, while even for the time weighting factor α ≥ 1/2 the inequalities

a0 > 0, a1 ≥ 0 do not hold for some values of the coupling term ṁcp.

It can be shown that for α = 1/2, the critical time step equals ∆t0 = 2/µ. More

general expressions for the critical time step for the implicit-explicit partitioning

can be obtained by following a cumbersome calculation which does not result in an

elegant formulae. Due to the partitioning of the diagonal term of the S matrix,

implicit-explicit partitioning has a more strict stability criterion.

If the subsystems are linked by a control loop, the absolute stability criterion is

in�uenced by the control parameters. However, the stability criterion is di�cult to

express and we will not report it here.
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5.4. Comparison to an analytical solution

To illustrate the behavior of the error introduced by the partitioning, a free-

response system, represented by equation (12) in which the forcing function is set

to g(t) = 0 is used. The analytic solution is

T = T0e
(t−a)C−1S. (29)

The analytic solution is compared to the results obtained by co-simulation, repre-

sented by equation (14) with g(t) = 0, using di�erent coupling time steps. The

results of one set of parameters2 are shown in Figure 5. Increasing the coupling time

step degrades the accuracy of co-simulation results as expected.

5.5. Measures to improve accuracy of co-simulation solution

We will now list possible measures that can be used to improve accuracy of

loosely coupled co-simulation.

• Co-simulation can be executed with small time steps.

• Instead of loose coupling, co-simulation can be implemented using strong cou-

pling. As discussed in the introduction, the strong coupling approach requires

an increased e�ort for code modi�cation to ensure the correct synchronization

and rewinding of the state of the passively executed simulator. In addition, it

requires that the simulators compute their iterative solutions at an accuracy

that is higher than the accuracy that is used by the co-simulation manager to

determine the iteration on the coupling variables. Such an implementation is

discussed in [24].

• Co-simulation can run with a variable time step size. The time step could be

calculated based on the unit local truncation error. Both coupled simulators

2The illustrative purpose of examples in this paper is in the relative di�erence between the
presented examples. The speci�c sets of parameters are thus not of the importance for this purpose
and will not be reported in the paper.
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need to have additional features in order to change the simulation time step

during the execution time. As this feature is available only in few state of the

art tools from the BPS domain, it will not be discussed further.

• Instead of the zero-order prediction of the coupling data, a more accurate

prediction can be used. This approach will be addressed further in more detail.

5.5.1. Predictions

The accuracy might be improved by using a more accurate prediction for the

coupling data instead of the zero-order prediction. We de�ne the approximation to

the �rst order prediction as

Tn+1
P , 2Tn −Tn−1. (30)

Figure 6 shows comparison between results obtained by co-simulation with and

without predictions given a set of subsystems' parameters3. The reference curve

is obtained by co-simulation without predictions using signi�cantly smaller time

steps than in the other two co-simulations. The results of co-simulation using �rst-

order prediction is signi�cantly closer to the reference curve than the results of

co-simulation using zero-order prediction.

Piperno [25] compared the performance of several predictions and found that the

most accurate and stable prediction is the one that, adapted for the case studied

here, has the form: Tn+1
P = Tn+∆t(1.5Ṫn−0.5Ṫn−1

), which can be approximated by

Tn+1
P ≈ 2.5Tn−2Tn−1 +0.5Tn−2. Given another set of subsystems' parameters, the

comparison between the simple �rst-order prediction and the prediction suggested

by Piperno for larger time steps are shown in Figure 7. The reference curve is

obtained by co-simulation without predictions using signi�cantly smaller time steps

3Depending on the order of the prediction, there may be several coupling data that need to be
initialized. In the �rst time step, the values of the coupling data in one or more preceding time
steps are assumed to be equal to the initial value of that variable.
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than in the other two co-simulations. The prediction suggested by Piperno is closer

to the reference curve.

In the above numerical experiments, the coupling data changed little per time

step. In more realistic simulations with fast transients in coupling data, we observed

that higher-order predictions overestimated the future values, which led to a lower

accuracy [26].

6. Conclusions

Due to the high e�ort required to develop building performance prediction tools

and the low market interest, the signi�cant e�ort required to develop BPS tools

has been left to a fragmented research community. This has resulted in a slower

development and inferior capabilities compared to simulation tools used in other

industry sectors, such as the automotive, electronics or aerospace sector. State

of the art BPS tools are not equally suited for modeling and simulation of the

relevant building aspects. Moreover, the user's requirements often exceed the tool's

functionality.

One way to alleviate this problem is to use co-simulation. The focus of this article

was to investigate the characteristics of co-simulation that uses loose coupling, since

this strategy can be most e�ciently implemented using legacy BPS tools.

The study reported in this article was limited to partitioning of linear one-step

numerical integration methods. The investigation showed that new numerical inte-

gration methods, obtained by the partitioning of the original numerical integration

methods, are zero-stable and consistent, and thus convergent. The unit local trun-

cation error of the original numerical integration method is changed. The order of

the unit local truncation error due to the partitioning is one, which means that the

order of the unit local truncation error of the second-order numerical integration

methods is reduced by the partitioning.

To gain insights into how HVAC system characteristics in�uence the unit local
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truncation error introduced by the partitioning, the unit local truncation error anal-

ysis was continued on a two-body system, described by a time-invariant system of

linear �rst-order di�erential equations. It was shown that the unit local truncation

error was related to the system characteristics as follows: The greater the heat ca-

pacity of the subsystem simulated in the external simulator, the smaller the unit

local truncation error is. Also, the lower the rate of change of the delayed coupling

and the smaller ∆t, the smaller the unit local truncation error is.

An investigation of the unit local truncation error under the in�uence of time

varying coe�cients of the matrix S showed the following: The smaller the unit local

truncation error in the time varying coe�cients, introduced by the partitioning in one

simulation time step, i.e., ∆S(tn+1; ∆t), the smaller the overall unit local truncation

error is.

A stability analysis using the Routh-Hurwitz stability criterion was performed on

the two-body system. The analysis resulted in a cumbersome calculation procedure

already when small complexities were introduced to the problem. For the two-

body time-invariant system represented by a system of linear �rst order di�erential

equations, the partitioned numerical integration method is unconditionally stable

for α ≥ 1/2.

To enhance accuracy, several measures can be taken, such as (i) the use of strong

coupling, (ii) the use of a variable time step and (iii) the use of predictions for the

coupling data. If changes in the coupling data are small, the use of a �rst-order

prediction increases accuracy of loosely coupled co-simulation.

7. Nomenclature

7.1. Conventions

1. Vectors are typeset in bold fonts.

2. Superscripts denote the time step number.
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3. f(·) denotes a function where (·) stands for the undesignated variables. f(x)

denotes the value of f(·) for the argument x. f : A → B indicates that the

domain of f(·) is in the space A, and that the image of f(·) is in the space B.

4. y(t) is a state variable and ẏ(t) denotes the time derivative of the state variable.

5. We say that a function f : Rn → R is once Lipschitz continuously di�erentiable

if f(·) is de�ned on Rn, and if f(·) has a Lipschitz continuous derivative on

Rn.
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7.2. Symbols
a ∈ A a is an element of A

a polynomial coe�cients

A area

C heat capacity

S interaction matrix

cp speci�c heat capacity

E explicit

g forcing function

i, j, k, n counters

I implicit

h convective heat transfer coe�cient

HG heat gain

inf in�ltration

L Lipschitz constant

LTE local truncation error

ṁ mass �ow

N set of natural numbers, N = {0, 1, 2, . . .}
Q̇ heat rate

P predicted

R set of real numbers

C diagonal matrix for the capacity

s surface

sys system related

U speci�c heat capacity

ULTE heat transfer coe�cient

T temperature vector

t time

z zone, and complex number

α, β, µ, τ, ζ scalar parameters

∆ di�erence

γ ampli�cation factor
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Figure 1: Sequence of coupling data exchange. a) Time-state scheme of strong coupling; b) Time-
state scheme of loose coupling with sequential simulators execution; and c) Time-state scheme of
loose coupling with parallel simulators execution.
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Figure 2: Flow-chart of the loosely-coupled implementation.
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Figure 4: Two-body system.
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Figure 5: Comparison between analytical solution and the results of co-simulation using di�erent
coupling time steps for the free-response system. The temperature of the subsystem denoted with
index 2.
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Figure 6: Comparison between co-simulation results with and without predictions. The tempera-
ture of the subsystem denoted with index 2.
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Figure 7: Co-simulation results using di�erent predictors plotted against the reference curve, ob-
tained with the larger time step. The temperature of the subsystem denoted with index 2.
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