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Abstract

Mesh router nodes placement is a central problem in Wireless Mesh Net-
works (WMNs). An efficient placement of mesh router nodes is indispensable
for achieving network performance in terms of both network connectivity and
user coverage. Unfortunately the problem is computationally hard to solve
to optimality even for small deployment areas and a small number of mesh
router nodes. As WMNs are becoming an important networking infrastruc-
ture for providing cost-efficient broadband wireless connectivity, researchers
are paying attention to the resolution of the mesh router placement prob-
lem through heuristic approaches in order to achieve near optimal, yet high
quality solutions in reasonable time. In this work we propose and evaluate
a Simulated Annealing (SA) approach to placement of mesh router nodes in
WMNs. The optimization model uses two maximization objectives, namely,
the size of the giant component in the network and user coverage. Both
objectives are important to deployment of WMNs; the former is crucial to

∗Corresponding author. Address: Departament de Llenguatges i Sistemes Informàtics,
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achieve network connectivity while the later is an indicator of the QoS in
WMNs. The SA approach distinguishes for its simplicity yet its policy of
neighborhood exploration allows to reach promising areas of the solution
space where quality solutions could be found. We have experimentally evalu-
ated the SA algorithm through a benchmark of generated instances, varying
from small to large size, and capturing different characteristics of WMNs
such as topological placements of mesh clients. The experimental results
showed the efficiency of the annealing approach for the placement of mesh
router nodes in WMNs.

Key words: Wireless Mesh Networks, Simulated Annealing, Size of Giant
Component, User Coverage.

1. Introduction

Node placement problems are known for their capability to model many
combinatorial optimization problems related to facility and location concepts.
They are showing their usefulness also in modelling optimization problems
from Wireless Mesh Networks (WMNs). In their general setting, node place-
ment problems aim at finding optimal placement of facilities (“facilities pro-
vides some kind of service to clients”) such that the system services, e.g.
cost reduction, demand capture, equitable service supply, fast response time,
etc. are optimized. In the case of mesh router nodes placement, facilities
are mesh routers that provide connectivity to mesh client nodes. In fact, the
node placement problem considered in this paper is even more challenging
due to two additional characteristics: (a) locations of mesh router nodes are
not pre-determined (any available position in the considered area can be used
for deploying the mesh routers), and (b) routers are assumed to have different
radio coverage area and thus some routers are more powerful than others.
This later characteristic is important to explore in view of client density in
the deployment area.

Wireless Mesh Networks (WMNs) [1, 12] are becoming an important net-
working infrastructure due to their low cost and increased high speed wire-
less Internet connectivity. In WMNs there are have two types of nodes:
mesh routers and mesh clients. Mesh routers are similar to normal routers
but incorporate also additional functions to support mesh networking, and
are usually equipped with multiple interfaces to work with different wireless
technologies. Another feature of this type of routers with respect to normal
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routers is their ability to provide the same coverage with much less trans-
mitter power through multi-hop communications. Also, mesh routers can be
installed on a dedicated machine or on a general purpose machine. With re-
gard to mesh clients, they have the necessary functions for mesh networking
and could also be able to act as routers but do not have the functionality of
a gateway or bridge and their single wireless interface with the hardware and
software platform is much simpler than in the case of mesh routers.

The placement of mesh nodes plays an important role in achieving impor-
tant properties of WMNs such as reliability, robustness, and self-configuration.
Indeed, the performance of WMNs is primarily affected by the location of
mesh nodes, specifically, that of mesh router nodes of the WMN. However, in
a real deployment of WMN the automatic or purely random node placements
produce poor performance since the resulting placement could be far from
optimal. Moreover, an efficient deployment of mesh router nodes in WMNs
may require to take into account specific restrictions and characteristics of
real geographic area and therefore one needs to explore different topologies
for placing mesh routers.

From a combinatorial optimization perspective, mesh node placement in
WMNs is in fact a family of problems, actually, different versions of the
problem can be obtained depending on the types of mesh nodes to deploy
as well as the objectives to optimize. For instance, in [9, 11, 16, 13] there
is considered the gateway placement aiming to optimize the throughput.
In [5], the authors consider a bi-objective version of the problem for two-tier
WMNs. Vanhatupa et al. [14] considered Genetic Algorithm approaches for
optimizing node placement and configuration for WLAN planning. Chen et
al. [3] considered the case of urban wireless mesh network planning for the
case of directional antennas.

Unfortunately, node placement problems are shown to be computation-
ally hard to solve to optimality [6, 10, 2, 17], and therefore heuristic and
meta-heuristic approaches are used to cope with them in practice. Heuris-
tic methods distinguish for achieving near-optimal solutions in reasonable
time. It should be noted that even though such solutions could be local op-
tima, they suffice for most practical situations when facility locations must
be computed before deployment of the system in a real setting.

In this work we consider the version of the problem that given an area
where to distribute a number of mesh router nodes and a number of mesh
client nodes of fixed positions (of an arbitrary distribution), the objective
is to find a location assignment for the mesh routers that maximizes both
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the network connectivity1 and client coverage. These two objectives are
among most important objectives in WMNs. Both of them are related to the
performance of the network; the later can be also seen as a QoS in WMNs.
We propose and evaluate a Simulated Annealing (SA) approach for solving
mesh router node placement problem. The optimization approach follows a
hierarchical setting in which the primary objective is that of maximizing the
size of the giant component while user coverage is considered secondary one.
In such setting, the SA algorithm tries to first maximize the size of the giant
component and then tries to maximize the user coverage without worsening
the size of the giant component.

SA is a local search based method that distinguishes for its efficiency
in reaching faster near-optimal solutions. Different from simple local search
methods such as Hill climbing, SA accepts neighboring solutions which could
be worse than current solution, in an attempt to escape from local optima.
Research in heuristic methods has shown that SA is more effective than
simple local search and can find high quality solutions if an effective cooling
strategy is employed. Moreover, SA has shown to be effective in finding the
optimal solution for both discrete and continuous optimization problems.

We have experimentally evaluated the proposed SA algorithm through a
benchmark of generated instances, consisting of 48 instances, ranging from
small to large size in terms of mesh router nodes and the grid area. More-
over, instances are generated using different distributions of mesh clients
(Uniform, Normal, Exponential and Weibull). In the experimental study we
evaluated the effectiveness of different local movements, namely, Random,
Radius, Swap and Combination, in terms of the maximization of the size of
the giant component and user coverage.

The rest of the paper is organized as follows. In Section 2 we present
the definition of the mesh router nodes placement problem in WMNs. The
SA approach and its application to mesh router nodes placement problem is
presented in Section 3. The experimental evaluation is given in Section 4.
We end the paper in Section 5 with some conclusions.

2. Problem statement

In a general setting, location models in the literature (see e.g. [7]) have
been defined as follows:

1Network connectivity is measured by the size of the giant component.
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• a universe U , from which a set C of client input positions is selected;

• an integer, N ≥ 1, denoting the number of facilities to be deployed;

• one or more metrics of the type d : U × U → R+, which measure the
quality of the location, and

• an optimization model that takes in input the universe where facilities
are to be deployed, a set of client positions and returns a set of positions
for facilities that optimize the considered metrics.

It should be noted that different models can be established depending on
whether the universe is considered:

(a) continuous (universe is a region, where clients and facilities may be
placed anywhere within the continuum leading to an uncountably infi-
nite number of possible locations);

(b) discrete (universe is a discrete set of predefined positions); and,

(c) network (universe is given by an undirected weighted graph; in the graph,
client positions are given by the vertices and facilities may be located
anywhere on the graph).

We consider the version of the mesh node placement problem correspond-
ing to the network space model above (see [4] –Chapter 3 in [7]). Thus, in
this version, we are given a 2D area where to distribute a number of mesh
router nodes and a number of mesh client nodes of fixed positions (of an
arbitrary distribution) and finds a location assignment for the mesh routers
that maximizes the network connectivity (size of the giant component) and
client coverage. An instance of the problem consists of:

• N mesh router nodes, each having its own radio coverage.

• An area W ×H where to distribute N mesh routers. Positions of mesh
routers are not pre-determined. The area is divided in square cells of
an a priori fixed length and mesh router nodes are to be deployed in
the cells of the grid area.

• M client mesh nodes located in arbitrary cells of the considered grid
area.
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An instance of the problem can be formalized by an adjacency matrix
of the WMN graph, whose nodes are of two types: router nodes and client
nodes and whose edges are links in the mesh network (there is a link between
a mesh router and mesh client if the client is within radio coverage of the
router). It should be noticed that here the deployment area is arranged in
grid cells, representing graph nodes, where we can locate mesh nodes. In
fact, in a cell, both a mesh and a client node can be placed.

2.1. Optimization setting

The objective is to place mesh router nodes in cells of considered area to
maximize network connectivity and user coverage. For optimization problems
having two or more objective functions, two settings are usually considered:
the hierarchical and simultaneous optimization. In the former, the objectives
are classified (sorted) according to their priority. Thus, for the two objective
cases, one of the objectives, say f1, is considered as primary objective and
the other, say f2, as secondary one. In the former, we try to optimize f1,
and then, we try to optimize f2 without worsening the best value of f1. In
the later approach, both objectives are optimized simultaneously.

In this work we have considered the hierarchical approach2 in which the
size of the giant component is a primary objective and the user coverage
is a secondary one. Thus, the local search algorithm will first maximize
the size of the giant component through local perturbations; next, when no
further improvements are possible, the algorithm will try to maximize the
user coverage without worsening the size of the giant component.

2.2. Client mesh nodes distributions

It should be noted from the above problem description that mesh client
nodes can be arbitrarily situated in the given area. For evaluation purposes,
it is interesting, however, to consider concrete distributions of clients. For
instance, it has been shown from studies in real urban areas or university cam-
puses that users (client mesh nodes) tend to cluster to hotspots. Therefore,
different client mesh nodes distributions should be considered, for instance
Weibull distribution, in evaluating WMN metrics. We have considered Uni-
form, Normal, Exponential and Weibull distributions for client mesh nodes
in the experimental evaluation (see Section 4).

2In the bi-objective case, this model is also known as bi-level optimization approach.
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3. Simulated Annealing

Simulated Annealing (SA) algorithm (proposed by S. Kirkpatrick et al. [8])
is inspired by the cooling process of metals by which a material is heated and
then cooled in a controlled way to increase the size of its crystals and reduce
their defects. The heat causes the atoms to leave their initial positions (a
local minimum of energy) and move randomly; the slow cooling gives them
more likelihood to find configurations with lower energy than the previous
one. In each iteration, it considers some neighbors of the current state s, and
probabilistically decides between changing the system to the state s′ or stay-
ing in the state s. The probabilities are chosen so that the system converges
towards lower energy states. Typically this step is repeated until the system
reaches a state good enough for the application or when a certain number of
iterations is performed. The probability of making the transition to the new
state s′ is a function P (δE, T ) of the energy difference δE = E(s′) − E(s)
between the two states, and the variable T , called temperature.

An important characteristics of the SA algorithm is that the transition
probability P is always non-zero, even when δE is positive, i.e., the system
can move to a higher energy state (worse solution) than the current state.
This fact allows the method to overcome local optima. So, when the tem-
perature tends to a minimum, the probability tends to zero asymptotically.
Thus, every time the algorithm accepts fewer moves to increase the system’s
energy. If δE is negative, i.e., the transition energy decreases, the movement
is accepted with probability P = 1. The idea is that as the algorithm pro-
gresses through the search space, the temperature decreases according to a
particular function (which is usually an exponential function).

3.1. Pseudo-code of basic SA algorithm

SA algorithm is a generalization of the Hill Climbing (HC) heuristic.
Indeed, SA consists of a sequence of executions of HC with a progressive
decrement of the temperature starting from a an “high” temperature, where
almost any move is accepted, to a low temperature, where the search resem-
bles HC. In fact, it can be seen as a hill-climber with an internal mechanism
to escape local optima (see pseudo-code in Alg. 1). In SA, the solution s′ is
accepted as the new current solution if δ ≤ 0 holds, where δ = f(s′)− f(s).
Additionally, to allow escaping from a local optimum, moves that increase
the energy function are accepted with a decreasing probability exp (−δ/T )
if δ > 0, where T is the temperature parameter (see function Accept in
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Alg. 1). The decreasing values of T are controlled by a cooling schedule,
which specifies the temperature values at each stage of the algorithm, what
represents an important decision for its application (a typical option is to use
a proportional method, like Tk = α ·Tk−1). SA usually gives better results in
practice, but tends to be rather slow. The most striking difficulty in applying
SA is to choose and tune its parameters such as initial and final temperature,
decrement of the temperature (cooling schedule), equilibrium detection, etc.

Algorithm 1 : Pseudo-code of Simulated Annealing.
t := 0
Initialize T
s0 := Initial Solution()
v0 := Evaluate(s0)
while (stopping condition not met) do
while t mod MarkovChainLen = 0 do
t := t+1
s1 := Generate(s0,T ) //Move
v1 := Evaluate(s1)
if Accept(v0,v1,T ) then
s0 := s1
v0 := v1

end if
end while
T := Update(T )

end while
return s0

3.2. Particularization of SA for mesh router node placement

We present here the particularization of the SA algorithm for the case of
mesh router node placement problem in WMNs.

Initial solution. The algorithms starts by generating an initial solution. Ei-
ther random or ad hoc methods can be used for this purpose (see [15] for
implementation of ad hoc methods for the problem).

Evaluation of fitness function. An important aspect is the determination
of an appropriate adaptive function or objective function and its encoding.
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Ideally, we would construct objective functions with certain regularities, i.e.
objective functions for which it holds that for any two solutions that are close
in the search space, their respective fitness values in the objective functions
are similar. One issue to consider here is that if the fitness function has
not been correctly coded, there can appear many local optima in search
space, which could prevent the algorithm from progressing towards desired
solutions.

As stated earlier, we tackle a bi-criteria optimization problem in which
the fitness function follows a hierarchical approach. The main objective is to
maximize the size of giant component in WMN while the number of covered
users is considered a secondary objective. In this way, we prioritize the
connection between the routers in order to ensure network connectivity and
at the same time trying to achieve the largest number of users covered.

Neighbor selection and movement types. The neighborhood structure is es-
sential in the design of SA. On the one hand, the neighborhood structure,
and therefore the movement type from one solution to a neighboring solu-
tion, determines the time efficiency of the algorithm as a considerable part of
the running time of SA is spent to explore the neighborhood. In this sense,
it is desirable to define several movement types and study the performance
of SA using them. On the other hand, the movement type is based on the
combinatorial structure of the solution and therefore some movements could
yield to better quality solutions due to the ability to efficiently explore the
solution space.

Given a solution s, its neighborhood N(s) consists of all solutions in the
search space that are reachable by a local move from the current solution
s. In the implementation of SA, we have considered four different types
of movements. The first, called Random, consists in choosing a router at
random in the grid area and placing it in a new position at random. The
second move, called Radius, chooses the router of the largest radio and places
it at the center of the most densely populated part (in terms of client mesh
nodes) of the deployment area. The third move, called Swap, consists in
swapping two routers: the one of the lowest radio router in the most densely
populated area with that of largest radio in the sparsest populated area. The
idea is that largest radio routers should serve to more clients and thus should
be placed in more dense areas. Finally, we also considered the possibility to
combine the above movements in sequences of movements. The idea is to see
if the combination of these movements offers some improvement over stand
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alone movements. We called this type of movement Combination.

Acceptability criteria. The acceptability criteria for newly generated solu-
tions is based on the definition of a threshold value (accepting threshold) as
follows. We consider a succession tk such that tk > tk+1, tk > 0 and tk → 0 as
k →∞. Then, for any two solutions si and sj, if fitness(sj)−fitness(si) <
tk, then solution sj is accepted. In other terms, all solutions that reduce the
cost of the current solution are accepted; those that would increase the cost
are accepted on a limited basis. With increasing values of k (as the algo-
rithm progresses) only small increments are accepted, until eventually only
accepted improvements occur.

For the SA, tk values are taken as accepting threshold but the criterion
for acceptance is probabilistic:

• If fitness(sj)− fitness(si) ≤ 0 then sj is accepted.

• If fitness(sj) − fitness(si) > 0 then sj is accepted with probabil-
ity exp[(fitness(sj) − fitness(si))/tk] (at iteration k the algorithm
generates a random number R ∈ (0, 1) and sj is accepted if R <
exp[(fitness(sj)− fitness(si))/tk]).

It should be noted that each neighbor has a positive probability of re-
placing the current solution. The tk values are chosen in way that solutions
that most worsen the cost of the solutions are less likely to be accepted (but
there is still a positive probability of accepting them).

4. Experimental study

4.1. Parameter set up

One of the main issues in using heuristic approaches is to adequately set
up the parameter values, which have a direct impact on the performance
of the algorithm. In our case, there are two groups of parameters to set
up: those related to SA algorithm itself, such as the temperature, and those
corresponding to the problem under study, such as number of routers to
deploy, number of costumers to cover, grid area sizes, etc.

Further, the values of these parameters should be set up in a way that
no biased results will be obtained when empirically evaluating the imple-
mentation. To this end, randomly generated instances of three different grid
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area sizes (32×32, 64×64, 128×128, respectively) are used. Then, the re-
sulting setting of parameter is used for obtaining computational results for
a benchmark of instances.

One important aspect of the tuning process is to study the performance
of SA under different movements. As stated earlier (see Section 3), the
movement type has a considerable effect on the performance of SA. It is to
expect that there is no movement type that would work best for all instance
sizes, therefore, it is necessary to identify which movement type works best
for which instance size.

Instances of 32×32 grid area size. For the evaluation of performance of these
instances, we obtained the following setting of parameters: temperature =
3, nb independent runs = 15 and nb iterations per phase = 60. In the
instances, the client positions were generated following a normal distribution
N(µ = 16, σ = 32/10), and 16 routers were to be placed in the 32×32 grid
area to cover 48 clients. It should be noted that we conducted 15 independent
runs in order to avoid fortuitous results; averaged results are then used.

The averaged results of 15 independent runs showed that the movement
Radius achieved the best improvements in the size of giant component. We
also observed that the Combination of movements showed a good perfor-
mance. The Random move showed the worst performance, actually it gets
stagnated around 16th phase of the search process. Regarding the Swap
movement, it could be the case that this movement is too computationally
expensive for small size instances and doesn’t outperform other movements.
It should be noted however that for small size instances, all movements (ex-
cept Random) performed well after a considerable number of search phases
(about 30 phases). We show graphically the performance of the local move-
ments in Fig. 1.

Instances of 64×64 grid area size. The parameter values temperature = 2,
nb independent runs = 15 and nb iterations per phase = 150 were ob-
tained. In the instances, the client positions were generated following a
normal distribution N(µ = 32, σ = 64/10), and 32 routers were to be placed
in the 64×64 grid area to cover 96 clients.

As can be seen from Fig. 2, at the beginning, Radius showed a very good
performance (up to phase 20) but with the increasing number of phases, Swap
is able to achieve better quality solutions (about from phase 25 onwards).
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Figure 1: Performance of local movements in SA algorithm for 32×32 grid area where 16
routers were to be placed and give coverage to 48 clients.

Figure 2: Performance of local movements in SA algorithm for 64×64 grid area where 32
routers were to be placed and give coverage to 96 clients.
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Instances of 128×128 grid area size. Values of parameters temperature = 2
nb independent runs = 15 and nb iterations per phase = 300 were ob-
tained. In the instances, the client positions were generated following a
normal distribution N(µ = 64, σ = 128/10), and 64 routers were to be
placed in the 128×128 grid area to cover 192 clients.

Figure 3: Performance of local movements in SA algorithm for 128×128 grid area where
64 routers were to be placed and give coverage to 192 clients.

For this size, as can be seen from Fig. 3, the experimental results confirm
our expectations that Swap is more effective than the rest of movements
(roughly from phase 23 onward). Surprisingly, Random movement also offers
good results but has a slower convergence. Note that for instances of this
size it doesn’t seem worth to use Radius due to the diverse density of client
mesh nodes in the area.

4.2. Benchmark of instances

We have generated a benchmark consisting of 48 instances, having dif-
ferent sizes of grid area and using four probability distributions for the posi-
tions of mesh client nodes in the grid area. These instances aim to represent
realistic-size instances3.

3In the literature, instances having up to 60 mesh devices are considered realistic-size
instances.
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Instances are arranged in three groups, each having 16 instances and are
labelled Ix×x D k, where:

• x stands for the height and width of the grid area, that is, the number
of cells of arbitrary edge length; it takes values 32, 64 and 128.

• D stands for the distribution of the client mesh routers in the grid area;
four distributions are considered: Uniform (U), Normal (N), Exponen-
tial (E) and Weibull (W).

• k is the index of the instance.

Thus, we have 16 instances for each grid size (32, 64 and 128, respectively)
and within each group we have 4 instances for each distribution (Uniform,
Normal, Exponential and Weibull, resp). For instance, in this notation,
I64×64 N 3 denotes the third instance of a 64×64 grid area, with mesh clients
nodes positions generated using Normal distribution. Regarding the number
of mesh routers to deploy and number of mesh clients to cover, instances of
32× 32 grid area consist of 16 mesh routers nodes and 48 client mesh nodes;
instances of 64× 64 grid area consist of 32 mesh routers nodes and 96 client
mesh nodes; and, instances of 128× 128 grid area consist of 64 mesh routers
nodes and 192 client mesh nodes.

4.3. Simulated Annealing results for the benchmark

Once the fine tuning of parameters was done, we measured the perfor-
mance of the SA algorithm for instances of the benchmark.

Computational results for instances of size 32×32 grid area. We give in Ta-
ble 1 computational results for instances of benchmark of 32×32 grid area
using movement type Radius, which showed to performed better for this size
of instances. As can be seen from Table 1, the SA algorithm achieved to es-
tablish a network of all routers connected and almost all clients are covered
for all but uniform distribution. Moreover the small deviation showed the
robustness of the implementation, in that, the algorithm is always able to
deliver good solutions.
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Table 1: Size of giant component and user coverage for 32×32 grid size instances, 16
routers nodes and 48 clients.
Instance Size of giant component #Users covered

best avg dev best avg dev
I32x32 U 1 13 10 0.3 23 22 0.1
I32x32 U 2 13 8 0.5 24 23 0.1
I32x32 U 3 12 8 0.4 23 22 0.1
I32x32 U 4 11 8 0.3 26 24 0.2
I32x32 N 1 16 15 0.1 43 40 0.3
I32x32 N 2 16 15 0.1 42 39 0.3
I32x32 N 3 16 15 0.1 45 40 0.5
I32x32 N 4 16 15 0.1 43 40 0.3
I32x32 E 1 16 13 0.3 45 36 0.9
I32x32 E 2 16 14 0.2 46 39 0.7
I32x32 E 3 16 11 0.5 45 36 0.9
I32x32 E 4 16 13 0.3 45 41 0.4
I32x32 W 1 16 11 0.5 32 30 0.2
I32x32 W 2 16 14 0.2 43 36 0.7
I32x32 W 3 16 12 0.4 44 34 1
I32x32 W 4 16 13 0.3 43 35 0.8
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Computational results for instances of size 64×64 grid area. We give in Ta-
ble 2 computational results for instances of benchmark of 64×64 grid area
using movement type Swap, which showed to performed better for this size of
instances. As can be seen from Table 2, the SA algorithm followed the same
trend of results; it was possible to establish a network of almost all routers
connected and almost all clients covered for all but uniform distribution.

Table 2: Size of giant component and user coverage for 64×64 grid size instances, 32
routers nodes and 96 clients.
Instance Size of giant component #Users covered

best avg dev best avg dev
I64x64 U 1 15 9 0.6 46 43 0.3
I64x64 U 2 12 8 0.4 41 41 0
I64x64 U 3 14 8 0.6 45 39 0.6
I64x64 U 4 13 9 0.4 44 40 0.4
I64x64 N 1 32 28 0.4 71 69 0.2
I64x64 N 2 32 26 0.6 70 65 0.5
I64x64 N 3 32 26 0.6 74 69 0.5
I64x64 N 4 31 28 0.3 74 73 0.1
I64x64 E 1 28 20 0.8 72 69 0.3
I64x64 E 2 26 19 0.7 88 74 1.4
I64x64 E 3 25 20 0.5 64 54 1
I64x64 E 4 24 19 0.5 69 67 0.2
I64x64 W 1 27 22 0.5 82 70 1.2
I64x64 W 2 30 22 0.8 65 64 0.1
I64x64 W 3 29 22 0.7 65 50 1.5
I64x64 W 4 26 21 0.5 89 67 2.2

Computational results for instances of size 128×128 grid area. We give in
Table 3 computational results for instances of benchmark of 128×128 grid
area using movement type Swap, which showed to performed better for this
size of instances. As can be seen from Table 3, the SA algorithm performed
very well for all but uniform distribution of clients in the grid area.

4.4. Analysis of the results

The SA algorithm showed a good performance for all instances of the
benchmark. The algorithm performed better the Hill Climbing algorithm
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Table 3: Size of giant component and user coverage for 128×128 grid size instances, 64
routers nodes and 192 clients.
Instance Size of giant component #Users covered

best avg dev best avg dev
I128x128 U 1 10 7 0.3 75 75 0
I128x128 U 2 13 7 0.6 77 71 0.6
I128x128 U 3 16 8 0.8 72 69 0.3
I128x128 U 4 11 7 0.4 73 73 0
I128x128 N 1 44 27 1.7 125 115 1
I128x128 N 2 41 25 1.6 121 115 0.6
I128x128 N 3 43 28 1.5 122 120 0.2
I128x128 N 4 46 26 2 119 116 0.3
I128x128 E 1 30 21 0.9 137 127 1
I128x128 E 2 32 20 1.2 144 133 1.1
I128x128 E 3 38 26 1.2 134 125 0.9
I128x128 E 4 32 25 0.7 162 144 1.8
I128x128 W 1 40 30 1 138 133 0.5
I128x128 W 2 41 26 1.5 138 137 0.1
I128x128 W 3 41 28 1.3 135 125 1
I128x128 W 4 41 32 0.9 131 118 1.3
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for the problem [15], which is due to its mechanism of accepting with certain
probability also worse solutions than current solution in an attempt to escape
from local optima. The results are more striking in the case of large size
128×128 grid area instances, for which SA clearly outperformed the Hill
Climbing algorithm.

From the results we could conclude that there were no a single neigh-
borhood structure that performed best in all cases; rather, for small size
instances Radius movement was adequate for exploring the neighborhood
while for medium and large size it was the Swap movement. In addition, the
results showed a very good performance of Combination movement (which
is the sequential combination of the other three movements) for instances of
small size.

Finally, the experimental study revealed also that it is necessary to evalu-
ate the performance of the placement node algorithms, such as SA algorithm
considered in this work, against different distributions of clients in the grid
area. In particular, the Weibull distribution which is based on the idea of hot
spots, seems interesting to further explore for distributions of client nodes in
the grid area.

5. Conclusions

In this work we have presented an implementation of Simulated Annealing
(SA) algorithm for near-optimally solving the problem of placement of mesh
router nodes in Wireless Mesh Networks (WMNs). In this version of the
problem, a number of client mesh nodes are a priori distributed in a grid
area, arranged in small cells, and a number of mesh router nodes are to be
deployed in the area. We have considered the optimization model in which
the objective is two-fold: to maximize the network connectivity (through
the maximization of the size of the giant component) and user coverage. In
this model, the former objective is considered as primary while the later is
considered secondary, that is, the algorithm tries to optimize first the size of
giant component and then tries to maximize the number of clients covered
without worsening the size of the giant component.

The results of experimental study showed that an efficient implementation
of SA requires the definition of different neighborhood structures in order to
find the appropriate structure according to different instance size as well as
to different distributions of clients in the grid area. The results confirmed
that SA is an effective resolution method for the problem as it achieved to
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establish network connectivity of almost all mesh router nodes and covered
almost all client mesh nodes for all considered benchmark instances.
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