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Abstract

The automatic allocation of enterprise workload to resources can be en-
hanced by being able to make what-if response time predictions whilst different
allocations are being considered. We experimentally investigate an historical
and a layered queuing performance model and show how they can provide
a good level of support for a dynamic − urgent cloud environment. Using
this we define, implement and experimentally investigate the effectiveness of a
prediction-based cloud workload and resource management algorithm. Based on
these experimental analyses we: i.) comparatively evaluate the layered queu-
ing and historical techniques; ii.) evaluate the effectiveness of the management
algorithm in different operating scenarios; and iii.) provide guidance on using
prediction-based workload and resource management.

Keywords: cloud, performance modelling, HYDRA historical model, layered
queuing, FireGrid

1. Introduction

Being able to make ‘what-if’ response time predictions for potential allocations
of enterprise workload to resources, can enhance automatic enterprise ‘work-
load to resources’ allocation systems [1,2]. For example, these predictions can
help provide more cost-effective response time-based Service Level Agreement
(SLA) management [22]. Without these predictions, managing the Quality of
Service (QoS) levels promised in SLAs can require more (possibly informed)
guesswork and over-provisioning of resources. Response time predictions can
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be very useful when enterprise systems are run on clouds or similar resource-
sharing infrastructures. These clouds are often very large, increasing the number
of possible workload-resource allocations and providing more opportunities for
the use of predictions.

Two common approaches used in the literature for making these response
time predictions are extrapolating from historical performance data and solving
queuing network models. Examples of the first approach include the use of
both coarse [3] and fine [1] grained historical performance data. The former
involves recording workload information and operating system/database load
metrics, and the latter involves recording the historical usage of each machine’s
CPU, memory and IO resources by different classes of workload. We have
developed and experimentally verified our own (‘HYDRA’) historical technique
[4,5,6]. It is differentiated from other historical modelling work by its focus on
simplifying the process of analysing any historical data so as to extract the small
number of trends that will be most useful to a management system. Examples
of the queuing modelling approach include [7,8,2]. The layered queuing method
[9] is of particular interest and will be examined further in this paper as it
explicitly models the tiers of servers found in this class of application, and it
has been applied to a range of distributed systems (e.g. [10]) including the
benchmark used in this paper [11]. A layered queuing model can be solved
either by simulation or via an approximate analytical solver.

It is important to quantitatively evaluate and provide guidance on the ef-
fectiveness of different approaches to prediction-based cloud infrastructure (i.e.
‘resource’), cloud customer (i.e. ‘workload’) cloud management systems and to
consider both the queuing and historical approach whilst doing this. To help
make the comparison of relevance to a wide range of possible cloud environments
it is useful to consider the following:

1. Urgent cloud customers such as the emergency services, that can demand
cloud resources at short notice (e.g. for our FireGrid [12,24] emergency
response software);

2. Dynamic enterprise systems, that must rapidly adapt to frequent changes
in workload, system configuration and/or available cloud servers;

3. The use of the predictions in a co− ordinated manner by both workload
and resource management systems;

4. A broad range of criteria for evaluating each technique.

However, there have been no previous studies meeting these requirements mak-
ing it harder to:

- Make an informed choice of technique/s; and hence

- Design effective prediction-based cloud management systems.

The following are examples of studies which do not meet these requirements.
In work such as [2,15] e-Business system operating scenarios and their associ-
ated costs are investigated using a queuing model-based system management
technique. In [19] the effectiveness of a model-based optimal dynamic server
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allocation algorithm is evaluated. In [10] a layered queuing model of a dis-
tributed database system is created and compared to a Markov chain-based
queuing model of the system. In [9] the layered queuing method is compared
more generally to other performance modelling techniques. Another recognised
queuing technique which has been applied to similar applications is described
in [7] and compared with the layered queuing method. However none of these
papers include a comparison with an historical model of the same application.
In our previous work we have compared queuing/historical (i.e. HYDRA) tech-
niques and investigated the tuning of prediction-based workload and resource
management [4,6,18] but not met the requirements listed above or addressed
the challenges listed at the end of this section. The historical prediction tech-
nique described in [3] is applied to a web-based stock trading application and
compared to a queuing modelling approach. However a queuing network model
is not created. In work including [1] the effectiveness of an IBM model-based
system management technique is investigated, but the requirements listed above
are not met.

An important feature of this paper is that the comparison focuses on dynamic
enterprise systems. These may have to acquire shared cloud servers with new
server architectures for which only a small number of benchmarks have been
run (e.g. to determine request processing speed). We therefore investigate
the level of support provided by the historical and layered queuing models for
rapidly being parameterised with low overheads on an established server, whilst
still obtaining enough data to make accurate predictions on new server archi-
tectures. This allows the models to be parameterised prior to making real-time
workload and resource management decisions, and removes the need to model
the workload and system configuration variables that change less frequently at
runtime. This has a number of advantages when predicting the performance
of dynamic enterprise systems including: i.) a reduction in model complexity
which can dramatically improve the responsiveness of predictions; and ii.) re-
moving the need to consider some variables which may be complex to measure
and model (such as the complexity of processing the data in the database for
each service class in the workload). See [6] for our detailed discussions on the
advantages of the methods used in this paper, and how this kind of method can
be applied; and uncertainty in the type of modelling and analysis presented in
this paper.

In summary this paper focuses on dynamic enterprise systems (with SLAs
with financial penalties) hosted in a cloud that may also host urgent systems and
in which there is a coordinated use of performance predictions for QoS man-
agement by both the cloud infrastructure and the cloud customer. For brevity,
we define this type of system as a ‘dynamic− urgent cloud environment’. See
Section 2 for our dynamic-urgent cloud environment system model, case study
and experimental setup.

We present significant extensions over the original paper which describes this
work [18]. These contributions can be summarised as follows:

1. In Section 5.3 the paper presents the experimental results of our investi-

3



gation into the effectiveness of the prediction-enhanced management al-
gorithm in different dynamic− urgent cloud environment operating sce-
narios. This includes the definition, implementation and experimental
investigation of our algorithm (algorithm 3) that does not use predictions.

2. In Section 6.2 the paper evaluates the effectiveness of our prediction-
enhanced management algorithm in different dynamic − urgent cloud
environment operating scenarios. This is based on our experimental re-
sults. We consider the prediction-enhanced management algorithm with
both the layered queuing and historical models plugged in.

3. In Section 6.3 the paper provides guidance on using a prediction-based
management algorithms in a dynamic−urgent cloud environment, based
on our experimental results. This includes suggested techniques and also
advice on the potential issues the guidance and techniques can help ad-
dress.

The paper is structured as follows: the definition of the system model, case
study and experimental setup (section 2); the definition, experimental investi-
gation and guidelines for the layered queuing prediction model (section 3); the
definition, experimental investigation and guidelines for the HYDRA historical
model (section 4); the experimental investigation of using predictions in a cloud
workload and resource management system (section 5) and the evaluation and
guidelines (section 6).

2. Dynamic-Urgent Cloud Environments: System Model, Case Study,
Experimental Setup and Sample Cloud

2.1. System Model
Based on [13,14,17] a cloud customer (CC) pays for shared servers (SS)

which may be dynamically shared with other CC and which may be virtualised
– see Figure 1. Here, a SS is being transferred from CC1 to CC2; SS transfers
are controlled by the cloud infrastructure resource management system (RM).
When there is more than one virtual server running on a physical server, each
virtual server is allocated a minimum percentage of the physical server’s re-
sources. There are NCC CC, each of which can also hire dedicated servers (DS).
The internal structure of CC1 shows the enterprise system model for the paper.
Based on established work [11,15] this is modelled as a tier of heterogeneous ap-
plication SS accessing a database/legacy system. Based on the queuing network
in IBM Websphere: a single FIFO queue is used by each application server; the
database server has one FIFO queue; and both types of server can process re-
quests concurrently via time-sharing. The workload consists of clients (divided
into service classes each with a SLA) which send requests to the system. The
dispatcher (D), controlled by the cloud customer workload management system
(WM), adjusts the routing of the incoming requests to the application servers.
The algorithms in the management systems may use a prediction engine (P)
to help make decisions, and may co-ordinate the use of these predictions e.g.
between the resource and workload management systems. A cloud customer
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Figure 1: System Model

can run an urgent system which can make urgent requests for resources (e.g.
for emergency response). For a detailed survey and discussion of cloud environ-
ments and associated issues see [17].

2.2. Case Study
The case study is based on the Eucalyptus [13] cloud model, with every CC
either having this enterprise system model or it is an urgent system. IBM
Websphere is selected as the enterprise system middleware as it is a common
choice for distributed enterprise applications; the IBM Performance Benchmark
Sample Trade [16] is selected as it is the main enterprise benchmark for the
Websphere platform. The sample enterprise workload is as follows based on
Trade and [11]. A service class is created for browse users with nbrowse clients,
with the operation (buy/quote etc) called by a client being randomly selected
using the probabilities defined by Trade. A service class with nbuy clients is
created for buy users which involves clients making an average of 10 buy requests.
The percentage of buy clients is defined as b. Think-times are exponentially
distributed based on [9] with a mean of 7 seconds for all service classes as
recommended by IBM for Trade clients, although heterogeneous think-times
are supported by both techniques. Based on the Trade benchmark, a typical
workload is defined as all browse clients.

FireGrid is a command and control application for urgent emergency re-
sponse during a building fire. In experiments so far the majority of the process-
ing has been to run embarrassingly parallel fire models so it is this which is run
on the cloud. FireGrid is selected as the urgent system as it is the result of
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significant and ongoing development by a large coalition including emergency
response services and it has been tested in real-time during a live fire test fea-
turing a full-size mock-up of a three room flat.

2.3. Experimental Setup and Sample Cloud
The experimental setup contains three application server architectures. Under
Websphere v4.0.1. and the typical workload (defined in the last sub-section) the
max. throughputs of the new ‘slow’ AppServS (P3 450Mhz); the established
‘fast’ AppServF (P4 1.8Ghz); and the established ‘very fast’ AppServV F (P4
2.66Ghz) are 86, 186 and 320 requests/second respectively. Each server is virtu-
alised using a JVM. The database server architecture is DB2 7.2 on an Athlon
1.4Ghz and 250 clients are simulated by each workload generator (P4 1.8Ghz).
The clients are simulated using an Apache JMeter script as described in [6],
with the workload being sampled to check it is being generated as required. All
servers run Windows 2000, have at least 512MB RAM and are connected via a
100Mbps switch.

In the sample cloud NCC = 4 with FireGrid as CC4, and CC1, CC2 and
CC3 are dynamic enterprise systems. CC1 has one SS of each of the three appli-
cation server architectures and a workload of 3000 clients. Three service classes
are created by dividing the browse service class into two service classes with
different SLA response time goals (RTG). The workload that is to be allocated
to the SS is defined as 10% buy clients (RTG=150ms), 45% high priority browse
clients (RTG=300ms), and 45% low priority browse clients (RTG=600ms). The
percentages are selected based on the Trade application, which defines 10% of
the standard workload to be purchase requests. The response time goals are
selected based on the response time of the fastest application server at max
throughput (aprox 600ms). CC2 has 20% more clients, RTG all 20% lower and
hence all servers upgraded to the next fastest server architecture available (ex-
cepting AppServV F – the fastest) to 2×AppServV F and 1×AppServF . For CC3

the number of clients and RTG figures are increased/decreased by an additional
20% respectively, and the SS are upgraded again resulting in 3×AppServV F .
CC4 has all the other SS, in this case 5; the minimum number we have executed
this part of FireGrid on.

3. Definition and Experimental Investigation of The Layered Queuing
Prediction Model

This section describes the experimental investigation of the level of support
provided for a dynamic − urgent cloud environment using a layered queu-
ing prediction model, examining the associated overheads and hence providing
guidelines on the parameterisation of the model.

The layered queuing method involves defining an application’s queuing net-
work. An approximate solution to the model can then be generated automati-
cally using the LQNS solver. The solution strategy involves dividing the queues
into layers (e.g. as in the enterprise system model), generating an initial solu-
tion and then iterating backwards and forwards through the layers solving the
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queues in each layer by mean value analysis and propagating the result to the
next layer until the solutions converge. Performance metrics generated include
mean response time, throughputs and utilisation information for each service
class. A detailed description of the layered queuing method can be found in
[9,23].

We have created a layered queuing model of an enterprise system with
app svr, DB svr and DB svr disk layers, each layer containing a queue and
a processor. The application server disk is not modelled as the Trade applica-
tion’s utilisation of this resource is found to be almost 0 during normal operation.
Workload parameters for each service class v are: the number of clients nv; the
mean processing times (on each processor p), t(p,v) or t(p,v)N for established
and new server architectures respectively; and the mean number of requests to
the next layer y(app svr,v) and y(DB svr,v). Processing times are exponentially
distributed as standard with the layered queuing method. Communication time
is a constant delay d. Queue parameters per layer l are the maximum number
of requests each processor can process at the same time via time-sharing ml.

Model parameterisation is as follows. d is parameterised by subtracting
the predicted response time from the actual response time at a small number
of clients (250 in the experimental setup) on an established server. Then for
each p and for each v take an established server off-line and send a workload
consisting only of v for an interval. This overcomes the difficulties that have been
found measuring mean processing times (without queuing delay) of multiple
service classes, in real system environments [15]. t(p,v) is then calculated by
dividing the associated mean interval server (or disk) CPU (or disk) usage by
the mean interval throughput (in requests/second). Calculating t(p,v)N involves
multiplying a value of t(p,v) by the established/new server request processing
speed ratio.

3.1. Experimental Results
In the remainder of this section we examine the predictive accuracy and re-

source usage overhead when parameterising the request processing times under
different workloads. This includes an analysis on the effect of the number of
clients used to parameterise the mean processing time variables in the model.
In the experimental setup (from Section 2) mapp svr = 50, mDB svr = 20,
mDB svr disk = 1, yapp svr,buy = 2 and yapp svr,browse = 1.14. yDB svr,v is
modelled as 1 by setting the throughput of DB svr disk to the throughput
of DB svr during parameterisation. The typical (browse) workload is param-
eterised on an established application server with a max. throughput of 213
requests/second; for brevity we refer to the associated processor as E. Each test
run involves setting nbrowse and after a 1 minute warmup recording %CPU/disk
usage samples and server mean throughputs for 1 minute. The sampling inter-
val is set at 6 seconds so the increase in the %CPU/disk usage is no more than
5%. We define predictive accuracy as the following. Note that in this paper the
term accuracy refers to the accuracy of the predictions (i.e. when compared to
the measured data), as opposed to the accuracy of the measured data – unless
this is explicitly stated.
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Figure 2: The predictive accuracy when parameterising the layered queuing model at different
numbers of clients.

Table 1: The predictive accuracy when parameterising the layered queuing model at different
numbers of clients as shown in figure 2.

No. of Clients 63 125 375 750 1250 1750 2250
Predictive Accuracy (%) 84.60 94.35 91.57 88.55 90.94 97.89 92.53

Table 2: Response time predictions for the new server architecture.

No. of Clients 250 500 750

Measured Mean (ms): 122.9 210.4 2060.2

Layered Queuing Predicted Mean (ms): 105.9 137.4 1811.3

Layered Queuing Predictive Accuracy (%): 86.2 65.3 87.9

Historical Predicted Mean (ms): 139.1 268.7 2581.8

Historical Predictive Accuracy (%): 86.8 72.3 74.7

accuracy =
|predicted value−measured value|

measured value
× 100 (1)

As nbrowse is increased t(E,browse) decreases (from 5.6ms at nbrowse = 63)
to a minimum of 4.3ms at nbrowse = 750. It then increases (to 4.7ms at
nbrowse = 2250). This pattern is explained as follows. The higher mean process-
ing times at smaller number of clients are due to the larger system and JVM over-
head (i.e. for garbage collection) per request. The higher mean processing times
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at larger numbers of clients are due to the overhead of running a larger number
of threads (as Websphere terminates threads that are not needed, at lighter
loads). At intermediate numbers of clients these overheads are less significant
resulting in lower mean processing times. As a result the predictive accuracy is
highest when parameterising the model at a value of nv between the maximum
and minimum mean processing times - see Table 1. However, the higher nbrowse
the more server capacity that must be taken offline to run the workload gen-
erators, application and database servers. The maximum predictive accuracy
when the model is parameterised at a low overhead is at nbrowse = 125; below
this the predictive accuracy drops significantly. This is due to a discontinuity
in the rate at which the mean response time increases with number of clients
around the point at which max. throughput is reached. The predictive accu-
racy around this point (one of the predictive accuracy measurements taken at
different numbers of clients so as to calculate, via a mean the predictive accu-
racy) is less accurate than for other numbers of clients. Hence the predictive
accuracy at the first maximum is slightly lower than that of the second maxi-
mum. When nbrowse = 125 then t(E,browse) = 4.675ms, t(F,browse) = 1.821ms
and t(G,browse) = 0.638ms where F is the database server processor and G is the
database server disk processor. This results in a predictive accuracy of 80% on
the new server architecture – see Table 2 and Figure 2. We note that in previous
work [4,6] we have shown how percentile response time metrics can be predicted
based on the measured exponential distributions. To parameterise the model a
server capacity of 89 requests/second must be taken offline for 2 minutes per
service class. This is the equivalent of a Pentium III 450Mhz which is likely to
be a low parameterisation overhead for a modern resource management system.
It is also important to consider the delay when solving the model. Using the
standard LQNS solver on a dedicated Athlon 1.4Ghz at a convergence criterion
of 20ms this is observed as follows. When the server is lightly loaded and when
the server is saturated the model can be solved in around 1 second. However,
as you move away from these two extremes the time to solve increases up to a
maximum of 5 seconds. This point is reached just before 100% of the number of
clients at max. throughput. However, most of the predictions are made in 1-3
seconds. The consequences of these evaluation times are discussed in Sections
5 and 6.

3.2. Guidelines For Parameterising the Model at a Low Overhead
We have found that frequent, rapid model parameterisations can be useful for
maintaining predictive accuracy in dynamic enterprise systems – assuming this
is used with care. For example correcting for predictive inaccuracy by param-
eterising again can mask the need for refinements in the configuration of the
enterprise system/cloud/model etc. It is also important to check the predictive
accuracy of the model immediately after parameterisation as it may occasion-
ally be necessary to repeat the parameterisation, for example after a brief spike
of background activity.

Our guidelines for parameterising the layered queuing method are as follows
based on the experimental analysis in Section 3. The key variable is nv, the
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number of clients at which the layered queuing model is parameterised for each
service class v. This is because the layered queuing method assumes that the
per-service class request processing times (t(p,v)) are constant at different server
loads. However this was not found to always be the case due to system (i.e.
garbage collection) and thread overheads at small and large numbers of clients,
respectively. As nv and hence the server load is increased, so does the parame-
terisation overhead. We have found that there tends to be a minimum number
of clients that gives a high accuracy and low overhead (e.g. nbrowse =125 clients
in our setup - see table 1). The procedure in Section 3 should be used to iden-
tify this point. Alternatively if spare machines are available to parameterise the
model the procedure can be used to locate the high overhead parameterisation
point that gives the maximum accuracy (see Table 1).

The implications of the layered queuing model experimental results presented
in this section are discussed further in Section 6.

4. Definition and Experimental Investigation of The HYDRA Histor-
ical Prediction Model

This section describes the experimental investigation of the level of support
provided for a dynamic−urgent cloud environment using a (‘HYDRA’) histor-
ical prediction model, examining the associated overheads and hence providing
guidelines on the parameterisation of the model.

The historical modelling technique [4,5,6] involves sampling performance
metrics and associating these measurements with variables representing the
workload being processed and the machine’s architecture. Historical mod-
els then define the relationships (e.g. linear/exponential equations) between
the variables and metrics. In the case study, the server workload variables
are the number of clients n and the percentage of buy clients b. The main
server architecture variable is request processing speed (measured as max thr,
the max. throughput under the typical workload, in these experiments). Let
no of clientsmt be the number of clients at max thr. Relationship 1 models
the effect of no of clients, the number of typical workload clients, on the mean
response time. It has been found that this relationship is best approximated
using separate lower and upper equations - see equations 2 and 3 respectively. A
middle equation (not shown for brevity) the same as equation 2 with L replaced
by M .

mrtL = cLe
(λL×no of clients) (2)

mrtU = λU × no of clients+ cU (3)

Where mrtL/mrtU is the mean response time for when no of clients < (0.75 ∗
no of clientsmt) and no of clients > (1.1 ∗ no of clientsmt) respectively, and
cL, cM , cU , λL, λM and λU are parameters that must be parameterised from
historical data. no of clientsmt is calculated using a relationship between
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no of clients and the server throughput (see [4]). We have also found, al-
though it is not covered in this paper, that using a transition relationship to
phase between the lower and middle, or middle and upper equations can increase
predictive accuracy [5].

Relationship 2 models the effect of max thr on relationship 1 as follows:

cL = Λ(cL)×max thr + C(cL) (4)

λL = C(ΛL)×max thrΛ(λL) (5)

Where Λ(cL), C(cL), C(λL) and Λ(λL) are parameters that must be param-
eterised from historical data. For brevity equations for the middle equation
(equations 4 and 5 with L replaced by M) are not shown. The equations for
parameters for the upper (linear) equations are calculated as follows. Given
an increase/decrease in max thr of z%, λU is found to increase/decrease by
roughly 1/z%, and cU is found to be roughly constant.

Relationship 3 models the effect of b on max thr; this is found to be a linear
relationship. This is used to extrapolate max thrE(b), the max. throughput of
an established server under b. The max. throughput on a new server under b,
max thrN (b), is then calculated using equation 6, where b = 0 represents the
typical workload.

max thrN (b) =
max thrE(b)
max thrE(0)

×max thrN (0) (6)

4.1. Experimental Results
The remainder of this section experimentally investigates the parameterisation
of historical models on a live system, using the experimental setup from Sec-
tion 2. This allows an historical model to be parameterised at a significantly
smaller resource usage overhead than the layered queuing method as the only
additional requirement on the system is to process the one (or more) response
time sampling clients. The parameters in relationship 1 and relationship 2
are parameterised by fitting least squares trend-lines to historical data from
the established AppServF and AppServV F servers. The historical data consists
of the max thr of each server and dp data points for each equation q (either
‘upper’, ‘middle’ or ‘lower’) of relationship 1 respectively. Each data point
records no of clients and the mrtq (averaged across s samples) for the typical
workload.

The overall predictive accuracy is defined as the mean of the lower, middle
and upper equation predictive accuracy. It is found that accurate predictions
can be made even when dp is reduced to 2 and s is reduced to 50. The resulting
parameters are shown in Tables 3 and 4. A good level of predictive accuracy
of 94% and 78% for the established/new server architectures respectively is
achieved (see Table 2). Relationship 3 can be rapidly parameterised as this
only requires one additional item of data; max thrE(b) for a b > 0. This is
tested using LQNS predictions for historical data, specifically max thrE(25) =
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Table 3: Calculated parameters for the new server architecture.

cL λL cM λM cU λU

138.9 4E−06 51.6 0.0033 −7573 13.54

Table 4: Calculated parameters used to calculate the parameters in table 2.

Λ(cL) C(cL) C(λL) Λ(λL) Λ(cM ) C(cM ) C(λM ) Λ(λM )

-0.55 186.05 6E-14 4.05 712019 -2.14 0.023 -0.431

158 (requests/sec) for AppServF . The resulting predictive accuracy is 74%
on the new server architecture. Once equations 2-6 have been parameterised
predictions can be made almost instantaneously.

Having calculated the predictive accuracy, it is necessary to calculate the
overheads that were incurred. The total sampling time t required to parame-
terise the model (that is, the time to parameterise the model using one instru-
mented client) is estimated in equation 7 where si, ri and hi are the number of
samples, mean response time and mean think-time when recording data point
i, and DP is the total number of data points. Since ri will not be known (and
cannot be predicted) until after the model has been parameterised it is not
normally possible to predict in advance exactly how long the parameterisation
will take. However, ri can be estimated, for example by using the measure-
ments/predictions from the previous parameterisation or, in the case of a new
application, from when the application was being tested prior to deployment.
Since distributed enterprise think-times can be quite long (for example 7 seconds
as recommended by IBM for Trade clients) t can be quite large. For example
in this case the parameters are DP = 6 for each of the two server architec-
tures, and si = 50 and hi = 7000ms for each data point. The historical model
parameter values are used as the r parameters. This results in t = 76 minutes.

However, by using multiple simulated clients to sample the response times
this can be dramatically reduced. When using c simulated clients to record each
data point the resource usage overhead o on the system can be calculated by
equation 8 where li is the total number of clients for data point i. For these
predictions c is set to 12 so that the maximum resource usage overhead for a
data point is 5% (for data points recorded at 250 clients). The resulting overall
resource usage o is calculated at 1.8% for AppServF and 0.91% for AppServV F ;
a low overhead. The overhead is less for AppServV F as it is a more powerful
server architecture. Alternatively the value of c could be increased so as to
parameterise the model more rapidly, albeit at a higher resource usage overhead.
The time to parameterise the model when c > 1 is calculated as equation 9.

In this case this results in a time to parameterise of 3 minutes 12 seconds for
AppServF and 3 minutes 9 seconds for AppServV F . In these experiments the
system was warmed up for 30 seconds prior to recording each data point, creating
an additional overhead of 3 minutes for each server. However, due to the high
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throughputs of the systems under parameterisation (35-320 requests/second) it
is likely that the system reaches a steady state more rapidly than this and so
this warm-up interval could be reduced. Indeed it is likely to be particularly
effective to base the duration of this warm-up interval on the server throughput,
with shorter warm-up times for higher throughput data points. Overall these
calculations show that the historical model can be rapidly parameterised at a
low resource usage overhead.

t = ΣDPi=1 [si(ri + hi)] (7)

o =
ΣDPi=1

[
si( cli )

]
ΣDPi=1si

× 100 (8)

t = ΣDPi=1

[
dsi
c
e(ri + hi)

]
(9)

4.2. Guidelines For Parameterising the Model at a Low Overhead
Our guidelines for achieving accurate predictions at a low overhead using the
historical technique are as follows based on the experimental analysis in this
section. It is necessary to sample the response times of established servers at a
range of loads for the lower, middle and upper equations of relationship 1. This
is due to the changing shape of the response time graph as server load increases
(see [4]). It is also necessary to use two (or more) established application server
architectures for parameterisation so as to be able to extrapolate a trend-line
(unlike the layered queuing method which only requires one). Further, when
sampling the response times of an established server for the lower, middle or
upper equations it is necessary to include samples at both low and high numbers
of clients so as to get a sufficient spread of data points from which to draw a
trend-line. Initial experiments have shown that exponential predictive accuracy
increases significantly if three or more (number of clients, mean response time)
data points are used for parameterisation as opposed to the current two. We
therefore recommend that a minimum of two/three data points (with at least
50 samples per data point) be used when parameterising linear/exponential
trend-lines, although in practice the more data points used the better.

The implications of the historical model experimental results presented in
this section are discussed further in section 6.

5. Experimental Investigation of Using Prediction Models in a Cloud
Workload and Resource Management System

Sections 3 and 4 have experimentally investigated the level of support for dynamic-
urgent cloud environments provided by the layered queuing model and HYDRA
historical model respectively. This has included showing that rapid predictions
can be made for an enterprise application on a new server architecture in a
dynamic-urgent cloud environment with a good level of predictive accuracy.
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These sections have also shown that this can be achieved despite rapidly pa-
rameterising the model at a low overhead. We now move on to experimentally
investigate the use of these prediction models by the management systems of
both the cloud (i.e. the resource management system) and cloud customer (i.e.
the workload management system). Using the historical and layered queuing
models in this section we define a cloud resource and workload management al-
gorithm that uses simulations as part of the decision-making process. We then
experimentally investigate via simulation the effectiveness of this algorithm in
different operating scenarios. This includes how a prediction-enhanced workload
and resource management algorithm can be tuned, and the definition, imple-
mentation and experimental investigation of an algorithm that does not use
predictions.

SLA-based cloud customers running enterprise systems (as defined in Section
2) incur two main types of cost. The first involves paying penalties for SLA
failures e.g. missing SLA response time goals; and the second is the cost of
using the servers in the system. % SLA failures is defined as the percentage of
clients rejected from the server/s of a cloud customer (CC) and % server usage
is defined as the percentage of the total cloud shared server (SS) processing
power (SSPP) allocated to a CC, with processing power defined as max thr.
A generic strategy to compensate for predictive inaccuracy and balance the
cloud customers’ costs involves running the resource and workload management
algorithm, as if the cloud customers’ workloads are larger than they actually
are. In these experiments this involves multiplying the number of clients in each
service class in each CC by slack.

Some service classes may have insufficient servers for % SLA failures = 0 to
be achieved, e.g. due to predictive inaccuracy. To deal with this the enterprise
system model in Section 2 is extended so application servers reject clients at
runtime if response times are within a threshold of missing SLA goals. It is
assumed these clients miss their SLA goals. This prevents all the existing clients
on a server from also missing their SLA goals. In practice, it is likely that the
rejected workload would be handled by a second set of servers in the cloud for
each CC, that accept all workload for that customer.

The historical and layered queuing models are used in these experiments as
follows. The layered queuing method can require significant CPU time to make
each mean response time prediction (i.e. up to 5 seconds on an Athlon 1.4Ghz
under a convergence criterion of 20ms). Further, multiple predictions must be
made to make the reverse prediction i.e. searching for the maximum number
of clients an SLA compliant server can support. This is information that may
be requested frequently by workload and resource management algorithms and
can be provided almost instantaneously by the historical model. A workaround
to this problem is to fit trend-lines to the layered queuing mean response time
predictions (using historical model relationship 1 only) and use these to make
all predictions almost instantaneously, albeit at the cost of a 1.7% reduction
in predictive accuracy. This reduction is very small in part because of the
absence of experimental noise. In the experiments in this section these ‘hybrid’
predictions are used as the predictions and the more accurate historical model is
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used as the real system response times so as to be able to provide the workload
and resource management algorithm with all the required data.

5.1. Defining the Workload and Resource Management Algorithm
Algorithm 1 is our cloud resource and workload management algorithm for use
when there is no suitable unallocated server processing power available to pro-
cess an urgent application. The algorithm reassigns servers from one CC to
another and assigns workload to servers. In the experiments in this paper the
function selectCandidateCC(CCx, p, ...) returns all the cloud customers except
CCx and function selectCandidateServers(c, ...) returns all SS in c unless a SS
has already been allocated from this CC in which case no SS are returned. Step 9
is implemented by the resource management algorithm (RM) repeatedly search-
ing the set of tuples generated by step 7 for the tuple with the lowest value of m,
and removing that tuple and the corresponding shared server; this repeats until
((SSPP removed) ≥ p) or there are no more tuples, where SSPP removed is
the shared server processing power removed.

Algorithm 1 Distributed resource and workload management algorithm
1: Cloud customer (CC) CCx requests p shared server processing power

(SSPP) from the cloud resource management system (RM).
2: RM executes cc = selectCandidateCC(CCx, p, ...) to select a set of CC it

might take SS from, using the policy set by the cloud administrators.
3: RM̄ gathers information by asking the workload management system (WM)

in each (CC c in cc) to predict the effect on their % SLA failures of losing:
1 SS; 2 SS; up to min(p, spp(c)) SSPP. spp() is a function returning the total
SSPP of a CC or server. The WM for each CC c in cc sends the information
by:

4: parameterise predictions model, copy configuration of c into new workload
transfer algorithm (WTA) simulation simc.

5: for all SS s in selectCandidateServers(c, ...) do
6: copy simc into simc,s and use this to simulate transferring the workload

from s onto the other SS in c, removing s from c, and then (assuming
at this stage accurate predictions) predict the resulting % SLA failure
fc,s.

7: end for
8: The server s with the lowest value of m = fc,s/spp(s) is selected. delete
simc and rename simc,s to simc. Send (c, s, fc,s,m) to RM.

9: RM selects set of CC and decides on SSPP to take from each.
10: For each selected CC c, the WM tells its dispatcher, for each SS it is to

lose, to transfer workload off it as per simc. As SS become idle they are
transferred to CCx by RM.

The workload transfer algorithm WTA provides, for a cloud customer c, an al-
location of workload to a set of servers using information provided by a perfor-
mance model, calculating the resulting % SLA failures and % server usage.
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Table 5: Workload and Resource Management Results

Cloud Customer (CC): 1 2
Server Architecture Taken AppServS AppServF

Server Speed (Requests/sec) 86 186
% SLA failures (slack = 1.0) 0.0 2.64
% SLA failures (slack = 1.1) 0.0 0.25
% SLA failures (slack = 1.2) 0.0 2.80

Since there is no priority queuing or processing in the system model, our WTA
aims to avoid workload with different SLA response time goals on the same
server. To improve execution time our WTA executes as follows: i.) work
through the service classes in order of priority; ii.) for each service class compile
a set bp of the best possible servers for the workload w in the current service
class; and then allocate w to the servers in bp being considerate to other ser-
vice classes. The algorithm is shown in algorithm 2. Our WTA simulation
can, given data representing the real performance of the servers, calculate the
resulting % SLA failures and % server usage. Each service class consists of
a number of clients, each of which is initially unallocated. Application servers
are considered to have available capacity unless the performance model predicts
that adding an extra client from the current service class would result in some
clients missing SLA response time goals.

Algorithm 2 Workload transfer algorithm WTA.
1: Sort the service classes in order of increasing response time goal.
2: Let current service class = first service class in list
3: repeat
4: if all clients in current service class allocated to an application server

then
5: current service class = next service class in list
6: end if
7: app server = application server selection algorithm()
8: repeat
9: allocate clients from current service class to app server

10: until maximum capacity is reached on app server OR all clients in cur-
rent service class are allocated to an application server

11: until application servers have no available capacity and all clients allocated

5.2. Example Use of Predictions in a Cloud Workload and Resource Manage-
ment System

This sub-section describes an example use of Algorithm 1 using the sample
cloud from Section 2. We use WTA to allocate each CC workload onto the SS
belonging to that CC. We observe that for all CC there are no % SLA failures.
FireGrid (CC4) then requests the equivalent of 3×AppServS worth of shared
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server processing power (SSPP) (i.e. p = 258 requests/second). This is to
take FireGrid’s number of SS up to 8 – our standard number for a small fire
(e.g. in one room). We run algorithm 1 with slack = 1 (i.e. no predictive
accuracy compensation). For each of CC1 and CC2 there is one SS for which
m = 0 - see table 5. This means the predictions indicate FireGrid can be
given the required servers without causing any % SLA failures, once WTA
is used for each CC to re-allocate the displaced workload. (This is not the
case for CC3; m = 0.022 so CC3 is not considered further.) However there is
a (non-uniform) predictive inaccuracy so some % SLA failures occur. Table
5 shows how setting slack = 1.1 (which results in the same m values of 0)
significantly improves this. However increasing the slack too far can put too
little workload on some of the SS and hence be less effective at reducing SLA
failures. An example of this on the selected two servers is shown in the last line
of Table 5 for when slack = 1.2. The value of slack = 1.1 is found by manual
experimentation. This approach is selected as we have found experimentally
that if predictive accuracy is uniform it can be straightforward to calculate a
good value of slack but in more realistic scenarios manual experimentation is
often a good approach [4].

5.3. Experimental Investigation of the Effectiveness of Prediction-Enhanced Workload-
Resource Assignment in Different Operating Scenarios.

The remainder of this section experimentally investigates the effectiveness of
prediction-enhanced workload-resource assignment in different operating sce-
narios. We have found in previous experiments that there are three important
operating scenario variables to cover when investigating the effectiveness of a
prediction-based management system: 1) the extent to which the system is
loaded; 2) the scenario heterogeneity; and 3) whether the performance predic-
tions are tuned to compensate for predictive inaccuracy [4,20]. We therefore
investigate these variables. This study builds on our analysis of tuning SLA
failure versus resource usage in a prediction-based management system [4]. The
experimental setup is extended to include a total of 16 application servers.
Eight of the servers have a new architecture (AppServS) and eight have the
same architectures as existing servers (four AppServF and four AppServV F )
100% resource usage is defined as using all 16 servers.

Algorithm 3 shows our workload-resource assignment algorithm that does
not use predictions, based in part on one of the algorithms that comes as stan-
dard in the IBM Websphere platform. In these experiments we compare this
algorithm to the prediction-enhanced algorithm. We note that the weighted
allocation of workload to servers could be further refined by also weighting by
service class mean request processing time. However this is not done here due to
the difficulties that have been found measuring mean processing times (without
queuing delay) of multiple service classes, in real system environments [15]. The
processing power of each server is measured as the maximum throughput of the
server under the typical workload.

We begin the experiments using the workload from Section 2, which we refer
to as the standard workload. The average predictive accuracy of the (non-
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Algorithm 3 No prediction workload-resource assignment algorithm.
1: Let total processing power = sum of processing powers for all servers.
2: Calculate the proportion of total processing power allowed to go to each

service class by weighting each service class in inverse proportion to its SLA
goal. Assign this to service class variable allowed processing power.

3: Let unallocated processing power = server processing power
4: Let servers = all servers ordered by processing power
5: for all server in servers do
6: Select the highest priority service class with allowed processing power 6=

0.
7: Allocate as much processing power to this service class as it is allowed

(or until the server runs out of unallocated processing power) and hence
proportionally allocate clients from that service class to the server.

8: end for

Table 6: % SLA failure per % resource usage at different numbers of clients for the standard
workload as shown in figure 3

No. of Clients Using predictions Using predictions No predictions
(not tuned) (tuned)

3000 0.00 0.00 0.00
6000 0.18 0.00 0.00
9000 0.00 0.00 0.00
12000 0.06 0.00 0.04
15000 0.06 0.01 0.12
18000 0.02 0.00 0.18
21000 0.10 0.11 0.22
24000 0.23 0.24 0.29
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Figure 3: % SLA failure per unit resource usage at different numbers of clients for the standard
workload

uniform) predictions (weighted by the number of servers in the server pool) is
92.5% (corresponding to a slack of 1.075). However the minimum slack that
results in 0% SLA failures before 100% resource usage is 1.1. The difference is
due to some predictions being used more by the prediction-enhanced algorithm
than others. For example the predictive accuracy of AppServF is the highest of
the three servers at 97.04%, but due to the design of the prediction-enhanced
algorithm the middle servers tend to be used less frequently. We set the slack
at 1.075 as we have found that allowing for a small number of SLA failures at
about this level can result in a disproportionately large improvement in the %
resource usage [4].

Table 6 and Figure 3 show the results. It can be seen that the tuned
prediction-enhanced algorithm significantly outperforms the no prediction al-
gorithm. However if the prediction-enhanced algorithm is not properly tuned
its performance is much more variable and at some numbers of clients performs
worse than the no prediction algorithm. It is noted that the irregular shape of
e.g. the ‘not tuned’ line is because runtime optimisations allow the system to
use any available capacity the algorithm leaves on a server. So, once the total
workload crosses a threshold and a small number of clients are allocated to an
additional server, the performance will temporarily improve (as can be seen at
9000 clients).

For the next set of results we create a workload in which the mean buy service
class SLA response time goal (RTG) is divided by two (so RTG=75ms). In ad-
dition, the low priority browse service class RTG is doubled (so RTG=1200ms).
We refer to this as the more heterogeneous workload. The tuning is not modi-
fied since being set based on the standard workload. The results for the more
heterogeneous workload are shown in Table 7 and graphed in Figure 4. It can be
seen that at small numbers of clients the tuned prediction-enhanced algorithm
does significantly worse than the no prediction algorithm. This illustrates the
importance of considering a range of likely operating scenarios when manually
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tuning the prediction-enhanced algorithm. In this instance the value of slack
set using the standard workload is too low and should be increased – albeit at
the cost of a small increase in % resource usage. Table 7 also shows how the
no prediction algorithm does significantly worse under the more heterogeneous
workload. This is discussed further in Section 6.
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Figure 4: % SLA failure per unit resource usage at different numbers of clients, for the more
heterogeneous workload.

Table 7: % SLA failure / % resource usage at different numbers of clients, for the more
heterogeneous workload as shown in Figure 4.

No. of Clients No prediction Prediction (tuned)
3000 0 0.42
6000 0.046 0.32
9000 0.18 0
12000 0.25 0
15000 0.29 0.01
18000 0.32 0.01
21000 0.38 0.13
24000 0.44 0.28

An important difference between a properly tuned) prediction-enhanced al-
gorithm and a no prediction algorithm is as follows. With the prediction-
enhanced algorithm as the number of clients increases, first all the lowest priority
service classes fail their SLAs, then the next lowest priority service class etc.
In contrast there is only limited control of the order (and extent) to which the
service classes are effected as the number of clients increases, in the no pre-
diction algorithm. That is, higher priority service classes can be put on faster
servers with established server architectures, but this does not give any guar-
antee. The SLA failure per service class results for the standard workload are
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shown in Tables 8 and 9. Service classes with no SLA failures for the data range
shown on each graph are removed for clarity. For the no prediction algorithm
the SLA failures for smaller numbers of clients are from the low priority browse
service class. However once the % SLA failures for this service class reaches just
under 50% the high priority browse service class starts to suffer SLA failures.
In contrast it is not until the prediction-enhanced algorithm reaches 100% SLA
failures for the low priority browse service class, that the high priority browse
service class starts to suffer SLA failures.

In summary this section has experimentally investigated the effectiveness of
using performance predictions in different operating scenarios. These operating
scenarios have been selected as those our previous work has identified as impor-
tant when investigating the effectiveness of performance predictions [4,20]. The
implications of the experimental results presented in this section are discussed
further in section 6.
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Figure 5: % SLA failure per service class at different numbers of clients, for the standard
workload with the prediction-enhanced algorithm.

6. Evaluations, Guidelines and Discussion

In this section, based on the experimental investigation in Sections 3 to 5,
we: i.) provide a criticism of the layered queuing and historical methods and
the application of these methods in this paper; ii.) evaluate the effectiveness
of the prediction-enhanced workload and resource management algorithm from
Section 5 in different dynamic−urgent cloud environment operating scenarios;
and iii.) provide guidance on using a prediction-based workload and resource
management algorithm in a dynamic− urgent cloud environment.
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Table 8: % SLA failure per service class (SC) at different numbers of clients, for the standard
workload with the prediction-enhanced algorithm as shown in Figure 5.

No. of Clients Predictions (tuned) Predictions (tuned)
(low priority browse SC) (high priority browse SC)

3000 0.00 0.00
6000 0.00 0.00
9000 0.00 0.00
12000 0.00 0.00
15000 1.16 0.00
18000 0.23 0.00
21000 25.37 0.00
24000 53.00 0.00
27000 74.69 0.00
30000 91.21 0.00
33000 100.00 2.03
36000 100.00 12.04
39000 100.00 20.52
42000 100.00 28.47
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Figure 6: % SLA failure per service class at different numbers of clients, for the standard
workload with the no prediction enhanced algorithm.

6.1. Criticism of the Layered Queuing and Historical Methods and the Applica-
tion of these Methods in this Paper

6.1.1. Criticism of the Layered Queuing and Historical Methods
We have provided a detailed criticism of the historical and layered queu-

ing methods and their application under five evaluation criteria in [6]. This
includes both model description and analysis. Overall, there is no clear mod-
elling paradigm of choice as the historical method and layered queuing method

22



Table 9: % SLA failure per service class at different numbers of clients, for the standard
workload with the no prediction enhanced algorithm as shown in Figure 6.

No. of Clients No predictions No predictions
(low priority browse SC) (high priority browse SC)

3000 0.00 0.00
6000 0.00 0.00
9000 0.00 0.00
12000 9.33 0.00
15000 27.14 0.00
18000 39.11 0.00
21000 47.69 0.12
24000 54.97 9.76

are strong under different evaluation criteria. Four of these evaluation criteria
(systems that can be modelled, metrics that can be predicted, ease of use given
a minimal level of performance modelling expertise and prediction responsive-
ness) are evaluated qualitatively based on the underlying characteristics of the
two methods.

Some highlights are as follows. There are a number of functional limitations
with the layered queuing method that should be taken into account when select-
ing a technique. It is more difficult to model applications that cache significant
amount of database data at the application server (as opposed to applications
such as the Trade benchmark which access the majority of database data di-
rectly so as to avoid data inconsistencies if the application server crashes). This
is because the number of calls to the database must be a constant in the layered
queuing model, whereas if a cache is used this value will depend on the cache
miss rate. Using the historical technique the size of the application server’s
cache can be recorded as an extra variable. Relationships can then be added to
approximate the historical relationship between the performance metrics, this
new variable and the existing variables, using the techniques presented in section
4. Another limitation of the layered queuing method is that the important class
of percentile response time metrics cannot be predicted directly. In contrast the
historical technique can extrapolate from and hence make predictions for a wide
range of metrics.

However layered queuing models are also significantly easier to create with
a minimum level of performance modelling expertise than a historical model.
This is because creating a historical model involves specifying and validating how
predictions will be made, whereas once a system’s queuing network configuration
is specified layered queuing models can be solved automatically. The layered
queuing method may therefore be preferable when there is a shortage of either
time or performance modelling expertise when creating the model. The main
conclusion under the ‘prediction evaluation delay’ criteria is that the historical
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method can be significantly more responsive than the layered queuing method.
This is based primarily on the fact that the historical method supports runtime
predictions made by a single equation such as (once parameterised) equations 2
or 3. However the procedure for solving a layered queuing model, as outlined in
section 3, can require significantly more resources to solve via e.g. iteration or
simulation. Indeed, this is what we have found in our experimental experience
(see results in section 3.1).

We also note that the historical technique has tool support primarily to
help collect the historical data – however this is aimed at expert users (see
the HYDRA Toolkit [6]). The layered queuing method has tool support for
both beginners and more experienced users, including a model validator, solver
and GUI editor. Further, although both techniques are well documented (e.g.
[4,5,6,9,10,11]), it is once again only the layered queuing method that provides
material for both beginner and more expert users.

Our criticism of the methods under the ‘high accuracy new server archi-
tecture predictions given low overhead parameterisation’ evaluation criteria is
based in part on the underlying characteristics of the methods and in part on
the quantitative experimental results from this study. This is discussed further
in section 6.1.2.

6.1.2. Criticism of the Application of the Layered Queuing and Historical Meth-
ods in this Paper

This sub-section provides a critical discussion on the application of the lay-
ered queuing and historical methods in this paper (i.e. for model description
and analysis). We have shown in this paper it is possible to make accurate new
server architecture predictions after only rapid low overhead parameterisation
using both the layered queuing and historical methods. The following qualifies
this statement. A historical model may perform poorly if there are problems
with the historical data e.g. due to the samples per data point being too small;
the historical data not covering the full range of likely system states; there be-
ing insufficient data points per model relationship; or due to experimental error.
Both the analysis (for parameterisation) and model description rely on this his-
torical data. We refer the reader to our analysis of the effect on the historical
model of insufficient historical data [4, 6]. We have found that some layered
queuing models may be best solved via a significantly slower solver tool as op-
posed to the faster but potentially less accurate analytical approximation tool
(LQNS) used in this paper (see also the note below about this tool). During
layered queuing model analysis sources of parameterisation uncertainty include
experimental error and the number of clients at which the model is parame-
terised - see the analysis in section 3.1. See also [6] for further qualifications for
both methods.

For a justification and discussion of the main assumptions we make see [6]
and elsewhere in this paper. We note in particular the following. We have
validated our exponential service times assumption experimentally for the ex-
perimental setup - and this is supported by e.g. [10,11]. Our future publications
will study metrics based on quantiles or higher moments. This will be based

24



in part on our initial results predicting percentile response times with a good
level of accuracy, based on predicted exponential response time distributions [6].
We have validated our experimental performance data and experimental setup
using manual checking, our layered queuing model and comparison to related
studies [1,11,15].

See [6] for our detailed discussion of alternative performance predictions
methods and alternative ways of applying the layered queuing and historical
models. For example, in our model description an alternative would be exper-
imentally investigating variations (e.g. approximations) on the models in this
study based on our initial results and guidance on this in [6]. This is particularly
important with the layered queuing method as modelling variations can occa-
sionally prevent the LQNS solver producing a prediction. Examples of potential
alternative analysis include introducing additional noise artificially to param-
eterisation data; or doing extra analysis on the historical model by creating a
hybrid of the historical and layered queuing model (see [6]). This hybrid in-
volves generating ‘pseudo’ historical (workload, performance) data points for a
server architecture using a layered queuing model, and using these data points
to parameterise the relationships in a historical model. This is then used to
make predictions which can be tested against the layered queuing prediction
even if real historical data is not available. Disadvantages include a reduction
in predictive accuracy and having to create and parameterise two models.

We conclude by noting that we have chosen the historical and layered queuing
methods - and the application of the methods described in this paper - because
they are effective and we are familiar with them. We expect this effectiveness
to deteriorate the further a potential system and usage scenario is from that
outlined in this paper, as discussed above. Future work includes doing sensitivity
and transient analyses. This will be based on our previous analyses of the effect
of key variables which can change predictive accuracy. These include [4,6],
section 3.1 and our work on the effect of predictive innaccuracy in workload and
resource management [21].

6.2. Evaluation of the Effectiveness of the Prediction-Enhanced Workload and
Resource Management Algorithm in Different Operating Scenarios

This section considers the effectiveness of the prediction-enhanced workload and
resource management algorithm in different dynamic−urgent cloud environment
operating scenarios. This considers the prediction-enhanced workload and re-
source management algorithm with both the layered queuing and historical mod-
els plugged in.

The more heterogeneous an operating scenario is (e.g. in terms of the work-
load and resources), the more unique options there are likely to be for how work-
load is allocated to resources. This is likely to give the prediction-enhanced algo-
rithm an increasing edge over the no prediction algorithm as the system becomes
more heterogeneous. For an illustration of this effect see Figure 4. This shows
how the improvement the prediction-enhanced algorithm provides over the no
prediction algorithm is greater in the more heterogeneous operating scenario.
It must also be considered that as the number of workload-resource allocation
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decisions to consider (and hence the number of predictions required) increases,
the management algorithm will require more resources to calculate predictions.
This will be particularly noticeable when using layered queuing predictions, and
may be almost unnoticeable when using historical predictions on small clouds.
For example, in the experiments in this paper, assigning a workload with three
service classes to a set of 16 servers using the historical model took only a max-
imum of a couple of seconds to complete. An additional consideration is that
in operating scenarios that are consistently very homogeneous there may be a
shortage of historical data for the historical model to extrapolate from. For ex-
ample, if predictions are required urgently to evaluate unusual system changes
being considered by the workload and resource management system.

In increasingly lightly loaded operating scenarios, the costs of using predic-
tions for workload and resource management are increasingly likely to out-weigh
the benefits. In an operating scenario that is so heavily loaded the system is
almost saturated, predictions may not be able to stop the system having un-
desirable levels of performance. However, they are likely to be useful in other
regards – for example, in more precisely controlling which parts of the work-
load suffer. An example of these behaviours is presented in the per-service class
results in Section 5.

Predictions can be particularly useful if a cloud and/or cloud customer are
interested in packing workload tightly onto machines (e.g. if the system is heav-
ily loaded or to make financial savings on server/resource usage costs). However
the more tightly the workload is packed the more carefully the predictions must
be tuned to avoid unexpected effects (see for example table 7). Predictions can
also be useful for helping control the balance between competing costs in a sys-
tem. For example between the costs of SLA failures and server/resource usage
using the slack tuning parameter.

6.3. Guidance on Using a Prediction-Based Workload and Resource Manage-
ment Algorithm in a Dynamic Urgent Cloud Environment

If predictions are to be used in a cloud, it may be advantageous to be selective
about the workload-resource allocation decisions for which they are used. This
level of selectivity is likely to be made at a coarse-grained level. For example,
this decision could be made by the cloud adjusting how/when the resource
manager uses predictions based on the current cloud-level operating scenario.
For example, only using predictions when the cloud is heavily loaded. The
decision about whether to use predictions at all is also likely to be made by
each cloud customer. Further, the current cloud customer operating scenario
for each cloud customer can be used to adjust this decision at runtime. For
example, if a particular cloud customer has a significant amount of low-priority
workload it may conclude there is no need to use predictions at this point. Being
selective in these ways can help address the potential issues identified in section
6.1, such as the range of systems that performance predictions can be applied
to. It can also help with the ease of use given a limited level of performance
modelling expertise issue, by reducing the required number of IT staff with
model-based system management skills.
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At a finer level of granularity a workload and resource management algo-
rithm could be set so that workload-resource allocations with poor potential
are discarded, with limited use of predictions. This is particularly useful when
using predictions that take seconds as opposed to milliseconds to complete. For
example in algorithm 1 this can be achieved by ruling out servers that are con-
sidered low potential candidates to be given away to the urgent application. We
have found a promising strategy is one in which the estimated potential of each
server is calculated based on: i.) an estimate of the cost of giving the server
away (based on the number of clients on the server for each service class); and
ii.) the potential benefit (based on the processing speed of the server). Being
selective at a finer-level of granularity can help improve the responsiveness of
the workload and resource management system, especially when using layered
queuing predictions.

In this paper we have shown that the historical model can make accurate
predictions with only a small amount of historical data. In some operating
scenarios (e.g. if there is a limited range of historical data due to the system
being fairly homogeneous) it can be useful to take actions to increase the range
of historical data. This can be achieved by moving workload between resources
during parameterisation so as to artificially increase the heterogeneity of the
system. This can give a wider range of collected historical data and hence
increase the predictive accuracy. This is at the cost of the associated overheads
and delays (as discussed in section 4).

Workload and resource management systems without predictions have the
advantage that it is often easier for IT staff to understand and hence predict
how they should behave in different operating scenarios. This is because a
more straightforward decision-making process is used, making it potentially
easier for IT staff to correctly diagnose problems. The experiments in section
5 have illustrated how even if a prediction-enhanced workload and resource
management system is working effectively overall, there can still be a small
number of operating scenarios where it performs very badly. This can be because
the tuning (e.g. via the slack parameter) cannot be perfect in all operating
scenarios. We recommend using the process from section 5 to identify operating
scenarios in which this effect can be expected.

7. Conclusion

This paper documents the following studies.

- An experimental investigation of the level of support provided for a dynamic−
urgent cloud environment using our historical and layered queuing predic-
tion model. This includes examining the associated overheads and hence
providing guidelines on parameterising the models at a low overhead.

- The definition, implementation and via simulation experimental investi-
gation of the effectiveness of our historical/layered queuing prediction-
based cloud workload and resource management algorithm, in different
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dynamic− urgent cloud environment operating scenarios. This includes
the definition, implementation and experimental investigation of an algo-
rithm that does not use predictions.

- The creation of evaluations and guidance based on the experimental inves-
tigations. This includes our evaluation of the effectiveness of our prediction-
enhanced management algorithm in different dynamic − urgent cloud
environment operating scenarios. We consider our prediction-enhanced
management algorithm with both the layered queuing and historical mod-
els plugged in. Our guidance on using a prediction-based management
algorithm in a dynamic − urgent cloud environment is then presented.
This includes suggested techniques, and also advice on the potential issues
the guidance and techniques can help address. We also include a criticism
of the layered queuing and historical methods and the application of these
methods in this paper.

The combination of an established system model, popular enterprise middle-
ware (IBM Websphere); and an enterprise benchmark based on best practices
(the Websphere Performance Benchmark Sample Trade), should make this work
of relevance to a wide range of enterprise cloud systems. Future work is likely
to include an investigation into the obstacles faced by universities (teaching and
assessment as well as research) and businesses in adopting cloud computing,
and the extent to which early adopters are overcoming these obstacles to realise
reliable and effective cloud solutions.
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