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In this paper, new integration methods for stiff ordinary differential equations (ODEs) are
developed. Following the idea of quantization-based integration (QBI), i.e., replacing the
time discretization by state quantization, the proposed algorithms generalize the idea of
linearly implicit algorithms. Also, the implementation of the new algorithms in a DEVS
simulation tool is discussed. The efficiency of these new methods is verified by comparing
their performance in the simulation of two benchmark problems with that of other numer-
ical stiff ODE solvers. In particular, the advantages of these new algorithms for the simula-
tion of electronic circuits are demonstrated.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The digital simulation of dynamic systems is an area of ongoing development both in theory and applications. On the one
hand, the significant developments in computer technology (both hardware and software) in recent decades gave rise to the
profusion of a large number of numerical methods for solving ordinary differential equations (ODEs), as modern computing
environments allow ever more complex models to be simulated efficiently and effectively [4,7,8,20]. On the other hand, the
increasing complexity of models that describe modern engineering systems present new challenges for these numerical
algorithms.

In this paper, we shall discuss problems related to the efficient simulation of stiff and discontinuous systems.
Many dynamical systems of practical relevance, both in science and engineering, are stiff. That is, they have Jacobian

matrices with eigenvalues, the real parts of which are widely separated along the negative real axis of the complex plane.
Integration of these systems using traditional numerical methods based on time discretization requires the use of implicit

algorithms, because all explicit methods must necessarily restrict the integration step to ensure numerical stability.
The reason is that the numerical stability domains of all explicit numerical ODE solvers invariably bend into the left-half

complex k � h plane [4], and algorithms with stability domains looping in the left-half plane force small step sizes, h, on the
numerical ODE solver, in order to capture all eigenvalues, ki, of a stiff system inside the numerically stable region. The only
way to avoid that the integration step size be limited by numerical stability is using algorithms, the stability domains of
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which bend into right-half complex plane, a characteristic that can be observed in some, but not all, implicit ODE solvers.
Such solvers are referred to as stiff ODE solvers.

In return, implicit methods have higher computational cost than explicit ones, because they call for iterative algorithms in
each step to calculate the next value. This is unacceptable in real-time applications, since it is impossible to predict before-
hand, how many (Newton) iterations it will take to converge to an acceptably accurate solution, i.e., it cannot be known in
advance, how much real time each simulation step will consume.

A totally different kind of ODE solvers can be formulated by replacing the time discretization by state quantization. This
idea led to the quantization based integration (QBI) methods that approximate the differential equations by discrete event sys-
tems in terms of the DEVS formalism [22].

Based on this idea, originally proposed by Zeigler [21,23], the first general purpose QBI solver developed was QSS1 (Quan-
tized State Systems) [13], which performs a first-order approximation. Based on similar principles, second-order (QSS2) [9]
and third-order (QSS3) [11] methods were also developed that offer better accuracy without increasing the number of cal-
culations significantly.

Due to their asynchronous nature, QSS methods show important advantages when simulating discontinuous ODEs [10],
and they exhibit nice stability and error bound properties.

QSS methods were later extended to deal with stiff systems. A first-order accurate method, called Backward QSS (BQSS)
was proposed in [17]. BQSS, in spite of its backward formulation, does not call for iterations, and the method preserves most
of the advantages of the explicit QSS solvers.

While BQSS could not be extended to higher order approximations, it inspired the formulation of a new family of methods
that were introduced in [16], with algorithms of orders 1 and 2. This family, called Linearly Implicit QSS (LIQSS), combines the
principles of QSS methods with those of linearly implicit classic algorithms [4].

In this article, we reformulate the definition of LIQSS methods given in [16], extending them to a generic Nth order of
accuracy and providing a general algorithm for its computer coding. We also study the main stability and error bound prop-
erties of this new family of solvers.

We shall show that these algorithms are very efficient for the simulation of some classes of systems that are simulta-
neously stiff and discontinuous.

The paper is organized as follows. After an introduction to the QSS family of solvers provided in Section 2, the LIQSS meth-
ods are presented and defined in Section 3. Section 4 then analyzes the theoretical properties of these methods, and Section 5
discusses two simulation examples and compares the results obtained by LIQSS against those found using classic algorithms.
Finally, Section 6 concludes the article.

2. Quantization based integration

In this section, we present the family of Quantized State System (QSS) methods. We first introduce the QSS methods of
orders 1–3. Since papers detailing these methods have been previously published [9,11,13], we shall keep the discussion of
these methods short and limit it to those aspects that are necessary for the understanding of the remainder of this article. We
then introduce the LIQSS methods of orders 1 and 2 for stiff systems. A preliminary paper describing these methods had also
been previously published [16]; however, the methods have evolved since the publication of that article. They have become
more efficient and are now capable of simulating additional classes of stiff simulation models.

2.1. First-order Quantized State Systems Method (QSS1)

2.1.1. QSS1 definition
Given the system:
_xaðtÞ ¼ fðxaðtÞ; tÞ ð1Þ
with analytical solution xa(t), the QSS1 approximates it by
_xðtÞ ¼ fðqðtÞ; tÞ ð2Þ
Here, q is the quantized state vector. Its entries are componentwise related with those of the state vector x by the following
hysteretic quantization function:
qjðtÞ ¼
xjðtÞ if jxjðtÞ � qjðt�ÞjP DQ j

qjðt�Þ otherwise

(
ð3Þ
where DQj is called quantum.
It can be seen easily that qj(t) follows a piecewise constant trajectory that only changes its value when the difference be-

tween qj(t) and xj(t) is equal to the quantum. After each change in the quantized variable, it results that qj(t) = xj(t).

2.1.2. QSS1 and stiff systems
The following examples illustrate the behavior of QSS1 and its poor performance when simulating a stiff system.



120 G. Migoni et al. / Simulation Modelling Practice and Theory 35 (2013) 118–136
Given the system
_xa1ðtÞ ¼ 0:01xa2ðtÞ
_xa2ðtÞ ¼ �100xa1ðtÞ � 100xa2ðtÞ þ 2020

ð4Þ
with eigenvalues k1 � �0.01 and k2 � �99.99. Consequently, the system is stiff.
The QSS method approximates it by
_x1ðtÞ ¼ 0:01q2ðtÞ
_x2ðtÞ ¼ �100q1ðtÞ � 100q2ðtÞ þ 2020

ð5Þ
Considering initial conditions x1(0) = 0 and x2(0) = 20 together with the quanta DQ1 = DQ2 = 1, the QSS numerical ODE solver
performs the following steps:

� At t = 0, we set q1(0) = 0 and q2(0) = 20. Then, _x1ð0Þ ¼ 0:2 and _x2ð0Þ ¼ 20. This situation remains unchanged until
jqi � xij = DQi = 1.
� The next change in q1 is thus scheduled at t = 1/0.2 = 5, whereas the next change in q2 is scheduled at t = 1/20 = 0.05.
� Hence a new step is performed at t = 0.05. After this step, it results that q1(0.05) = 0, q2(0.05) = 21, x1(0.05) = 0.01,

x2(0.05) = 21. The derivatives are _x1ð0:05Þ ¼ 0:21 and _x2ð0:05Þ ¼ �80.
� The next change in q1 is rescheduled to occur at 0.05 + (1 � 0.01)/0.21 = 4.764, whereas the next change in q2 is scheduled

at 0.05 + 1/80 = 0.0625. Hence, the next step is performed at t = 0.0625.
� At t = 0.0625, it results that q1(0.0625) = 0, q2(0.0625) = x2(0.0625) = 20, x1(0.0625) � 0.0126, and the derivatives coincide

with those found at time t = 0.
� This behavior is cyclicly repeated until a change in q1 occurs. That change occurs at t � 4.95, after 158 changes in q2 oscil-

lating back and forth between 20 and 21.
� The simulation continues in the same way.

Fig. 1 shows the evolution of q1(t) and q2(t) across 500 units of simulated time.
It can be seen that fast oscillations occur in q2 that cause a total of 15,995 transitions in this variable, whereas q1 under-

goes only 21 changes. Ultimately, more than 16,000 steps are needed to complete the simulation (comparable to the 25,000
steps performed by the forward Euler method to achieve a stable solution).

Although the results are qualitatively correct, the QSS method is unable to integrate the system of Eq. (4) efficiently.

2.2. Backward QSS Method (BQSS)

The BQSS method [17] attempts to prevent the appearance of fast oscillations observed in QSS. The main idea behind the
BQSS method is inspired by the classic implicit methods that evaluate the state derivatives at future instants of time (which
requires iteration to solve implicit equations). However, in BQSS no iterations are performed.

Like in QSS1, the quantized states qj follow piecewise constant trajectories. Also, the state derivatives _xj are computed
depending on the quantized states, as Eq. (2) shows.

In order to evaluate the state derivatives at future values of the state, each quantized state variable in BQSS contains a
future value of the corresponding state variable. This is, qj is selected so that xj goes towards it.
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Fig. 1. QSS solution of the stiff system of Eq. (4).
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Thus, whenever xj reaches qj, a new step is performed selecting qj(t) = xj(t) ± DQj according to the sign of _xj.
In other words, if during an event _xj > 0, the new quantized state value is set to qj = xj + DQj. Otherwise if _xj < 0, it takes

the value qj = xj � DQj. In either case, the subsequent change in qj is scheduled for the instant when xj reaches qj.
It could happen that, at a certain point, taking qj = xj + DQj provokes that _xj < 0 and taking qj = xj � DQj leads to _xj > 0.

Here, the mean value theorem ensures that qj can adopt a value ~qj near xj at which the condition _xj ¼ 0 is met.
In this case, the BQSS method does not actually search the value qj ¼ ~qj, but it keeps xj constant as if its time derivative _xj

were zero.
With this idea, the introductory example of Eq. (4) can be simulated in only 43 steps using the same quantum that was

previously employed in the simulation using QSS.
A precise specification of the BQSS method, its implementation, theoretical properties, and main features are discussed in

[15,17].
The main limitation of BQSS is that it performs a first-order approximation only. Thus, we cannot obtain accurate results

without accepting a significantly increased number of steps.
Higher-order QSS approximations can be obtained from QSS1, as we shall show below, whereas higher-order BQSS meth-

ods can unfortunately not be obtained [15].

2.3. Linearly implicit QSS methods

In BQSS, we choose qj so that xj evolves towards qj. When this is not possible, we know that there must exist a point eqj

near xj, for which _xj ¼ 0. So, we enforce that condition without actually calculating eqj.
We know that if we set qj ¼ ~qj, then _xj ¼ fjðq;uÞ ¼ 0. However, as we do not calculate ~qj, there is no way of computing

higher-order derivatives of xj. Consequently, we cannot obtain higher-order approximations. This is the reason why high-
er-order BQSS methods cannot be obtained.

In order to overcome this problem, the LIQSS1 method was defined in [16], where the value of ~qj is approximated in a
linearly implicit way.

In order to illustrate how LIQSS1 works, we shall simulate the system of Eq. (4) step by step from the same initial con-
ditions and using the same quantum as before.

� At t = 0, we can choose either q2 = 19 or q2 = 21 according to the sign of _x2ðtÞ. In both cases, _x1ð0Þ > 0 so the future quan-
tized value of x1 will be q1(0) = 1.
� If we choose q2(0) = 21, it results that _x2ð0Þ ¼ �180 < 0, and consequently, x2 does not evolve towards q2. On the other

hand, choosing q2(0) = 19 implies that _x2ð0Þ ¼ 20 > 0, and once again, x2 does not evolve towards q2.
Hence it is not possible to choose q2 so that x2 moves towards q2.
However, the fact that the sign of _x2 differs for q2 = 19 and q2 = 21 implies that there must exist a point, ~q2, in between
those two values, for which _x2 ¼ 0.
The LIQSS1 algorithm calculates the value for ~q2ð0Þ by solving a linear equation:
_x2ð0Þ ¼ �100q1ð0Þ � 100~q2ð0Þ þ 2020 ¼ 0
from which we obtain
~q2ð0Þ ¼ 20:2� q1ð0Þ ¼ 19:2
� Then, the state derivatives obtained for t = 0 are _x1ð0Þ ¼ 0:192 and _x2ð0Þ ¼ 0.
� The next change in q1 is scheduled at t = 1/0.192 � 5.2083, whereas the next change in q2 is scheduled at t =1.
� The next step takes place at t = 5.2083, i.e., when x1 reaches q1.

The calculations continue in the same way. Fig. 2 shows the evolution of q1(t) and q2(t) across 500 units of simulated time.
It can be seen that, using this method, no fast oscillations are present. During this simulation, q1 changes 21 times, and q2

changes 25 times, resulting in 46 state changes or 46 simulation steps, which constitutes a decent result for a stiff system.

2.4. Higher-order QSS and LIQSS methods

Based on QSS1, higher-order methods where developed. The algorithms of QSS2 [9] and QSS3 [11], performing second-
and third-order approximations, are outlined below.

2.4.1. Second- and third-order Quantized State Methods (QSS2/3)
The QSS2 method is based on the same principles as QSS1, but it replaces the zero-order quantization function of Eq. (3)

by a first-order quantization function.
The input–output behavior of a first-order quantization function is shown in Fig. 3.
The output trajectory is piecewise linear, and each segment starts with a value and slope equal to those of the input.

When the input and output trajectories differ by DQj, a new output segment begins.
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Fig. 2. LIQSS solution of the stiff system of Eq. (4). Variables xi and qi are the states and quantized states of the numerical solution.

Fig. 3. State and quantized variable in a first-order quantization function.

122 G. Migoni et al. / Simulation Modelling Practice and Theory 35 (2013) 118–136
The definition of the QSS2 method is identical to that of QSS1. That is, QSS2 approximates Eq. (1) by Eq. (2), except for
using first-order quantization to relate xj and qj.

The third-order accurate QSS3 method follows the same idea but uses second-order quantization functions that compute
piecewise parabolic quantized state trajectories.

QSS2 and even more so QSS3 are efficient for the simulation of discontinuous non-stiff ODEs. However, neither of these
solvers can deal efficiently with stiff systems. Both solvers lead to high-frequency oscillations when confronted with stiff
systems, just as QSS1 does.

2.4.2. Second-order LIQSS method
The second-order accurate linearly implicit QSS method (LIQSS2) combines the ideas of QSS2 and LIQSS1.
Like in QSS2, the trajectories of the quantized variables are piecewise linear instead of piecewise constant. We aspire that

the state and quantized trajectories have the same slope at the moment of change.
In order to avoid oscillations in LIQSS1, we choose qj so that xj evolves towards it. This condition is equivalent to
ðqj � xjÞ � _xj P 0
and it prevents oscillations in the derivative _xj around 0.
In LIQSS2, we choose qj to avoid changes in the sign of the second derivative €xj. This translates to the following condition:
ðqj � xjÞ � €xj P 0
That is, when the second derivative €xj is positive, we choose a piecewise linear quantized trajectory from above xj. Otherwise,
we choose the trajectory from below.

Similarly to LIQSS1, when the upper trajectory results in a negative value for €xj and the lower trajectory results in a po-
sitive value for €xj, we know that there exists an intermediate trajectory, for which €xj ¼ 0. Thus, we search for that trajectory
in a linearly implicit way.
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The simulation of the system of Eq. (4) from the same initial conditions (x1(0) = 0 and x2(0) = 20) using a quantum 10
times smaller than before (DQ1 = DQ1 = 0.1) with LIQSS2 takes a total of 40 steps.

Had we used LIQSS1 or BQSS with a quantum of 0.1, the entire simulation would have undergone at least 200 state tran-
sitions in each variable, since the two trajectories evolve from 20 to 0 and from 0 to 20, respectively. The much smaller num-
ber of steps encountered in the LIQSS2 simulation was achievable because LIQSS2 is a second-order accurate algorithm.

2.5. QSS Implementation

Although QSS methods can be coded as stand alone solvers, the simplest way of implementing them is by means of the
DEVS formalism.

In a DEVS implementation, an nth order system is split into n static functions and n quantized integrators.
The jth static function computes a piecewise constant trajectory _xjðtÞ from the piecewise constant trajectories of the

quantized states qi according to _xj ¼ fjðq; tÞ. These trajectories are represented by sequences of events, according to the DEVS
formalism.

Similarly, the jth quantized integrator integrates the piecewise constant trajectory _xj calculated by the corresponding sta-
tic function and computes the piecewise constant trajectory of qj.

The atomic DEVS models for static functions and quantized integrators are quite simple and have been specified in [4,11].
Coupling these atomic DEVS models, we obtain a new model that can be used to exactly simulate the behavior of the QSS1
approximation of the original ODE.

Higher-order QSS methods can also be implemented in the same way. To this end, the events of quantized integrators and
static functions take vector values representing the coefficients of the corresponding piecewise polynomial segments.

The whole family of QSS methods, including the methods introduced in the next section, were implemented in Power-
DEVS [2], a DEVS-based simulation platform specially designed for and adapted to simulating hybrid systems based on
QSS methods.

In addition, the explicit QSS methods of orders 1–3 were also implemented in Modelica [1] and in Open Source Physics, a
Java-based simulation tool [6], and implementations of the first-order QSS methods can also be found in CD++ [5] and VLE
[18].
3. Nth order LIQSS methods

This section reformulates and extends the methods of LIQSS, originally defined in [16]. We first explain the basic idea of
an LIQSS method of order N. Subsequently, we provide a formal definition. Then after discussing the differences between the
new and the previously published formulations of LIQSS, we present an implementation algorithm for the methods. Finally,
we briefly explain how LIQSS algorithms can be implemented using a DEVS simulation engine.

3.1. Basic idea

LIQSS1 selects the value of qj = xj ± DQj so that xj approaches qj. Whenever qj reaches xj, a new segment of qj starts. This
implies that ðqj � xjÞ � _xj > 0.

When this condition cannot be met, the mean value theorem ensures that there exists a value ~qj near xj for which the time
derivative of the state _xjðtÞ equals zero.

In this case using a linear approximation, the algorithm estimates the value ~qjðtÞ for which _xjðtÞ ¼ 0.
In a Nth order method, xj and qj follow piecewise polynomial trajectories of orders N and N � 1, respectively. The idea that

xj goes towards qj (assuming that both trajectories start out with parallel sections) leads to the condition:
ðqjðtÞ � xjðtÞÞ �
dNxjðtÞ

dtN ¼ ðqjðtÞ � xjðtÞÞ � xðNÞj ðtÞ > 0
Fig. 4 illustrates this idea for the third-order case.
Like in LIQSS1 when the condition ðqjðtÞ � xjðtÞÞ � xðNÞj ðtÞ > 0 cannot be met, the algorithm estimates the value eqjðtÞ for

which xðNÞj ðtÞ ¼ 0.
Actually in LIQSS1, the condition ðqj � xjÞ � _xj > 0 is not verified using the actual value of _xj, as this would imply performing

an extra function evaluation. Instead, we make use of a linear approximation of the jth component of the ODE:
_̂xjðtÞ ¼ Ajjx̂jðtÞ þ v jðtÞ
where x̂jðtÞ is the approximate state, Ajj is the jth diagonal entry of the Jacobian matrix and vj(t) is a term that approximates
the expression fjðx̂; tÞ � Ajjx̂jðtÞ.

This is the same linear approximation that we use to compute ~qjðtÞ.
Similarly in LIQSS_N, we estimate the Nth derivative of the state using successive differentiations of the previous linear

approximation, and we compute ~qj from that expression.



Fig. 4. State and quantized trajectories in LIQSS3 method.
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3.2. Formal definition

Given the ODE of Eq. (1), the Nth order accurate LIQSS_N method approximates it by the quantized state system
1 The
polynom
_xðtÞ ¼ fðqðtÞ; tÞ ð6Þ
where each component qj of q is represented by the following piecewise polynomial function
qjðtÞq
½0�
j ðkÞ þ q½1�j ðkÞ t � tk

j

� �
þ � � � þ q½N�1�

j ðkÞ t � tk
j

� �N�1
¼
XN�1

i¼0

q½i�j ðkÞ t � tk
j

� �i
ð7Þ
for tk
j 6 t 6 tkþ1

j .

Here q½i�j ðkÞ is the ith coefficient of the polynomial at the kth instant of change tk
j .

Let xðiÞj ðtÞ
� be the ith left time derivative1 of xj(t) and let x̂ðNÞj ðq̂j; tk

j Þ be an estimate of the Nth time derivative of xj at time tk
j

subject to qjðtÞ ¼ q̂jðtÞ. Then the coefficients q½i�j ðkÞ can be written as:
q½0�j ðkÞ ,

xj tk
j

� �
þ DQ j if x̂ðNÞj

�qj; tk
j

� �
> 0 ^ x̂ðNÞj qj; tk

j

� �
> 0

xj tk
j

� �
� DQ j if x̂ðNÞj

�qj; tk
j

� �
< 0 ^ x̂ðNÞj qj; tk

j

� �
< 0

~q½0�j ðkÞ otherwise

8>>>><>>>>: ð8Þ

q½i�j ðkÞði ¼ 1 . . . N � 1Þ ,
xðiÞ

j
tk
j

� ��
i! if q½0�j ðkÞ– ~q½0�j ðkÞ

~q½i�j ðkÞ otherwise

8><>: ð9Þ
where �qj tk
j

� �
¼ xj tk

j

� �
þ DQ j and qj tk

j

� �
¼ xj tk

j

� �
� DQj.

The estimate x̂ðNÞj and the values ~q½i�j ðkÞ are obtained from a linear approximation of the ODE of Eq. (6). The jth component
of this approximation for tk

j 6 t < tkþ1
j can be written as
_̂xjðtÞ ¼ AjjðkÞqjðtÞ þ v jðtÞ ¼
XN�1

i¼0

AjjðkÞq½i�j ðkÞ t � tk
j

� �i
þ
XN�1

i¼0

v ½i�j ðkÞ t � tk
j

� �i
ð10Þ
where Ajj(k) is the jth diagonal entry of the Jacobian matrix A ¼ @f
@x at t ¼ tk

j that can be estimated as
Ajj ¼
xð1Þj ðtk

j Þ
þ � xð1Þj tk

j

� ��
q½0�j ðkÞ � qj tk

j

� ��� � ð11Þ
and the coefficients of the input term vj(t) can be obtained from successive differentiations of Eq. (10) as:
v ½i�j ðkÞ ¼
xðiþ1Þ

j tk
j

� ��
i!

� AjjðkÞ
XN�1

m¼i

m

i

� �
q½m�j ðk� 1Þ tk

j � tk�1
j

� �ðm�iÞ ð12Þ
ith time derivative of xj(t) is obtained by differentiation of the jth component of Eq. (6) exploiting the fact that the components of q(t) are sections of
ials.
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Then, the estimate of the Nth time derivative of xj when qj ¼ q̂j can be computed by successive differentiations of the linear
model _xjðtÞ ¼ AjjðkÞqjðtÞ þ v jðtÞ and taking _qj ¼ _xj. In this fashion, we find
x̂ðNÞj ðq̂jðtÞ; tÞ ¼ AN
jj ðkÞq̂jðtÞ þ

XN

i¼1

Ai�1
jj ðkÞv

ðN�iÞ
j ðtÞ ð13Þ
Letting t ¼ tk
j , the previous expression becomes
x̂ðNÞj ðq̂j; tk
j Þ ¼ AN

jj ðkÞq̂j þ
XN

i¼1

Ai�1
jj ðkÞv

½N�i�
j ðkÞðN � iÞ! ð14Þ
Integrating Eq. (10), we find
x̂jðtÞ ¼ xj tk
j

� �
þ
XN�1

i¼0

AjjðkÞq½i�j ðkÞ þ v ½i�j ðkÞ
iþ 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}x̂½iþ1�

j
ðkÞ t � tk

j

� �iþ1
¼ xj tk

j

� �
þ
XN�1

i¼0

x̂½iþ1�
j ðkÞðt � tk

j Þ
iþ1tk

j < t < tkþ1
j ð15Þ
and we can compute the coefficients ~q½i�j ðkÞ so that x̂½N�j ðkÞ ¼ 0 and x̂½i�j ðkÞ ¼ q½i�j ðkÞ. Then from Eq. (15), it results that
~q½i�j ðkÞ ¼

�v ½N�1�
j

ðkÞ
AjjðkÞ

for i ¼ N � 1

ðiþ1Þ~q½iþ1�
j
ðkÞ�v ½i�

j
ðkÞ

AjjðkÞ
for i ¼ 0 . . . N � 2

8><>: ð16Þ
Finally, the sequence of values tk
j (k = 0, 1, . . .) is defined so that tkþ1

j is the minimum t > tk
j where
jxjðtÞ � �qjðtÞj ¼ DQj ð17aÞ
or
x̂ðNÞj ðqjðtÞ; tÞ ¼ 0 ð17bÞ
with
�qjðtÞ , xj tk
j

� �
þ
XN�1

i¼1

q½i�j ðkÞ t � tk
j

� �i
ð18Þ
3.3. Differences with previous definitions of LIQSS1 and LIQSS2

In the definition of LIQSS1 given in [16], the condition ðqjðtÞ � xjðtÞÞ � _xjðtÞ > 0 was verified using the actual value of _xj,
which implied an extra function evaluation per step. Similarly in LIQSS2, the verification of condition
ðqjðtÞ � xjðtÞÞ � €xjðtÞ > 0 implied the usage of two extra function evaluations per step.

In the new definition, the previous conditions are replaced by ðqjðtÞ � xjðtÞÞ � x̂ðNÞj ðtÞ > 0, where the estimate x̂ðNÞ does not
require any additional function evaluation.

Another change is introduced in LIQSS2 by Eq. (17b). This condition, which was not included in the previous definition of
LIQSS2, states that a new step is performed whenever the estimate x̂ðNÞj ðtÞ changes its sign. Since qj is not constant for meth-
ods of orders higher than 1, it could happen that qj(t) reaches the value ~qj (i.e., the value at which x̂ðNÞj ðtÞ ¼ 0) before meeting
the condition qj(t) = xj(t). When the step condition qj(t) = xj(t) is finally met, ~qj could be far away from xj (a distance greater
than DQj), and we could not use that value for qj, as this would introduce a large error. In the previous definition of LIQSS2,
this case led to fast oscillations in some cases.

3.4. LIQSS_N simulation algorithm

The definition of LIQSS_N can be implemented by the following simulation algorithm:
a. When at t ¼ tk

j Eq. (17) is verified (i.e., jxjðtÞ � �qjðtÞj ¼ DQj or x̂ðNÞj ðqjðtÞ; tÞ ¼ 0) then.

1. Update the state xj and its derivatives xðiÞj to the current time t using its polynomial representation
xj tk
j

� �
¼ xj tk�1

j

� �
þ
XN

i¼1

xðiÞj tk�1
j

� �
� ðtk

j � tk�1
j Þ

i

i!

xð1Þj tk
j

� �
¼ xð1Þj tk�1

j

� �
þ
XN�1

i¼1

xðiþ1Þ
j tk�1

j

� �
� tk

j � tk�1
j

� �i

i!
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Update also the quantized state polynomial coefficients to the current time t with an analogous formula.
2. Store the actual values of the quantized state qj(t�), the state derivative xð1Þj ðt

�Þ, and set �qj tk
j

� �
¼ xjðtÞ.

3. If xðNÞj tk
j

� �
> 0 then take q̂j ¼ xjðtÞ þ DQ j else take q̂j ¼ xjðtÞ � DQj.

4. Estimate x̂ðNÞj ðq̂j; tÞ from Eq. (14).

5. If x̂ðNÞj ðq̂j; tÞ � xðNÞj tk
j

� �
> 0 or Ajj(k) = 0, then from Eqs. (8) and (9).

� Take q½0�j ðkÞ ¼ q̂j.

� Calculate q½i�j ðkÞ ¼
xðiÞ

j
tk
j

� �
i! .

6. Otherwise according to Eq. (16)

� Compute q½N�1�
j ðkÞ ¼

�v ½N�1�
j

ðkÞ
AjjðkÞ

.

� Calculate q½i�j ðkÞ ¼
ðiþ1Þq½iþ1�

j
ðkÞ�v ½i�

j
ðkÞ

AjjðkÞ
starting from i = N � 2 down to i = 0.

7. Compute the instant t ¼ tkþ1
j when Eq. (17) is satisfied (i.e., jxjðtÞ � �qjðtÞj ¼ DQ j or x̂ðNÞj ðqjðtÞ; tÞ ¼ 0).

8. For each i so that fi(x, t) explicitly depends on xj.
� Evaluate xð1Þi ðtÞ ¼ fiðq; tÞ and the higher order derivatives xðmÞi ðtÞ with m = 2, . . . , N.

� if i = j then recompute Ajj(k) from Eq. (11) as Ajj ¼
xð1Þ

j
ðt�Þ�xð1Þ

j
ðtÞ

qjðt�Þ�q½0�
j
ðkÞ

.

� Estimate the input coefficients v ½m�i ðkÞ using Eq. (12).
� Recompute the next instant of change t ¼ tkþ1

i when Eq. (17) is satisfied (i.e., jxiðtÞ � �qiðtÞj ¼ DQ i or x̂ðNÞi ðqiðtÞ; tÞ ¼ 0).

b. Advance the simulation time t to the smallest future value of time when any state variable undergoes a transition and
go back to the beginning.

The usage of this algorithm in a simple example is illustrated in Appendix A.

Remark 1. The definition of LIQSS_N and the corresponding algorithm given above are valid for an arbitrary order N.
However, LIQSS methods of orders greater than 4 are impractical. The reason is that the computation of the next instant of
change at Eq. (17) requires finding the roots of a Nth order polynomial. Thus, an LIQSS_N method of order 5 or greater
requires iterations.

Beside from the aforementioned difficulty, LIQSS_N methods are primarily intended for the simulation of systems with
frequent discontinuities. In such systems, methods of very high order do not offer advantages, as the integration step sizes
are limited by the occurrence of discontinuities. Thus, algorithms of order greater than 4 are rarely used in these types of
systems.
3.5. DEVS Implementation of LIQSS algorithms

The LIQSS methods of orders 1–3 were implemented in PowerDEVS [2]. The static functions are the same as those of the
QSS methods of orders 1–3 as they compute functions of piecewise polynomial trajectories.

The LIQSS_N quantized integrators are similar to those of QSS_N. The main difference is that they compute the coefficients

of qj(t) not only depending on the coefficients of xj(t) but also on the estimate of the Nth derivative x̂ðNÞj ðtÞ as described in
points 1–5 of the algorithm above. They also estimate the values of Ajj and the coefficients of vj(t) as described in point 7
of the algorithm.

The LIQSS_N quantized integrators can be used with parameter values identical to those of the QSS_N and BQSS integra-
tors allowing the usage of logarithmic quantization. With logarithmic quantization [12] the quantum size is proportional to
the state magnitude, and its use implies intrinsic control of the relative error.

A logarithmic quantization function is specified defining a relative quantum, DQrel, and a minimum quantum, DQmin. Then,
the quantum changes with the quantized state, qj, according to the equation:
DQj ¼maxðDQ rel � jqjj;DQ minÞ
4. Theoretical properties of the LIQSS methods

In this section, we study the order, stability and accuracy properties of LIQSS methods.
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4.1. Perturbed representation

Since LIQSS methods have the same quantized system representation of Eq. (2) as QSS methods, they also share their per-
turbed representation:
_xðtÞ ¼ fðxðtÞ þ DxðtÞ;uðtÞÞ ð19Þ
where the perturbation term is defined as:
DxðtÞ , qðtÞ � xðtÞ
Notice that Eq. (17a) establishes that when the condition j�qjðtÞ � xjðtÞj ¼ DQj is met, a new step is performed. Since each sec-
tion of �qjðtÞ, defined in Eq. (18), starts at xj(t), it follows that �qjðtÞ and xj(t) never differ from each other by more than DQj.

From Eq. (18), the polynomial of �qjðtÞ only differs from the polynomial of q(t) in its first coefficient, so q(t) and �qðtÞ run
parallel to each other.

At each step, the value of qj(t) is taken as qj(t) = xj(t) ± DQj or qjðtÞ ¼ ~qj where j~qj � xjðtÞj < DQj. Thus, qj does not differ from
xj by more than DQj at the time of the transition, and consequently, qj(t) never differs from �qjðtÞ by more than DQj.

It follows that
jqjðtÞ � xjðtÞj ¼ jqjðtÞ � �qjðtÞ þ �qjðtÞ � xjðtÞj 6 jqjðtÞ � �qjðtÞj þ j�qjðtÞ � xjðtÞj 6 2DQj ð20Þ
Thus, LIQSS_N methods simulate an approximate system that only differs from the original system of Eq. (1) due to the pres-
ence of the bounded state perturbation.
4.2. Stability and global error bound

Based on the perturbed representation of Eq. (19) and the fact that
jqjðtÞ � xjðtÞj 6 DQ j8t P 0 ð21Þ
it was proven that

� Assuming that f is locally Lipschitz, the numerical solution obtained by the QSS1 solver converges to the analytical solu-
tion [13].
� Provided that the original ODE has an asymptotically stable equilibrium point, the QSS1 solution is ultimately bounded

around that equilibrium point [13].

As LIQSS1 only replaces Eq. (21) by (20) it is straightforward to prove that both properties are also satisfied by the first
order LIQSS1 method.

Theoretical properties for higher-order QSS methods were only studied for Linear Time Invariant (LTI) systems, and they
can be extended to LIQSS methods as follows.

Given the LTI system
_xaðtÞ ¼ AxaðtÞ þ BuðtÞ ð22Þ
where A is a Hurwitz matrix with Jordan canonical form K = V�1AV. Any LIQSS approximation simulates the system:
_x ¼ AðxðtÞ þ DxðtÞÞ þ BuðtÞ ð23Þ
Defining the error as e(t) , x(t) � xa(t), it follows that
_e ¼ AðeðtÞ þ DxðtÞÞ ð24Þ
where, according to Eq. (20), jDxjj 6 2DQj for j = 1, . . . , n.
In QSS1, QSS2 and QSS3 methods, starting from Eq. (24) and knowing that jDxjj 6 DQj, it was proven in [9,11] that
jeðtÞj � jV jjReðKÞ�1KjjV�1jDQ
where DQ is the vector of quanta, the symbol ‘j � j’ computes the elementwise absolute value of a matrix or vector, and ‘�’
represents a componentwise inequality.

Following an identical reasoning, it is straightforward to prove that in LIQSS methods
jbfeðtÞj � jV jjReðKÞ�1KjjV�1j2DQ ð25Þ
which is twice the error bound of the QSS methods.
For the case of logarithmic quantization, the conclusions are identical to those of the QSS methods given in [12], again

except for a factor of 2.



Fig. 5. Electric schematic of the buck converter.
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4.3. Order of the approximation

According to Eq. (7) in the definition of LIQSS_N, each component qj(t) of the quantized state q(t) follows a piecewise poly-
nomial trajectory of order N � 1.

Eq. (9) defines that the ith coefficient (for 1 6 i 6 N � 1) of each section of polynomial q½i�j is equal to either ~q½i�j or the ith

coefficient of the Taylor expansion of the state xj(t). Considering also that the coefficients ~q½i�j are computed so that ~qj goes
parallel to xj, it follows that in both cases each section of the quantized state qj starts parallel to that of the state xj(t).

After a new polynomial section starts, the next change is scheduled for the time instant, at which the difference between
xj and qj becomes equal to a given value. Since both trajectories only differ on the initial value and the Nth coefficient of their
polynomial representation (which is 0 for qj), then the time for the next change is scheduled at
x½N�j ðtkÞ � ðt � tkÞN ¼ c
where x½N�j is the Nth coefficient of the polynomial representation of xj(t) and c is a constant depending on the quantum and
the initial difference between xj(tk) and qj(tk). Thus, the time of the next step is computed as
t ¼ tk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c

x½N�j ðtkÞ
N

s

This expression shows that the time between events changes with the Nth root of the quantum, which is proportional to the
error bound of the numerical solution. Then, the number of steps performed by LIQSS_N grows with the Nth root of the
accuracy.

In this way, when we use the first-order accurate LIQSS1 method, the number of steps grows linearly with the accuracy. In
LIQSS2 it grows with the square root of the accuracy, and so on.

For instance, if we wish to improve a simulation result to get a solution that is 106 times more accurate, we can expect 106

times as many steps in LIQSS1, 103 times as many steps in LIQSS2, but only 102 as many steps in LIQSS3. It must, however, be
mentioned that these numbers are only approximations as, in presence of frequent discontinuities, a fixed amount of addi-
tional steps is performed that does not depend on the accuracy settings.

Thus, regarding the order, LIQSS methods are similar to variable step classic algorithms. The order does not define the
accuracy (it is a parameter in both cases), but it affects the number of steps performed.

5. Examples

This section presents two simulation examples where the performance of LIQSS methods is compared against that of clas-
sic algorithms.

5.1. Buck converter-motor speed control

The first example is a DC motor fed by a buck converter (Fig. 5), where the output voltage is controlled so that the motor
speed x follows a reference signal Xref.

Fig. 6 represents the complete schematic of the system as shown by the PowerDEVS graphic user interface.
The system implements a proportional integral (PI) controller for the speed and another PI controller for the buck con-

verter output voltage.
The signal that controls the buck switch state (open/close) is obtained from a pulse width modulator (PWM) that gener-

ates a square wave signal. High or low states are obtained by comparing the signal x(t) with a triangular wave of 10 kHz. If
the value x(t) is greater than the triangular, we set n = 1, otherwise we set n = �1. Fig. 7 shows the behavior described in the
PWM block.

The equations that describe the system are:
DC Motor equations
_Ia ¼ 1

La
ðVC � Ra � Ia � Km �xÞ

_x ¼ 1
J ðIa � Km � b �xþ TcÞ

(
ð26Þ



Fig. 6. PowerDEVS speed control schematic of a DC Motor with buck converter.
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Fig. 7. Behavior of PWM block diagram of Fig. 6.
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Buck converter

_VC ¼ IL
C �

VC
RC �

Ia
C

_IL ¼ VD�VC
C

VD ¼ RD
VCC�VD

RLL
� IL

� �
8>>><>>>: ð27Þ

Speed controller
exðtÞ ¼ xref ðtÞ �xðtÞ
Vref ðtÞ ¼ kpx � exðtÞ þ kix

R t
0 exðtÞdt

(
ð28Þ

Converter output voltage controller
eVout ðtÞ ¼ Vref ðtÞ � VoutðtÞ
xðtÞ ¼ kpv � eVout ðtÞ þ kiv

R t
0 eVout ðtÞdt

(
ð29Þ
where
RSw ¼
RSw�on if n ¼ 1ðSw closedÞ
RSw�off if n ¼ �1ðSw openÞ

�
ð30Þ

RD ¼
RD�off if VD > 0ðID � RD > 0Þ
RD�on if VD 6 0ðID � RD 6 0Þ

�
ð31Þ
Eqs. (30) and (31) exhibit the discontinuous nature of the system. Stiffness is related to the large value of RD�off representing
the large resistance of the diode in its off state.

The system was simulated using the parameter values shown in Tables 1 and 2.
The speed reference signal starts at t = 0 with a value xref(0) = 0 and evolves with a constant slope of 54.2 until t = 2, when

it reaches the value xref = 108.4. From that moment on, it remains constant.



Table 1
Parameter values for the buck converter.

Parameter Value

R 1 X
C 10�4 F
L 10�4 H
RD�on 10�6

RD�off 106

RSW�on 10�6

RSW�off 106

Switching frequency 10 kHz
Vcc 24 V

Table 2
Parameter values of the DC motor and controller.

Parameter Value

Armature resistance (Ra) 1.73 X
Armature inductor (La) 2.54 mH
Rotor mass moment of inertia (J) 1.62 � 10�5 Nm/s2

Electromotive force constant (Km) 0.0551
Mechanical system’s damping ratio (b) 1.12 � 10�5

kpx 1.5
kix 5
kpv 0.5
kiv 0.5
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Fig. 8. Simulated trajectory of the motor speed.
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The model was simulated in PowerDEVS setting a final simulation time of tf = 3 s. All initial conditions are set equal to
zero. The simulations were performed using the LIQSS2 and LIQSS3 solvers for different sets of relative and minimum quan-
tum values, DQrel and DQmin.

Then under identical conditions, the system was simulated with different solvers implemented in Dymola [3] for different
accuracy settings. Here, the best results were obtained using the ‘esdirk23a’ algorithm.2 The esdirk23a solver turned out to be
more efficient than the default ‘dassl’ solver when simulating this model.

Figs. 8–10 plot the motor speed, the converter output voltage, and the diode current obtained by LIQSS3 in PowerDEVS
using quantization values of DQmin = D Qrel = 10�4 for all state variables.

Table 3 summarizes the simulation performance of the LIQSS and esdirk23a solvers in PowerDEVS and Dymola,
respectively.

The error was computed comparing the results with the solution given by DASSL using a very small error tolerance. More
precisely, it was computed as
2 esdirk23 stands for Explicit Singly Diagonally Implicit Runge Kutta 2–3 (i.e., a diagonally implicit RK algorithm with explicit first stage) [14].



Fig. 9. Simulated buck converter output voltage.
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Fig. 10. Simulated diode current at the buck converter.
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Err ¼
PM

k¼1ðxðtkÞ �xref ðtkÞÞ2

M
ð32Þ
where x(tk) are the samples of the numerical solution for the motor speed and xref(tk) are the samples of the reference
solution.

In order to compare the number of function evaluations, we took into account that each LIQSS step does not involve full
function evaluations. It only performs evaluations at those components of bf f that explicitly depend on the quantized var-
iable that changes or on a discontinuity taking place.



Table 3
Performance comparison for different integration methods and software when simulating Eqs. (26)–(29).

Integration method No of steps Scalar function evaluations fj Error CPU time (s)

LIQSS2 (DQmin,rel = 10�2) 400,774 819,738 0.8043 8.21
LIQSS2 (DQmin,rel = 10�3) 931,348 1,936,255 0.1132 16.12
LIQSS2 (DQmin,rel = 10�4) 2,695,093 5,675,314 7.5 � 10�3 43.41
LIQSS3 (DQmin,rel = 10�3) 539,114 1,162,301 0.072 11.6
LIQSS3 (DQmin,rel = 10�4) 895,660 1,922,289 7.2 � 10�3 17.9
LIQSS3 (DQmin,rel = 10�5) 1,640,678 3,558,047 8.6 � 10�5 30.18
Dymola esdirk23a Tolerance:1e-5 1,276,767 53,392,584 1.8 � 10�6 62.3
Dymola esdirk23a Tolerance:1e-4 705,264 29,538,456 1.9 � 10�5 53.9
Dymola esdirk23a Tolerance:1e-3 350,108 14,098,782 2.6 � 10�5 27.21
Dymola esdirk23a Tolerance:1e-2 Simulation fails Simulation fails Simulation fails Simulation fails
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For instance, the simulation using LIQSS3 with DQmin = D Qrel = 10�4 consumed a total of 895,660 integration steps,
namely 148,793 at VC, 592,790 at IL, 7539 at x, 134,984 at Ia, 11,004 at the voltage controller, and 339 at the speed controller.
In addition, 60,035 discontinuities were detected in the switch, and 84,297 occurred in the diode. Consequently, 1,922,289
scalar function evaluations were needed altogether.

Dymola using the esdirk23a solver with a relative error tolerance of 1 � 10�4 involved 705,264 accepted and 96,671 re-
jected integration steps; in addition, 89,972 true and 60,000 temporary state events were detected. The simulation involved
a total of 4,923,076 full function evaluations. Taking into account that the system is of order 6, esdirk23a performed
29,538,456 scalar function evaluations.

Besides function evaluations, there are other factors that increase CPU time in both methods. On the one hand, LIQSS3
has to solve a cubic equation at each step, and the DEVS engine of PowerDEVS performs some tasks related to event
scheduling and propagation, which can be computationally expensive. In contrast, esdirk23a must calculate a Jacobian ma-
trix, solve a linear system of equations involving that Jacobian matrix, perform Newton iterations, and search for
discontinuities.

The Dymola simulations ran more accurately than the LIQSS simulations, and the simulation results turned out to be more
accurate than requested. The esdirk23a step size and thereby the simulation accuracy is controlled in this example primarily
by the frequently occurring discontinuities and not so much by the requested error tolerance. For a low error tolerance of
10�2, Dymola attempts a too large initial step, and the simulation dies before it ever takes off due to numerical stability
problems.

In contrast, the LIQSS simulations of this system are more robust. The LIQSS solver never turns numerically unstable, and
a user who requests less accurate results can get those and be rewarded by faster simulation runs. This feature can be essen-
tial in simulations that are running under real-time constraints, for example. The fastest simulation obtained by Dymola ran
3.3 times slower than the fastest simulation obtained by PowerDEVS.

5.2. Logical inverter chain

A logical inverter performs a logical operation over a signal. When the input signal assumes a high level, the inverter out-
puts a low level, and vice versa.

Logical inverters are implemented by electrical circuits. They exhibit a non-ideal response since the rise and fall time of
the signal output is limited by physical characteristics of the inverter circuit, and thus, the correct output level is not imme-
diately obtained, i.e., it is delayed.

An inverter chain is a concatenation of several inverters, where the output of each inverter acts as the input
to the next one. Making use of the aforementioned limitations, inverter chains can be used to obtain delayed
signals.

We consider here a chain of m inverters according to the inverter model given in [19] that is characterized by the follow-
ing equations:
_x1ðtÞ ¼ Uop �x1ðtÞ �!gðuinðtÞ;x1ðtÞÞ
_xjðtÞ ¼ Uop �xjðtÞ �!gðxj�1ðtÞ;xjðtÞÞj ¼ 2;3; . . . ;m

�
ð33Þ
where
gðu;vÞ ¼ ðmaxðu� Uthres; 0ÞÞ2 � ðmaxðu� v � Uthres;0ÞÞ2 ð34Þ
We used the set of parameter values proposed in [19]: m = 500 inverters, ! = 100 (which results in a very stiff system),
Uthres = 1, and Uop = 5.

The initial conditions are, as in the cited reference, xj = 6.247 � 10�3 for odd values of j and xj = 5 for even values of j.
Finally, the input signal is given by:



Fig. 11. PowerDEVS block diagram of the inverter chain system.
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Fig. 12. Selected xj-components (for j even) of the inverter chain PowerDEVS simulation.
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uinðtÞ ¼

t � 5 if 5 6 t 6 10
5 if 10 < t 6 15
5
2 ð17� tÞ if 15 < t 6 17
0 otherwise

8>>><>>>: ð35Þ
A block diagram of a logic inverter built in PowerDEVS is provided in Fig. 11. The inverter chain consist in a vector model that
contains m sub-models implementing the individual inverters.

Fig. 12 shows some components of the solution computed by the LIQSS2 solver using DQmin = DQrel = 0.001 for all state
variables.

Although the final simulation time was set to 500 s, the simulation ended at t = 128.47 s, because an equilibrium
situation was reached at that point. Under the simulation conditions mentioned before, the simulation takes 178,595
steps and 2.72 s of CPU time. Each integrator performed between 350 and 370 steps, i.e., changes in their quantized
state.

The simulation was repeated with different tolerance settings using LIQSS2 and LIQSS3. It was also simulated using dif-
ferent Matlab and Dymola algorithms and tolerances. In all cases, we used a final simulation time of 130 s.

The results, including also those reported in [19], are summarized in Table 4.
This example shows the true power of the LIQSS solvers. The LIQSS simulations run a thousand time faster than the

Dymola simulations; they run several hundreds of times faster than the Matlab simulations; and they run even faster than
the multi-rate simulations that were specifically designed for this type of problem.

The dramatic difference in the performance can be explained by the asynchronous nature of discrete event integration. At
each step, a discrete time method, like esdirk23a or ode15s, evaluates all components of the vector function f, in this case at
least 500 scalar function evaluations. In contrast, LIQSS methods only evaluate those components that explicitly depend on
the quantized variable that undergoes a change.



Table 4
Performance comparison when simulating the model of Eq. (33) using different methods. The CPU time for multi-rate methods was not obtained on the same
computer, but has been added as reported in [19].

Integration method Error tolerance No of steps/events Scalar fi eval. Error CPU time (s)

PowerDEVS DQrel = 10�2 178,595 eV. 714,380 0.61 2.72
LIQSS2 DQrel = 10�3 259,591 eV. 1,038,364 0.022 3.81
(DQmin = DQrel) DQrel = 10�4 533,200 eV. 2,132,800 0.00023 8.04
PowerDEVS DQrel = 10�3 165,931 eV. 995,586 0.443 2.99
LIQSS3 DQrel = 10�4 286,806 eV. 1,720,836 0.119 4.95
(DQmin = DQrel) DQrel = 10�5 368,857 eV. 2,213,142 0.0133 6.49

DQrel = 10�2 81,377 eV. 488,262 1.343 1.51
DQrel = 10�6 626,693 eV. 3,760,158 0.00205 11.1

Dymola erel = 10�1 7875 steps >37,748,000 0.062 1786.59
esdirk23a erel = 10�2 8664 steps >43,937,000 0.046 2005.64

erel = 10�3 10,005 steps >51,935,000 0.037 2147.1
Matlab Ode15s erel = 10�2 13,220 steps >33,050,000 0.041 651.37
Multirate II erel = 10�4 – 4,795,878 – 6.36⁄

Multirate II erel = 10�5 – 17,358,472 – 21.65⁄
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Fig. 13. CPU time vs. number of logical inverters.
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Another reason is that discrete time integration methods for stiff systems are implicit solvers. They need to perform a
Newton iteration during each integration step. To this end, they need to solve in each iteration step a linear system of n equa-
tions, where n is the order of the system. This fact also adds significantly to the computational load. This is not a huge issue
for a 6th order system, but it is a big issue for a 500th order system.

The large error values reported for all simulations of this example are deceiving.3 They are caused by the large gradients
during switching times. A tiny phase shift in the switching time of an inverter leads to a huge error in the signal.

In order to analyze the dependence of the required CPU time on the system order, the inverter chain model was sim-
ulated across tf = 130 s, while varying the number of logical inverters. The results of this experiment are shown in
Fig. 13.

Notice that the CPU time consumed by both LIQSS2 and LIQSS3 grows linearly with the system order, whereas the CPU
time needed by ode15s and esdirk23a grows cubically with the system order. For a small number of inverters, the perfor-
mance of LIQSS is similar to that of esdirk23a or ode15s, but for a large number of inverters, the LIQSS solvers turn out to
be much more efficient.

Multi-rate methods, such as those reported in [19], exhibit a similar performance to that of LIQSS methods. They share the
principle of trying to perform larger steps in variables that do not undergo rapid changes. However, those methods discard
several function evaluations when the tolerance settings are not met. Consequently, the number of function evaluations is
3 The error was computed as in the previous example, substituting x by x500 in Eq. (32).
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noticeable larger. Moreover to the best of our knowledge, the problem of discontinuity detection has not been addressed in
the context of those methods.

6. Conclusions

We presented a new family of QSS solvers based on linearly implicit principles of orders 1–3 that are suitable for the sim-
ulation of some classes of stiff systems.

We demonstrated that the LIQSS methods preserve most of the theoretical and practical characteristics of the non-stiff
QSS solvers. They ensure stability and a global error bound in linear systems. Also, they handle discontinuities in a highly
efficient manner.

Compared with classic discrete time methods, LIQSS exhibit important advantages when simulating stiff systems expe-
riencing frequent discontinuities. We illustrated this feature in the simulation of a complex system involving a power elec-
tronic device.

Another advantage is related to the simulation of some classes of large stiff sparse systems. Like in the case of the non-stiff
QSS solvers, LIQSS steps perform local calculations in those states only that undergo a change. In large systems experiencing
activities in a few states only at any given moment of time, LIQSS only computes functions that are directly related to those
active states. This advantage was demonstrated in the simulation of the logical inverter chain.

It was mentioned that LIQSS algorithms do not perform matrix inversions. Unfortunately, this fact imposes a severe lim-
itation on this class of solvers. LIQSS solvers avoid fast oscillations in xj by searching for the point q̂j, at which the state deriv-
ative _xj changes its sign. This search is done by looking at the diagonal elements Ajj of the Jacobian matrix only. When
stiffness is not due to the diagonal terms of the Jacobian matrix, but caused by some structural feature, LIQSS solvers
may be unable to deal with the stiffness inherent in such a model, and oscillations may still occur. The same limitation ap-
plies to classical linearly implicit algorithms.

In power electronic circuits, where stiffness is mainly due to the large or small resistance values of the switching devices
in their off or on states, LIQSS algorithms usually work well. However in other systems, such as those resulting from spatial
discretization of a diffusion equation by the method of lines, for example, where the stiffness is not reflected in large diag-
onal elements of the Jacobian matrix [4], the LIQSS methods do not perform any better than their non-stiff QSS brethren.

We have not studied yet what conditions a stiff system must satisfy for LIQSS methods to be successful in their simula-
tion. How can stiff systems that are not solvable efficiently by LIQSS solvers be recognized? Without such an analysis, LIQSS
solvers cannot replace the classical dassl solver as default simulation method in a general purpose modeling and simulation
environment, such as Dymola. Thus, it is important to research this question. We conjecture that, in power electronics cir-
cuits with non-ideal switching devices, such as those used in the Modelica standard library, LIQSS methods will always work.
At least, we have not come across any counterexample until now. However, we have not yet been able to prove this
conjecture.
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Appendix A. Step-by-step behavior of the LIQSS algorithm

Here, we illustrate the behavior of the LIQSS_N simulation algorithm introduced in Section 3.4. To this end, we consider
the simulation with the LIQSS1 method of the first order system
_xðtÞ ¼ �xðtÞ þ 1 , f ðxðtÞÞ ðA:1Þ
from the initial state x(0) = 0 using quantum DQ = 0.4.
At the initialization (which was not described in Section 3.4) we set t0 = 0, A11(1) = 0, v[1] = 0, and evaluate _xðt0Þ at

f(x(t0) ± DQ in order to decide the initial value for q(t). Since f > 0 in both cases, we take q(t0) = x(t0) + DQ = 0.4.
Then, it results that x1(t0) = f(q(t0)) = 1 � 0.4 = 0.6, x(t) = 0 + 0.6 � t, for t0 < t < t1 (with t1 still unknown), �qðt0Þ ¼ xðt0Þ ¼ 0

and we start the algorithm from this situation.
a. At t = t1 = 0.4/0.6 = 2/3, Eq. (17) is verified (since jxðt1Þ � �qðt1Þj ¼ 0:4 ¼ DQ). Then.

1. We store the actual values of the quantized state q(t�) = 0.4, the state derivative x(1)(t�) = 0.6, and set �qðt1Þ ¼ xðtÞ ¼ 0:4.
2. Since x(1)(t1) > 0, we take q̂ ¼ xðtÞ þ DQ ¼ 0:8.
3. We estimate x̂ð1Þðq̂; tÞ from Eq. (14), obtaining x̂ð1Þðq̂; tÞ ¼ 0 (at the first step we do not have an estimate of the linear

model).
4. Since A11(1) = 0, then from Eqs. (8) and (9)
� Take q½0�ð1Þ ¼ q̂j ¼ 0:8.

5. Compute the instant t = t2 when jxðtÞ � �qðtÞj ¼ DQ . Here we obtain t2 = t1 + 0.4/0.6 = 4/3.
6. As f(x) depends explicitly on x (we have only one state), we continue as follows:
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� Evaluate x(1)(t) = f(q,t) = � 0.8 + 1 = 0.2.
� Recompute A11(2) from Eq. (11) as A11 ¼ xð1Þðt�Þ�xð1ÞðtÞ

qðt�Þ�q½0� ðk¼1Þ ¼
0:6�0:2
0:4�0:8 ¼ �1.

� Estimate the input coefficient using Eq. (12) as v[0](1) = 0.6 + 0.4 = 1.
� Recompute the next instant of change t = t2 when Eq. (17) is satisfied (i.e., jxðtÞ � �qðtÞj ¼ DQ , which with the new state

derivative results at t2 = t1 + 0.4/0.2 = 8/3.

b. Advance the simulation time t to the smallest future value of time when any state variable undergoes a transition, so
we set t = t2 = 8/3, and go back to the beginning.

The second step is then performed as follows.
a. At t = t2 = 8/3 Eq. (17) is verified (since jxðt1Þ � �qðt1Þj ¼ 0:4 ¼ DQ). Then.

1. Store the actual values of the quantized state q(t�) = 0.8, the state derivative x(1)(t�) = 0.2, and set �qðtkÞ ¼ xðtÞ ¼ 0:8.
2. Since x(1)(t2) > 0, we take q̂ ¼ xðtÞ þ DQ ¼ 1:2.
3. We estimate x̂ð1Þðq̂; tÞ from Eq. (14), obtaining x̂ð1Þðq̂; tÞ ¼ �0:2.
4. The condition x̂ð1Þðq̂; tÞ � xð1Þðt2Þ > 0 or A11(2) = 0 is not met, so we proceed from the next step.
5. According to Eq. (16)
� Compute q½0�ð2Þ ¼ �v ½0�

A11
¼ �1
�1 ¼ 1.

6. Compute the instant t = t3 when jxðtÞ � �qðtÞj ¼ DQ . Here we obtain t2 = t2 + 0.4/0.2 = 14/3.
7. As f(x) depends explicitly on x (we have only one state), we continue as follows:
� Evaluate x(1)(t) = f(q,t) = �1 + 1 = 0.
� Recompute A11(3) from Eq. (11) as A11 ¼ xð1Þðt�Þ�xð1ÞðtÞ

qðt�Þ�q½0� ðk¼2Þ ¼
0:2�0
0:8�1 ¼ �1.

� Estimate the input coefficient using Eq. (12) as v[0](1) = 0.2 + 0.8 = 1.
� Recompute the next instant of change t = t3 when Eq. (17) is satisfied (i.e., jxðtÞ � �qðtÞj ¼ DQ . As the new state deriv-

ative is zero, it results that t3 =1.

b. Advance the simulation time t to the smallest future value of time when any state variable undergoes a transition, so
we set t =1, which finishes the simulation at the equilibrium point.

References

[1] T. Beltrame, F. Cellier, Quantised state system simulation in Dymola/Modelica using the DEVS formalism, in: Proceedings of the Fifth International
Modelica Conference, Vienna, Austria, vol. 1, pp. 73–82.

[2] F. Bergero, E. Kofman, Power DEVS: a tool for hybrid system modeling and real time simulation, Simulation: Transactions of the Society for Modeling
and Simulation International 87 (2011) 113–132.

[3] D. Brück, H. Elmqvist, S. Mattsson, H. Olsson, Dymola for multi-engineering modeling and simulation, in: Proceedings of the Second International
Modelica Conference, pp. 55.1–55.8.

[4] F. Cellier, E. Kofman, Continuous System Simulation, Springer, New York, 2006.
[5] M. D’Abreu, G. Wainer, M/CD++: modeling continuous systems using Modelica and DEVS, in: Proceedings of MASCOTS 2005, Atlanta, GA, pp. 229–236.
[6] F. Esquembre, Easy Java simulations: a software tool to create scientific simulations in Java, Computer Physics Communications 156 (2004) 199–204.
[7] E. Hairer, S. Nørsett, G. Wanner, Solving Ordinary Dfferential Equations I. Nonstiff Problems, second ed., Springer, Berlin, 1993.
[8] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer, Berlin, 1991.
[9] E. Kofman, A second order approximation for DEVS simulation of continuous systems, Simulation 78 (2002) 76–89.

[10] E. Kofman, Discrete event simulation of hybrid systems, SIAM Journal on Scientific Computing 25 (2004) 1771–1797.
[11] E. Kofman, A third order discrete event simulation method for continuous system simulation, Latin American Applied Research 36 (2006) 101–108.
[12] E. Kofman, Relative error control in quantization based integration, Latin American Applied Research 39 (2009) 231–238.
[13] E. Kofman, S. Junco, Quantized state systems. a DEVS approach for continuous system simulation, Transactions of SCS 18 (2001) 123–132.
[14] A. Kværnø, Singly diagonally implicit Runge–Kutta methods with an explicit first stage, BIT Numerical Mathematics 44 (2004) 489–502.
[15] G. Migoni, Simulación por Cuantificación de Sistemas Stiff, Ph.D. Thesis, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional

de Rosario, Rosario, Argentina, 2010.
[16] G. Migoni, E. Kofman, Linearly implicit discrete event methods for stiff ODEs, Latin American Applied Research 39 (2009) 245–254.
[17] G. Migoni, E. Kofman, F. Cellier, Quantization-based new integration methods for stiff ODEs, Simulation: Transactions of the Society for Modeling and

Simulation International 88 (2012) 387–407.
[18] G. Quesnel, R. Duboz, E. Ramat, M. Traoré, Vle: a multimodeling and simulation environment, in: Proceedings of the 2007 Summer Computer

Simulation Conference, San Diego, California, pp. 367–374.
[19] V. Savcenco, R. Mattheij, A multirate time stepping strategy for stiff ordinary differential equations, BIT Numerical Mathematics 47 (2007) 137–155.
[20] L. Shampine, M. Reichelt, The matlab ODE suite, SIAM Journal on Scientific Computing 18 (1997) 1–22.
[21] B. Zeigler, DEVS representation of dynamical systems: event-based intelligent control, Proceedings of the IEEE 77 (1989) 72–80.
[22] B. Zeigler, T. Kim, H. Praehofer, Theory of Modeling and Simulation, second ed., Academic Press, New York, 2000.
[23] B. Zeigler, H. Sarjoughian, H. Praehofer, Theory of quantized systems: Devs simulation of perceiving agents, Cybernetics and Systems 31 (2000) 611–

648.

http://refhub.elsevier.com/S1569-190X(13)00040-3/h0005
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0005
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0010
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0010
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0015
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0020
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0020
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0025
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0025
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0030
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0035
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0040
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0045
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0050
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0055
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0060
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0065
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0065
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0070
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0075
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0080
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0085
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0085
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0090
http://refhub.elsevier.com/S1569-190X(13)00040-3/h0090

	Linearly implicit quantization-based integration methods for stiff ordinary differential equations
	1 Introduction
	2 Quantization based integration
	2.1 First-order Quantized State Systems Method (QSS1)
	2.1.1 QSS1 definition
	2.1.2 QSS1 and stiff systems

	2.2 Backward QSS Method (BQSS)
	2.3 Linearly implicit QSS methods
	2.4 Higher-order QSS and LIQSS methods
	2.4.1 Second- and third-order Quantized State Methods (QSS2/3)
	2.4.2 Second-order LIQSS method

	2.5 QSS Implementation

	3 Nth order LIQSS methods
	3.1 Basic idea
	3.2 Formal definition
	3.3 Differences with previous definitions of LIQSS1 and LIQSS2
	3.4 LIQSS_N simulation algorithm
	3.5 DEVS Implementation of LIQSS algorithms

	4 Theoretical properties of the LIQSS methods
	4.1 Perturbed representation
	4.2 Stability and global error bound
	4.3 Order of the approximation

	5 Examples
	5.1 Buck converter-motor speed control
	5.2 Logical inverter chain

	6 Conclusions
	Acknowledgments
	Appendix A Step-by-step behavior of the LIQSS algorithm
	References


