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Abstract

A semi-analytic method is proposed for the generation of realizations of a multi-
variate process of a given linear correlation structure and marginal distribution.
This is an extension of a similar method for univariate processes, transforming
the autocorrelation of the non-Gaussian process to that of a Gaussian process
based on a piece-wise linear marginal transform from non-Gaussian to Gaussian
marginal. The extension to multivariate processes involves the derivation of
the autocorrelation matrix from the marginal transforms, which determines the
generating vector autoregressive process. The effectiveness of the approach is
demonstrated on systems designed under different scenarios of autocovariance
and marginals.
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1. Introduction

Many real time series cannot be considered to be Gaussian and do not fit
in the framework of standard linear analysis. A related problem is the gener-
ation of non-Gaussian time series with given linear correlation structure and
marginal distribution. This problem arises mainly in stochastic simulation and
randomization testing.

In stochastic simulation and particularly in the framework of input mod-
elling, the problem occurs when there are dependencies among random variables
that constitute the inputs to the simulation model. For time series data, this
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leads to the simulation of univariate or multivariate stochastic linear processes
of given marginal distributions and lagged correlation structure [1, 2, 3, 4]. This
setting is met in many applications, ranging from manufacturing systems [5], to
medical treatment [6], internet traffic [7], bird flocking [8], floods [9], and ocean
temperature [10].

Randomization testing has been used to investigate nonlinear dependencies
in the time series, where the null hypothesis is that the underlying process is
linear stochastic and the test statistic is nonlinear. For many nonlinear statistics
the null distribution is not known and a common approach, known as surrogate
data test, is to form the empirical null distribution from the values of the test
statistic computed on randomized time series consistent to the null hypothesis.
The latter requires that the surrogate time series preserve the original marginal
distribution and linear correlation structure [11, 12, 13, 14]. The surrogate data
test for nonlinearity has been mainly developed for univariate time series and
has been applied in many fields for the investigation of nonlinear dynamics and
chaos, such as finance [15, 16, 17], geophysics [18, 19, 20] and physiology [21, 22].
For multivariate time series, there are few approaches approximating the linear
correlation structure in the frequency domain using the cross-power spectrum
[23, 24, 25].

Though the problem is the same, solutions were proposed independently in
the two areas of stochastic stimulation and surrogate data testing. In stochastic
simulation, the problem was postulated as generating time series of arbitrary
length with a given autocorrelation and marginal distribution. In a series of
works, the algorithm for univariate time series called autoregressive-to-anything
(ARTA) was developed, modified and tested [26, 1, 27, 28], and was further ex-
tended for multivariate time series, known as Vector ARTA (VARTA) [29]. The
method relies on solving numerically a double integral expression for the trans-
form of the product moment of two Gaussian variables to that of variables of
arbitrary marginals, the latter being the lagged variables of the linear stochastic
process of arbitrary marginal distribution. The computations may be simplified
approximating the marginal distribution with the Johnson translation system
of distributions [29], and the generalized Pareto distribution [9].

For the surrogate data test for nonlinearity, independently of the ARTA
approaches, different algorithms were developed to generate time series that
match the marginal distribution and correlation structure of the examined time
series. All these methods use data randomization, matching exactly the sample
marginal distribution, and approximating the linear correlation either in the
frequency domain using the Fourier transform [11, 12], refined further using
wavelet transform [30], or in the time domain, correcting the autocorrelation
function [31], or finding an appropriate Gaussian autoregressive process, called
statically transformed autoregressive process (STAP) [14]. STAP and ARTA
are similar in that both methods attempt to form the transform from Gaussian
autocorrelation to the given autocorrelation, but ARTA uses numerical solu-
tion of the double integral form, while STAP uses parametric approximation,
originally polynomial [14], and then piece-wise linear [32].

Here, we extend the piece-wise approximation in STAP to estimate the auto-
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and cross-correlation of the multivariate time series, and we term the method as
vector STAP (VSTAP). We demonstrate the performance of VSTAP on different
simulated multivariate stochastic processes.

The structure of the paper is as follows. In Section 2, we give the background
and briefly discuss STAP using piece-wise approximation for univariate time
series, and in Section 3, we present VSTAP for multivariate time series. In
Section 4, we show the results of simulations on different multivariate stochastic
processes, and we conclude in Section 5.

2. Univariate Time Series with given Marginal Distribution and Au-

tocorrelation

We start with the univariate case, and suppose it is given a univariate time
series {xt}

n
t=1 with marginal distribution FX(x) and sample autocorrelation

function rX(τ), where τ is the time lag. Equivalently, instead of rX(τ) the power
spectrum SX(f) may be considered, where f is the frequency. The problem is
to generate a time series {x∗t }

N
t=1, where N may be different from n, fulfilling

the following two conditions:

FX∗(x) = FX(x) (1)

rX∗(τ) = rX(τ), τ = 1, . . . , P (2)

for a sufficiently large P . The second condition for the preservation of the linear
correlation structure can be equivalently given in terms of power spectrum,
SX∗(f) = SX(f) for all frequencies f . In stochastic simulation, the problem
may be postulated without reference to a specific time series {xt}

n
t=1 but only

to the given FX(x) and rX(τ).

2.1. Proposed solutions

The solutions we consider here match exactly the first condition in eq.(1)
and approximate the second condition in eq.(2). All solutions make use of the
marginal transform from Gaussian to the given distribution

x = F−1
X (Φ(z)) (3)

and the inverse transform
z = Φ−1(FX(x)), (4)

assuming a variable Z following the standard Gaussian distribution with cumu-
lative density function (cdf) Φ.

There are two main approaches for the solution: the constrained realization
approach, where the objective is to transform a random time series in order to
match the given two conditions, and the typical realization approach, attempt-
ing to find a generating process that fulfills the two conditions. Though there
has been some evidence in favor of constrained realization for hypothesis test-
ing, as is the case with the surrogate data test for nonlinearity [33], it requires a
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time series {xt}
n
t=1 is given, from which the marginals and correlation structure

are derived, and it gives another time series {x∗t }
n
t=1 of the same length. On

the other hand, the typical realization approach gives more insight onto the
underlying process and has also the advantage that it can take as input only
the marginals and autocorrelations, and can generate time series of any length,
e.g. see [34]. The amplitude adjusted Fourier transform (AAFT) [11] and the
iterated AAFT (IAAFT) [12] transform a time series to approximate the power
spectrum and are constrained realization approaches. On the other hand, ARTA
and STAP attempt to identify the process that generates realizations possessing
the given autocorrelation and are therefore typical realization approaches. The
two latter approaches are decomposed in the same four steps:

1. Starting with the marginal transform in eq.(3), the transform ψτ from
the Gaussian autocorrelation rZ(τ) to the given autocorrelation rX(τ) is
determined for each lag τ , rX(τ) = ψτ (rZ (τ)), and the solution for each
rZ(τ) is obtained.

2. For a given order P , the coefficients of an AR(P ) process are computed
from the autocorrelations rZ(τ), τ = 1, . . . , P , using the Yule-Walker
equations [35, Sec. 7.1].

3. A Gaussian time series {z∗t }
N
t=1 of a given length N is generated by the

AR(P ) process.

4. The Gaussian time series is transformed to obtain the given marginal dis-
tribution, x∗t = F−1(Φ(z∗t )), resulting in the desired time series {x∗t }

N
t=1.

2.2. The method of statically transformed autoregressive process

ARTA and STAP differ only in the first step. In ARTA, the double integral
form for ψτ is derived based on the marginal transform [1]

rX(τ) = Corr(F−1
X (Φ(zt)), F

−1
X (Φ(zt−τ )))

=
1

s2

(
∫ ∞

−∞

∫ ∞

−∞
F−1
X (Φ(zt))F

−1
X (Φ(zt−τ ))φ(zt, zt−τ , rZ(τ))dztdzt−τ − x̄2

)

,

(5)

where φ(zt, zt−τ , rZ(τ)) is the bivariate standard Gaussian probability density
function (pdf), and x̄ and s2 are the sample mean and variance of X , respec-
tively. To solve eq.(5) with respect to rZ(τ), the double integral form is solved
numerically (for an enhanced numerical solution, see [36]).

On the other hand, STAP uses a parametric approximation of ψτ . The
original STAP in [14] uses polynomial approximation of the marginal transform
in eq.(3), resulting in a polynomial form for ψτ . We found that linear piece-
wise approximation gives a better solution of rX(τ) = ψτ (rZ (τ)) with respect
to rZ(τ) [32]. The linear piece-wise approximation of the marginal transform is
comprised of first degree polynomials at each of m segments defined by m − 1
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breakpoints ak, k = 1, . . . ,m− 1

Xt =















c10 + c11Zt if −∞ < Zt ≤ a1
c20 + c21Zt if a1 < Zt ≤ a2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cm0 + cm1Zt if am−1 < Zt <∞

(6)

The partition of Z and the linear piece-wise function in (6) determine a partition
{Ak | k = 1, . . . ,m} of the domain of X , i.e. X ∈ Ak when Z ∈ [ak−1, ak].
Specifically, we have Ak = [αk−1, αk] = [F−1

X (Φ(ak−1)), F
−1
X (Φ(ak))]. Then the

product moment for a lag τ is

E(XtXt−τ ) =

m
∑

k=1

m
∑

l=1

E(XtXt−τ |Xt∈Ak ∧Xt−τ ∈Al)Pr(Xt∈Ak ∧Xt−τ ∈Al)

=

m
∑

k=1

m
∑

l=1

(ck0cl0 + ck1cl0µ1,0 + ck0cl1µ0,1 + ck1cl1µ1,1)P, (7)

where P = P (ak−1, ak, al−1, al; ρZ(τ)) is the probability of (Zt, Zt−τ ) being in
the region [ak−1, ak] × [al−1, al], µ1,0 and µ0,1 are the first order marginal mo-
ments and µ1,1 the product moment of the doubly truncated Gaussian variables
(Zt, Zt−τ ), where Zt ∈ [ak−1, ak] and Zt−τ ∈ [al−1, al]. Substituting the expres-
sions for the moments of the joint doubly truncated Gaussian distribution, we
get an analytic form for ψτ (for details, see [32]). We found that best results
are obtained when the breakpoints divide the standard Gaussian domain into
equiprobable intervals. We also found that the constraint of continuity on the
linear piece-wise function does not affect substantially the approximation of the
correlation transform. Therefore we independently estimate the coefficients of
the linear function at each interval rather than using linear splines. It is noted
that the possible violation of continuity does not affect the monotonicity of the
piece-wise linear function, which is always maintained.

In a comparative study in [37], it was shown that rX∗(τ) from STAP with
the polynomial approximation estimates rX(τ) without bias, as opposed to
AAFT, IAAFT and a model bootstrap approach, but with a larger variance
than IAAFT, which decreases with the increase of n. The linear piecewise
approximation decreases further the variance of rX∗(τ) from STAP and simula-
tions in [32] showed that it gives more accurate Gaussian correlation estimation,
and therefore we adopt it in the extension of STAP for multivariate time series
presented below.

3. The Method of Vector Statically Transformed Autoregressive Pro-

cess

For K multivariate time series, the problem involves the marginal distribu-
tions of all variables X1, . . . , XK , and the lagged cross-correlation for all pairs
(Xi, Xj) in addition to the autocorrelations for each Xi. Given the marginal
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distributions FXi
(x), i = 1, . . . ,K, and lagged correlations rXi,Xj

(τ), the prob-
lem is to find a multivariate time series {x∗i,t}

N
t=1, i = 1, . . . ,K, fulfilling the two

following conditions:

FX∗

i
(x) = FXi

(x), i = 1, . . . ,K (8)

rX∗

i
,X∗

j
(τ) = rXi,Xj

(τ), τ = 0, . . . , P, i, j = 1, . . . ,K (9)

for a sufficiently large P . Alternatively, considering the linear structure in the
frequency domain the second condition can be postulated in terms of cross-power
spectrum, SX∗

i
,X∗

j
(f) = SXi,Xj

(f) for all frequencies f .
The first condition on the marginal distributions does not really complicate

the solution for a proper {x∗i,t}
N
t=1 as the marginal transform can be applied

separately for each of the K variables. On the other hand, the preservation
of the linear correlation structure is far more difficult to achieve than for the
univariate case because in addition to the autocorrelation rXi,Xi

(τ) (denoted
rX(τ) in the univariate case) the lagged cross-correlations rXi,Xj

(τ), i 6= j,
have to be matched as well (the same holds for the cross-power spectrum).

3.1. The typical realization approach

The typical realization approach is similar to that for univariate time series
and is decomposed in the following four steps:

1. The correlation transform for each pair of variables (Xi, Xj) and lag τ is
formed as rXi,Xj

(τ) = ψi,j,τ (rZi,Zj
(τ)) from the marginal transforms, and

the solution for each rZi,Zj
(τ) is obtained.

2. Given the lagged cross- and auto-correlations rZi,Zj
(τ), i, j = 1, . . . ,K,

τ = 0, . . . , P (for a given order P ), the coefficient matrices of a vector
autoregressive process of order P onK variables, VARK(P ), are computed
using the multivariate generalization of the Yule-Walker equations [35, Sec.
16.5].

3. The Gaussian multivariate time series {z∗i,t}
N
t=1, i = 1, . . . ,K is generated

by the VARK(P ) process.

4. Each of the Gaussian time series {z∗i,t}
N
t=1 is transformed to obtain the

given marginal distribution, x∗i,t = F−1
Xi

(Φ(z∗i,t)), resulting in the desired

time series {x∗i,t}
N
t=1.

Albeit the similarity of the four steps above to these for the univariate case
in Sec. 2, there are additional problems in their implementation, which will be
discussed later in Sec. 3.3. Both the vector ARTA (VARTA) [29], and vector
STAP (VSTAP), presented below, implement the four steps for any marginal
distributions and cross-correlation structure. Further, both methods can be
implemented to multivariate time series assuming only that they are continuous
valued and stationary. The main difference in VSTAP and VARTA is that in
step 1, VARTA derives rZi,Zj

(τ) solving numerically the double integral form as
in eq.(5), while VSTAP approximates the marginal transform from Gaussian to
the given sample distribution with a linear piece-wise function, given in eq.(6).
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3.2. Implementation of VSTAP

VSTAP first fits the linear piece-wise function to the sample marginal trans-
form, as for the univariate case (see eq.(6)). The breakpoints of the piece-wise
function divide the standard Gaussian domain to equiprobable intervals and are
thus the same for all variables, and only the coefficients of the linear piece-wise
function are different for each variable Zi, denoted ci,k0 and ci,k1, k = 1, . . . ,m,
for the constant term and the slope coefficient, respectively. The product mo-
ment for the pair of variables (Xi, Xj) and lag τ is similar to that of eq.(7) for
the univariate case

E(Xi,tXj,t−τ ) =

m
∑

k=1

m
∑

l=1

E(Xi,tXj,t−τ |Xi,t∈Ai,k ∧Xj,t−τ ∈Aj,l)Pr(Xi,t∈Ai,k ∧Xj,t−τ ∈Aj,l)

=

m
∑

k=1

m
∑

l=1

(ci,k0cj,l0 + ci,k1cj,l0µ1,0 + ci,k0cj,l1µ0,1 + ci,k1cj,l1µ1,1)P,

(10)

where P = P (ak−1, ak, al−1, al; ρZi,Zj
(τ)) is the probability of (Zi,t, Zj,t−τ ) be-

ing in the region [ak−1, ak]× [al−1, al], µ1,0 and µ0,1 are the first order marginal
moments and µ1,1 the product moment of the doubly truncated bivariate stan-
dard Gaussian distribution on [ak−1, ak] × [al−1, al]. The first order marginal
moments in eq.(10) have the same expression for all i = 1, . . . ,m, e.g. µ1,0 is

µ1,0 = E(Zi,t) =
1

P

1
∑

u,v=0

(−1)u+v (φ(ak−u)Q(ak−u, al−v) + ρφ(al−v)Q(al−v, ak−u)) ,

where Q(a, b) =
∫∞

b−ρa√
1−ρ2

ϕ(u) du and ρ = ρZi,Zj
(τ). The product moment in

eq.(10) is

µ1,1 = E(Zi,t, Zj,t−τ ) =
1

P

1
∑

u,v=0

(−1)u+v
(

ρP + (1− ρ2)φ(ak−u, al−v, ρ)

+ρak−uφ(ak−u)Q(ak−u, al−v) + ρal−vφ(al−v)Q(al−v, ak−u)) .

The probability P and the moments are functions of ρZi,Zj
(τ), so after substi-

tution we get an analytic form for ψ̂i,j,τ that approximates the true ψi,j,τ based

on linear piece-wise marginal transforms [32]. The function ψ̂i,j,τ is invertible,
given that the piece-wise approximation in eq.(6) is also invertible [29, Theo-
rem 3.4] (the theorem is based on the monotonicity of the cdf FXi

, and thus
it applies to the piece-wise function fitted to FXi

being monotonic). However,

the expression of ψ̂i,j,τ is very complicated and the closed form solution for its
inverse cannot be obtained. We therefore use an iterative process to obtain the
solution rZi,Zj

(τ), approximating ρZi,Zj
(τ), so that ψ̂i,j,τ (rZi,Zj

(τ)) matches
rXi,Xj

(τ) at an arbitrary accuracy ǫ.
The iterative process needs a starting value for rZi,Zj

(τ), and an appropriate
value is given by the so-called naive correlation coefficient of Xi,t and Xj,t−τ .
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This is the Pearson correlation coefficient of the marginal transforms to Gaussian
ofXi,t andXj,t−τ according to eq.(4), rZi,Zj

(τ)(0) = r
(

Φ−1(FXi
(Xi,t)),Φ

−1(FXj
(Xj,t−τ ))

)

[38]. The main steps of the iterative algorithm are the following:

1. Begin with the naive correlation coefficient of Xi,t and Xj,t−τ as the start-
ing value rZi,Zj

(τ)(0).

2. At each iteration h, compute rXi,Xj
(τ)(h) = ψ̂i,j,τ

(

rZi,Zj
(τ)(h)

)

.

3. Compute the difference δrXi,Xj
(τ) = rXi,Xj

(τ)− rXi,Xj
(τ)(h).

4. If δrXi,Xj
(τ) < ǫ the solution is found and rZi,Zj

(τ) = rZi,Zj
(τ)(h).

Otherwise the input for the next step is updated as rZi,Zj
(τ)(h+1) =

rZi,Zj
(τ)(h) + δrXi,Xj

(τ) and the computations are repeated from step 2.

The iterative algorithm is of the type of simple fixed point iteration, and thus
has a linear rate of convergence. It requires only one starting value as opposed
to bracketing methods (e.g. false position, secant, and bisection) requiring two
starting values close and at each side of the solution [39, Chp.2]. The starting
value of the naive correlation coefficient is close to the desired solution [38], and
actually coincides with it in the case (Xi,t, Xj,t−τ ) is obtained from monotonic
marginal transforms of a bivariate Gaussian variable pair [32]. At each iteration,
we set the increment in the Gaussian correlation equal to the deviation in the
target correlation δrXi,Xj

(τ) because the Gaussian correlation and the target
correlation are at the same amplitude level, and moreover it holds rXi,Xj

(τ) ≤
|rZi,Zj

(τ)| [40, p.600]. The linear convergence is guaranteed by the monotonicity
of ψi,j,τ and that rXi,Xj

(τ) ≤ |rZi,Zj
(τ)|. In practice, we have found that the

monotonicity of ψ̂i,j,τ may not hold at the edges of the interval [−1, 1]. For this,
when |rZi,Zj

(τ)(h)| is larger than a threshold close to one (we set the threshold to
0.9 to be on the safe side for all practical purposes) the condition of monotonicity
is checked and if it is not satisfied, binary search is applied in the interval formed
by the threshold and the current value. The number of iterations (including the
binary search) depends on the given accuracy ǫ, but in any case the closed form

expression of ψ̂i,j,τ (rZi,Zj
(τ)) makes the algorithm very time effective.

3.3. Implementation complications

A known problem with any correlation transform is that there may not be
a feasible solution for a particular given correlation and marginals [26, 41]. The
domain of rXi,Xj

(τ) for which a solution rZi,Zj
(τ) ∈ [−1, 1] can be obtained

is a subset of [−1, 1]. For a bivariate sample {xt, yt}
n
t=1 of (X,Y ) (in our case

X = Xi,t and Y = Xj,t−τ ), the subset is formed by the minimum feasible
correlation r and the maximum feasible correlation r

r =

(
∑n

t=1 x(t)y(n−t+1) − x̄ȳ
)

/(n− 1)

sXsY
r =

(
∑n

t=1 x(t)y(t) − x̄ȳ
)

/(n− 1)

sXsY
,

where {x(t)}
n
t=1 is the ordered sample of X , x̄ and sX are the sample mean and

standard deviation [42]. For correlation matrices it is more difficult to determine
the condition for feasibility, but there are computational procedures to check
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whether a given correlation matrix is feasible [41]. In the case of multivariate
time series, the check for feasibility extends to the correlation matrix of any vec-
tor variable with components from the set {Xi,t−τ | i = 1, . . . ,K, τ = 0, . . . , P}.
Even if all the correlation matrices are feasible, the solution for the correspond-
ing Gaussian correlation matrices may not be valid, i.e. the matrices may not all
be positive semi-definite. The problem arises because the components of each
Gaussian correlation matrix are computed independently.

Instead of checking positive semidefiniteness for each possible Gaussian cor-
relation matrix, the validity of the derived Gaussian lagged correlations can be
tested collectively by checking for positive semidefiniteness of the full Gaussian
correlation matrix

RZ =











RZ(0) RZ(1) · · · RZ(P )
RZ(−1) RZ(0) · · · RZ(P − 1)

...
...

...
...

RZ(−P ) RZ(−P + 1) · · · RZ(0)











(11)

where RZ(τ) is the lagged correlation matrix for lag τ , τ = 0, . . . , P (P is the
maximum lag)

RZ(τ) =











1 rZ1,Z2
(τ) · · · rZ1,ZK

(τ)
rZ2,Z1

(τ) 1 · · · rZ2,ZK
(τ)

...
...

...
...

rZK ,Z1
(τ) rZK ,Z2

(τ) · · · 1











(12)

For correlation matrices, there are techniques to modify the matrix so as
to be positive semidefinite, such as replacing negative eigenvalues with zero,
or better with a slightly positive value in order to make it positive definite
[43, 41]. However, these techniques cannot be applied directly to the correlation
matrix RZ in eq.(11) because it is comprised of repeated blocks being the lagged
correlation matrices in eq.(12). Thus a change in an eigenvalue of RZ will alter
its structure and make previously identical blocks differ. Our solution to this
problem is to introduce a two-stage iterative procedure, where in the first stage
we render positive definiteness of RZ and in the second stage we regain the
structure in eq.(11). At each iteration, in the first stage we set the negative
or zero eigenvalues of RZ to a slightly positive value and obtain a positive
definite matrix but with altered components. In the second stage, for each
repeated component in the form in eq.(11), we take the average of the values at
the corresponding entries. For example, rZ1,Z2

(1) occurs in the entry (1, 2) of
RZ(1) and entry (2, 1) of RZ(−1), so it occurs in all blocks RZ(1) and RZ(−1)
of RZ , i.e. 2(P − 1) entries in total. Replacing all the repeated entries with the
same average value gains back the correct structure of RZ but may cause RZ

not to be positive definite, and the same two-stage procedure is then repeated.
We have not worked out a proof for the convergence of this iterative procedure,
but we found that a positive definite matrix RZ of the form in eq.(11) could be
obtained after few steps.
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According to step 2 of the typical realization approach in Sec. 3.1, given RZ

the coefficient matricesA1, . . . , AP of the VARK(P ) Gaussian process {Z1,t, . . . , ZK,t}
are computed from the multivariate generalization of the Yule-Walker equations
[35, Sec. 16.5], where VARK(P ) is expressed as

Zt = A1Zt−1 + · · ·APZt−P + et (13)

and et is uncorrelated process, here assumed to be Gaussian with unit covari-
ance matrix. The positive definiteness of RZ in eq.(11) is important because it
determines the stationarity of the VARK(P ) Gaussian process {Z1,t, . . . , ZK,t}.
In terms of A1, . . . , AP , VARK(P ) is stationary when the roots of the reverse
characteristic polynomial |IK − A1z − A2z

2 − · · · − AP z
P | = 0 lie outside the

unit circle in the complex plane, or equivalently the eigenvalues of











A1 A2 · · · AP−1 AP

IK 0 · · · 0 0
...

...
...

...
...

0 0 · · · IK 0











are all smaller than one in modulus, where IK is the unit matrix. This condition
is fulfilled by the condition of positive semidefiniteness of the full correlation
matrix of RZ in eq.(11).

Having a stationary VARK(P ) Gaussian process, we generate a stationary
Gaussian multivariate time series {z∗i,t}

N
t=1, i = 1, . . . ,K from eq.(13). To trans-

form the Gaussian {z∗i,t}
N
t=1 to possess the given marginals in step 4 of the typical

realization approach in Sec. 3.1, we can use either the marginal transform in
eq.(3) or the linear piece-wise approximation. The former gives {x∗i,t}

N
t=1 with

exactly the same marginals and possibly some inaccuracy in the lagged correla-
tions inherited by the inaccuracy of the linear piece-wise fit, while the latter loses
some accuracy in matching the marginals but gains more accuracy in matching
the lagged cross-correlations. The choice depends on the application. For ex-
ample, for the randomization test for nonlinearity (where also we have N = n),
we would choose the first approach to assure that the randomized time series
contain exactly the same values as the original time series. We apply the latter
approach in our simulations.

4. Simulations and Results

We show the efficiency of VSTAP in generating multivariate time series that
match given non-Gaussian marginals and various correlation structures. In all
simulations we set the number of breakpoints in the piecewise approximation
to 20. A pilot study on smaller number of breakpoints showed that the de-
creased accuracy of the piece-wise linear fit does not affect much the solution
for rZi,Zj

(τ). So, for very small time series, a smaller number of breakpoints
can also be used. On the other hand, our simulations on larger numbers of
breakpoints showed insignificant improvement in the accuracy of the piece-wise
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linear fit and the estimated rZi,Zj
(τ). For the accuracy tolerance, we use the

absolute error rather than a relative error and set ǫ = 0.00001. For a generated
realization of a process, VSTAP runs for the sample marginal distributions FXi

and the sample lagged correlations rXi,Xj
(τ). Using the approach that matches

exactly the marginals in step 4 of Sec. 3.1, we establish that the marginals in
{x∗i,t}

n
t=1 coincide with those of the given time series {xi,t}

n
t=1 (we use n = N

in the simulations). Thus only results for rXi,Xj
(τ) are shown.

We consider different stationary VAR processes. We start with the Gaussian
VAR2(2) generating process (K = 2, P = 2)

st =

[

s1,t
s2,t

]

=

[

0.02
0.03

]

+

[

0.5 0.1
0.4 0.5

]

st−1 +

[

0 0
0.25 0

]

st−2 + et

where the input white noise vector et = [e1,t, e2,t]
′ is uncorrelated and has com-

ponent variances σ2
e1

= 0.09 and σ2
e2

= 0.04 [44, p.17]. The observed time series
{xt}

n
t=1, where xt = [x1,t, x2,t]

′, has altered (non-Gaussian) marginals, given as
x1,t = sa1,t, x2,t = sa2,t, and we set a = 3 and a = 2 to have a monotonic and
a non-monotonic marginal transform, respectively. An example of realizations
of the processes for a = 3 and a = 2 are shown in Fig. 1. For a = 3, the
marginal distributions for both X1 and X2 have large kurtosis, while for a = 2
both marginal distributions are strongly right skewed.
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Figure 1: The time series for monotonic (a = 3, first row) and non-monotonic (a = 2, second
row) marginal transform of the Gaussian VAR2(2) generating process. (a) and (d) The time
history plot for the two variables X1 and X2 for a = 3 and a = 2, respectively. (b) and
(e) Blow up of the time windows as indicated in (a) and (d), respectively. (c) and (f) The
histograms of the time series for X1 and X2 in (a) and (d), respectively.

The match of rXi,Xj
(τ) with VSTAP for the monotonic and non-monotonic

marginal transform can be seen in Fig. 2. The 100 generated multivariate time
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Figure 2: The match of rXi,Xj
(τ), i, j = 1, 2, using VSTAP for monotonic (a = 3, in (a))

and non-monotonic (a = 2, in (b)) marginal transform of the Gaussian VAR2(2) generating
process. The black line is for the given rXi,Xj

(τ) and the grey (cyan online) lines are for

rX∗

i
,X∗

j
(τ) from 100 realizations of VSTAP (N = 1024). The two dashed black lines denote

the 95% Fisher confidence intervals of rXi,Xj
(τ). In (a), the expected correlation from the

cubic marginal transform is displayed by thick stippled line.

series {x∗i,t}
1024
t=1 have sample lagged correlations rX∗

i
,X∗

j
(τ) that spread around

the given rXi,Xj
(τ), i.e. rXi,Xj

(τ) is within the distribution of rX∗

i
,X∗

j
(τ). The

spread of rX∗

i
,X∗

j
(τ) is at the level of the spread expected for sample Gaussian

correlation of the same N , as indicated in Fig. 2 by the dashed black lines
denoting the 95% Fisher confidence intervals of rXi,Xj

(τ).
For the monotonic transform, it is possible to compare the given sam-

ple correlation and the VSTAP correlation with the theoretic correlation for
the monotonically transformed Gaussian VAR2(2) process. For each Gaus-
sian lagged correlation ρSi,Sj

(τ) of the original Gaussian VAR2(2) obtained
from the coefficients of VAR2(2) through the Yule-Walker equations, the trans-
form xi,t = s3i,t, i = 1, 2, determines the correlation transform ρXi,Xj

(τ) =

2ρSi,Sj
(τ)3/5+3ρSi,Sj

(τ)/5 [32]. It turns out that both the sample and VSTAP
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lagged correlations are close to the theoretic lagged correlations for (X1, X1) and
(X1, X2) but differ for (X2, X1) and (X2, X2) (see Fig. 2a).

The mismatch of theoretical and sample correlation is more visible when the
sample size N increases and the spread decreases, as shown in Fig. 3 for τ = 1.
It is clearly shown in Fig. 3a that the mismatch when a = 3 occurs for ρX2,X1
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Figure 3: The match of rXi,Xj
(1), i, j = 1, 2, against the time series length N (logarithmic

scale) using VSTAP for monotonic (a = 3, in (a)) and non-monotonic (a = 2, in (b)) marginal
transform of the Gaussian VAR2(2) generating process. The black line is for rXi,Xj

(1) and

the grey (cyan online) lines are for rX∗

i
,X∗

j
(1) from 100 realizations of VSTAP. The dashed

black lines denote the 95% Fisher confidence intervals of ρXi,Xj
(1). In (a), the expected

correlation from the cubic marginal transform is displayed by thick stippled line.

and ρX2,X2
(1). For these cases, one can observe also difference in the sample

correlations rX2,X1
(1) and rX2,X2

(1) and the VSTAP correlations rX∗

2
,X∗

1
(1) and

rX∗

2
,X∗

2
(1), respectively, which is actually due to the bias in the estimation of the

correlation matrix of the VAR process. Monte Carlo simulations on realizations
of the Gaussian VAR2(2) process, without applying marginal transform and
VSTAP, showed that the bias occurs even when the process is Gaussian. This
bias is thus passed also to the VSTAP estimation of the given sample lagged
correlations. For the monotonic marginal transform, we note that the mismatch
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of VSTAP for large N occurs only when there is bias, i.e. the sample correlation
rXi,Xj

(1) differs from the theoretic correlation ρXi,Xj
(1) (see Fig. 3a).

The results on other systems showed a better estimation of the theoreti-
cal lagged correlations (for monotonic marginal transforms), and therefore also
VSTAP matched better the given sample lagged correlations. For example, we
made the same computations for a Gaussian VAR5(4) process undergoing the
same monotonic and non-monotonic marginal transforms

s1,t = 0.4s1,t−1 − 0.5s1,t−2 + 0.4s5,t−1 + e1,t
s2,t = 0.4s2,t−1 − 0.3s1,t−4 + 0.4s5,t−2 + e2,t
s3,t = 0.5s3,t−1 − 0.7s3,t−2 − 0.3s5,t−3 + e3,t
s4,t = 0.8s4,t−3 + 0.4s1,t−2 + 0.3s2,t−2 + e4,t
s5,t = 0.7s5,t−1 − 0.5s5,t−2 − 0.4s4,t−1 + e5,t

where the input white noise vector has unit covariance matrix (the system was
first introduced in [45]). VSTAP matched well the given sample lagged cor-
relations, and even for large N the ensemble of rX∗

i
,X∗

j
(τ) was spread around

rXi,Xj
(τ) for almost all pairs (Xi, Xj) and τ = 0, . . . , 5, as shown in Fig. 4 for

the 4 largest rXi,Xj
(τ) and the monotonic and non-monotonic transforms. The

cases of rXi,Xj
(τ) not falling in the distribution of rX∗

i
,X∗

j
(τ) were all for very

small rXi,Xj
(τ) and the deviation was also small and could be observed only for

very large N .
Finally, we report some results on the computational efficiency of VSTAP

and compare it to VARTA. We focus on the computation of single components
of the correlation matrix and consider a simplified setting of no auto-correlation,
which is equivalent to having samples of correlated variables. In particular, we
consider the example of a non-feasible Gaussian correlation matrix for three
uniform variables with rX1,X2

(0)=−0.4, rX1,X3
(0)= 0.2 and rX2,X3

(0)= 0.8,
first reported in [26]. The Gaussian correlation coefficients are given analyt-
ically from the expression rS1,S2

= 2 sin(πrX1,X2
/6) as rS1,S2

(0) = −0.4158,
rS1,S3

(0)=0.2091 and rS2,S3
(0)=0.8135. The corresponding correlation matrix is

not positive semidefinite and applying eigenvalue correction we derive the clos-
est positive semidefinite correlation matrix with components rS1,S2

(0)=−0.4122,
rS1,S3

(0)=0.2062 and rS2,S3
(0)=0.8065. Using these correlation coefficients,

1000 multivariate Gaussian samples are generated and transformed to uni-
form marginals applying the Gaussian cumulative density function. Since the
marginal transform is monotonic we can evaluate VSTAP and VARTA (for
this setting this is actually equivalent to the algorithm of normal to anything
(NORTA) [36]) in matching rXi,Xj

(0) and rSi,Sj
(0). The results for one of the

three variable pairs is given in Figure 5, and similar are the results for the
other two pairs. Both methods ran for the same accuracy level, given by a rel-
ative error of 0.001. Thus both methods match well rXi,Xj

(0), with rX∗

i
,X∗

j
(0)

of VARTA spreading evenly around rXi,Xj
(0), and rX∗

i
,X∗

j
(0) of VSTAP be-

ing mostly concentrated at rXi,Xj
(0) and spread over at larger values, giving

somewhat smaller root mean square error (RMSE). VSTAP gives also smaller
RMSE in matching rSi,Sj

(0), where both methods have much smaller accuracy
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Figure 4: The match of rXi,Xj
(τ), i, j = 1, 2, against the time series length N (logarithmic

scale) using VSTAP for monotonic (a = 3, first row) and non-monotonic (a = 2, second
row) marginal transform of the Gaussian VAR5(4) generating process. The black line is for
rXi,Xj

(τ) and the grey (cyan online) lines are for rX∗

i
,X∗

j
(τ) from 100 realizations of VSTAP,

for the four largest rXi,Xj
(τ) found when N = 217. The dashed black lines denote the 95%

Fisher confidence intervals of rXi,Xj
(τ). In the first row the expected correlation from the

cubic marginal transform is displayed by thick stippled line.

in approximating rSi,Sj
(0).

While both VSTAP and VARTA attain the same accuracy level in approxi-
mating rXi,Xj

(0), VSTAP succeeds this much faster1. As shown in Figure 6 for
samples sizes n = 128, 256, 512, 1024, the computation time increases slowly with
n for VSTAP and fast with VARTA. In particular, for VSTAP the scaling is log-
arithmic, and the fit for the computation time t in sec is t = −4.39+0.98 ln(n),
while for VARTA t scales as a square of n, and the fit is t = −9.16n1.98. The

1The calculations were done on a PC with Intel Core i7 CPU 3.07GHz and 12GB RAM
and for VSTAP the code was developed in Matlab while for VARTA the Fortran code in
http://users.iems.northwestern.edu/~nelsonb/ARTA was used after slight modification of
input/output.
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Figure 5: (a) The histogram of the difference rX2,X3
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2
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and VSTAP, as shown in the legend, where also the corresponding root mean square error is
indicated. (b) The same as in (a) but for the Gaussian correlation coefficient rS2,S3
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Figure 6: (a) The time for the computation of rX∗

i
,X∗

j
(0) as a function of n, for the three pairs

of the three uniform variables using VSTAP. For each n the three drawn points correspond to
the mean computation time for each of the three variable pairs from 1000 realizations. The
error bar drawn for each n regards the standard deviation of the computation time. The solid
line is the best logarithmic fit. (b) The same as in (a) but for VARTA and the solid line is
the best fit of a power of n.

variance about the mean values in the 1000 realizations was relatively small, as
shown by the error bars in Figure 6 denoting the standard deviation. For the
setting shown in Figure 5 the mean computation time for VSTAP is 0.45 sec and
for VARTA 1.55 sec with standard deviation 0.07 sec and 0.26 sec, respectively,
indicating a significant difference even for small sample sizes.
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5. Conclusion

The proposed method VSTAP can generate multivariate time series of arbi-
trary length with any given marginals and correlation structure, provided that
the marginal distributions are continuous and the lagged correlation matrix is
feasible. The general use of VSTAP lies in the linear piecewise approximation
of the marginal transform from Gaussian to the given marginal, which allows
for a closed form solution for the correlation transform from each component
of the Gaussian lagged correlation matrix to the respective component of the
given lagged correlation matrix. Thus any continuous marginal distribution,
e.g. multi-modal or strongly skewed, can be sufficiently approximated at an
accuracy depending on the number of breakpoints for the piecewise function.
For all practical purposes, the accuracy converges with the number of break-
points reaching the level of about 20, so that sufficient approximation of the
sample marginal distribution is always obtained unless there are very few ob-
served points, i.e. the time series is very short not allowing for the use of a
sufficient number of breakpoints. Moreover, making use of the statistics of the
joint doubly truncated Gaussian distribution, we could reach an analytic ex-
pression for the correlation transform. This allows for a straightforward and
stable solution.

The VSTAP algorithm is also time effective, as the iterative scheme makes
computation of a closed form expression for the correlation transform. This is to
be compared to the numerical solution of the double integral form of the corre-
lation transform used in the VARTA approach. We demonstrated with a simple
example that piece-wise approximation results in much faster computations of
the solution than numerical integration without any loss in accuracy. Still this
may depend on the numerical integration scheme, which we did not investigate.
So, besides the insight onto the correlation transform from Gaussian to tar-
get correlation provided by the closed-form approximation of the transform, a
practical advantage of VSTAP is the derivation of the solution for the Gaussian
correlation without the need of a time consuming two-dimensional numerical
integration.

In VSTAP, we treated the problem of obtaining proper correlation matri-
ces. Simple eigenvalue correction to make the correlation matrix positive semi-
definite is not directly applicable to the lagged correlation matrix as it contains
repeated entries. We introduced an iterative two-stage procedure that turned
out to render positive definiteness in just few steps.

By construction VSTAP matches exactly the given marginals. In all simu-
lations with different VAR processes, VSTAP could also match well the auto-
and cross-correlations for a sufficiently large number of lags when the length of
the generated multivariate time series was up to moderately large, say up to
about 4000. For larger lengths, some deviation could be observed for some spe-
cific auto- and cross-correlations, which however were rare and only in some of
the studied systems (besides the presented simulation results for two systems, a
number of other VAR systems of varying structure were tested). Thus for most
practical purposes VSTAP generates proper multivariate time series that can
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be used for randomization tests or in stochastic simulation.
We have considered marginal transforms that deviate a lot from Gaussian

and many different correlation structures. However, in our simulations, we have
not encountered non-feasible correlation matrices as VSTAP would always pro-
vide sufficient solution, eventually after rendering positive definiteness of the
lagged correlation matrix. It is therefore our intention to test VSTAP on spe-
cial cases with more extreme marginals, e.g. positively skewed with a peak at
zero, and stronger auto- and cross- correlations, e.g. typically expected from
oscillating time series. The latter are often met in applications of the random-
ization test for nonlinearity, which is not discussed here but truly it has been
the main motivation for this work. We leave this discussion and comparison to
frequency-based methods, such as IAAFT for multivariate time series, including
also time series from nonlinear dynamical systems, to future work.
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variate surrogate techniques: Necessity, strengths, and caveats, Physical
Review E 68 (2003) 066202.

[25] L. Faes, A. Porta, G. Nollo, Testing frequency-domain causality in multi-
variate time series, Biomedical Engineering, IEEE Transactions on 57 (8)
(2010) 1897–1906.

[26] S. T. Li, J. L. Hammond, Generation of pseudorandom numbers with speci-
fied univariate distributions and correlation coefficients, IEEE Transactions
on Systems, Man and Cybernetics 5 (1975) 557 – 561.

[27] M. C. Cario, B. L. Nelson, Numerical methods for fitting and simulat-
ing autoregressive-to-anything processes, INFORMS Journal on Comput-
ing 10 (1) (1998) 72–81.

[28] B. Biller, B. L. Nelson, Evaluation of the ARTAFIT method for fitting
time-series input processes for simulation, INFORMS Journal of Comput-
ing 20 (3) (2008) 485–498.

[29] B. Biller, B. L. Nelson, Modeling and generating multivariate time-series
input processes using a vector autoregressive technique, ACM Transactions
on Modeling and Computer Simulation 13 (3) (2003) 211–237.

[30] C. J. Keylock, A wavelet-basedmethod for surrogate data generation, Phys-
ica D 225 (2) (2007) 219–228.

[31] D. Kugiumtzis, Surrogate data test for nonlinearity including non-
monotonic transforms, Physical Review E 62 (1) (2000) 25 – 28.

[32] D. Kugiumtzis, E. Bora-Senta, Normal correlation coefficient of non-normal
variables using piece-wise linear approximation, Computational Statistics
25 (4) (2010) 645–662.

[33] J. Theiler, D. Prichard, Constrained realization Monte-Carlo method for
hypothesis testing, Physica D 94 (1996) 221–235.

[34] J. M. Halley, D. Kugiumtzis, Nonparametric testing of variability and trend
in some climatic records, Climatic Change 109 (3-4) (2011) 549–568.

[35] W. W. S. Wei, Time Series Analysis Univariate & Multivariate Methods
(Second Edition), Addison-Wesley, 2006.

[36] H. Chen, Initialization for NORTA: Generation of random vectors with
specified marginals and correlations, INFORMS Journal on Computing
13 (4) (2001) 312 – 331.

[37] D. Kugiumtzis, Evaluation of surrogate and bootstrap tests for nonlinearity
in time series, Studies in Nonlinear Dynamics & Econometrics 12 (4) (2008).

20



[38] K. H. Zou, W. J. Hall, On estimating a transformation correlation coeffi-
cient, Journal of Applied Statistics 29 (5) (2002) 745 – 760.

[39] R. L. Burden, J. D. Faires, Numerical Analysis, 7th Edition, Thomson
Brooks/Cole, 2005.

[40] M. G. Kendall, A. Stuart, The Advanced Theory of Statistics. Volume 2:
Inference and Relationship, 4th Edition, London: Griffin, 1979.

[41] S. Ghosh, S. G. Henderson, Chessboard distributions and random vectors
with specified marginals and covariance matrix, Operations Research 50 (5)
(2002) 820–834.

[42] W. Whitt, Bivariate distributions with given marginals, Annals of Statistics
4 (1976) 1280–1289.

[43] N. Higham, Computing the nearest correlation matrix - a problem from
finance, IMA Journal of Numerical Analysis 22 (3) (2002) 329–343.

[44] H. Lütkepohl, New Introduction to Multiple Time Series Analysis,
Springer-Verlag, Berlin Heidelberg, 2005.

[45] B. Schelter, M. Winterhalder, B. Hellwig, B. Guschlbauer, C. H. Lücking,
J. Timmer, Direct or indirect? Graphical models for neural oscillators,
Journal of Physiology-Paris 99 (1) (2006) 37–46.

21



0 1 2 3 4 5
0

0.2

0.4

0.6

τ

r 2,
1(τ

)

(c)



0 1 2 3 4 5
0

0.2

0.4

0.6

τ

r 2,
2(τ

)

(d)



0 1 2 3 4 5

0

0.2

0.4

0.6

τ

r 1,
1(τ

)

(e)



0 1 2 3 4 5

0

0.2

0.4

0.6

τ

r 1,
2(τ

)

(f)



0 1 2 3 4 5

0

0.2

0.4

0.6

τ

r 2,
1(τ

)

(g)



0 1 2 3 4 5

0

0.2

0.4

0.6

τ

r 2,
2(τ

)

(h)



8 10 12 14 16
0

0.2

0.4

0.6

0.8

log
2
(n)

r 2,
1(1

)

(c)



8 10 12 14 16
0

0.2

0.4

0.6

0.8

log
2
(n)

r 2,
2(1

)

(d)



8 10 12 14 16

0

0.2

0.4

0.6

0.8

log
2
(n)

r 1,
1(1

)

(e)



8 10 12 14 16

0

0.2

0.4

0.6

0.8

log
2
(n)

r 1,
2(1

)

(f)



8 10 12 14 16

0

0.2

0.4

0.6

0.8

log
2
(n)

r 2,
1(1

)

(g)



8 10 12 14 16

0

0.2

0.4

0.6

0.8

log
2
(n)

r 2,
2(1

)

(h)



8 10 12 14 16
0

0.5

1

log
2
(n)

r 2,
5(2

)

(c)



8 10 12 14 16
0

0.5

1

log
2
(n)

r 4,
4(3

)

(d)



8 10 12 14 16
0

0.5

1

log
2
(n)

r 2,
5(2

)

(e)



8 10 12 14 16
0

0.5

1

log
2
(n)

r 3,
3(2

)

(f)



8 10 12 14 16
0

0.5

1

log
2
(n)

r 3,
3(3

)

(g)



8 10 12 14 16
0

0.5

1

log
2
(n)

r 4,
4(3

)

(h)


	1 Introduction
	2 Univariate Time Series with given Marginal Distribution and Autocorrelation
	2.1 Proposed solutions
	2.2 The method of statically transformed autoregressive process

	3 The Method of Vector Statically Transformed Autoregressive Process
	3.1 The typical realization approach
	3.2 Implementation of VSTAP
	3.3 Implementation complications

	4 Simulations and Results
	5 Conclusion

