
HAL Id: hal-01153777
https://hal.science/hal-01153777

Submitted on 20 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of real-time systems with clock calculus
Kai Hu, Teng Zhang, Zhibin Yang, Wai-Tek Tsai

To cite this version:
Kai Hu, Teng Zhang, Zhibin Yang, Wai-Tek Tsai. Simulation of real-time systems with clock calculus.
Simulation Modelling Practice and Theory, 2015, vol. 51, pp. 69-86. �10.1016/j.simpat.2014.10.010�.
�hal-01153777�

https://hal.science/hal-01153777
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13268

To link to this article : DOI: 10.1016/j.simpat.2014.10.010
URL : http://dx.doi.org/10.1016/j.simpat.2014.10.010

To cite this version : Hu, Kai and Zhang, Teng and Yang, Zhi-Bin and
Tsai, Wai-Tek Simulation of real-time systems with clock calculus.
(2015) Simulation Modelling Practice and Theory, vol. 51 . pp. 69-86.
ISSN 1569-190X

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Simulation of real-time systems with clock calculus

Kai Hu a, , Teng Zhang b, Zhibin Yang b,c, , Wei-Tek Tsai d

a State Key Laboratory of Software Development Environment, Beihang University, Beijing, PR China
b School of Computer Science and Engineering, Beihang University, Beijing, PR China
c IRIT-CNRS, Université de Toulouse, Toulouse, France
d School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, USA

Keywords:

SIGNAL

Clock calculus

Optimized clock tree

Code generation

a b s t r a c t

Safety–critical real-time systems need to be modeled and simulated early in the develop-

ment of lifecycle. SIGNAL is a data-flow synchronous language with clocks widely used in

modeling of such systems. Due to the synchronous features of SIGNAL, clock calculus is

essential in compilation and simulation. This paper proposes a new methodology for clock

calculus that takes data dependencies into consideration. In this way, simulation code can

be directly generated by using a depth-first traversal algorithm. In addition, a clock inser-

tion method based on clock-implication checking is presented to obtain an optimized con-

trol structure.

1. Introduction

Safety–critical real-time systems such as automotive, avionics, and aerospace systems are usually reactive systems that

need to interact with their environments. These systems often need to be modeled and simulated rigorously early in their

development lifecycle.

Synchronous paradigm, based on synchronous hypothesis [1], is a formal method for modeling safety–critical systems. The

synchronous hypothesis assumes that behaviors of the system will be represented as a sequence of discrete instants. At each

instant, the system takes an input, performs computation, and produces an output with zero time. This abstraction simplifies

timing analysis to allow the user to focus on the functional design without consideration of the computing platform. Other

properties such as the temporal correctness can be considered when the platform has been chosen.

Synchronous languages such as Esterel [2], Lustre [3], QUARTZ [4] and SIGNAL [5], have been widely used. Esterel and

QUARTZ are imperative languages while Lustre and SIGNAL are declarative. Apart from formal verification such as model

checking and theorem proving, simulation is a major method for modeling of different kinds of systems [6].

An abstract clock, or a clock, is an important concept in synchronous languages. Each instant of a clock represents the

status of computing including objects involved in computation. There are two kinds of clock models in synchronous

languages:

http://dx.doi.org/10.1016/j.simpat.2014.10.010

� Mono-clocked model: In this model, there is a global clock and other clocks are derived from the global clock. This is used

in Esterel, Lustre and QUARTZ; and

� Multi-clocked model: there is no global clock, and clock relations are defined relative to each other. This is used in

SIGNAL.

In mono-clocked models, all behavior activations are controlled by the global clock, and events triggered in components

are subsets of events triggered by the global clock. All the clocks of individual components must be synchronized with the

global clock.

Safety–critical real-time systems, however, may contain components with individual clocks in a distributed environment.

These clocks are not usually synchronized globally. Instead, components are loosely coupled so that each component can

execute on its own rate and the synchronization is only needed among interacting components.

Based on a typical multi-clocked model called Polychronous paradigm [7], SIGNAL is widely used in the design of GALS

(Globally Asynchronous Locally Synchronous) system. Furthermore, an IDE tool for modeling, analysis and simulation based

on SIGNAL called Polychrony1 has been developed. However, to correctly simulate the SIGNAL specification, generation of cor-

rect and efficient code is still a research topic. The first difficulty is to extract control structure from synchronous equations

based on the clock model. While a multi-clocked model is more realistic, its compilation is also complicated as relations among

clocks are far more complex. As a result, clock calculus, a process to resolve the clocks and construct the control structure of the

executive code, is a principal method in compilation. Note that although having the same terminology ‘‘calculus’’, clock calculus,

a formal method dedicated for the compilation of Synchronous language, takes a very different approach from

timed pÿ calculus [8] which is mainly for the modeling of real-time system. Many studies have been carried out on clock cal-

culus. [9,10] proposed the methodology of the clock calculus used in Polychrony. The idea is to extract the system of Boolean

equations from the program and develop a hierarchical relation among clocks. If the program is endochronous [7], a single-

rooted clock tree can be constructed and the sequential code can be generated based on the clock tree. Others [11–13] focus

on the resolution of numerical expressions to improve the compilation precision.

Additionally, not only clock relations, data dependency information is also needed to generated simulation code.

However, the current methods tend to separate clock calculus from the data-dependency analysis. Two different struc-

tures are needed: one for the clock hierarchy and the other for data dependency. To avoid the situation that hierarchical

clock relations may not be consistent with data dependencies(eg. clock-to-data cycle), the two structures need to be

combined [14]. In addition, when being executed, code with hierarchical and nested control structure will be more effi-

cient than the corresponding flat code because in the nest structure, guard conditions enclosed will not be checked

unless the outer ones evaluate to true. Therefore, it is desirable to design a clock calculus to generate efficient control

structure.

To address these problems, this paper proposes a new clock calculus to analyze SIGNAL programs and generate simulation

code. The calculus considers data dependency in constructing the clock tree. By using the DFS (Depth-First Search) traversal

algorithm, simulation code meeting the data dependency constraints can be generated. Moreover, by using the idea of

clock-implication checking, a clock can be inserted as deep as possible to generate a hierarchical and nested control structure

for the simulation code.

The paper is organized as follows: Section 2 introduces SIGNAL and its code generation process; Section 3 provides a

methodology on the insertion of the tree, and deal with the data dependency when constructing the clock tree; Section 4

presents a case study to illustrate the process of clock calculus and the simulation of SIGNAL program; Section 5 presents

the related works; and Section 6 concludes this paper.

2. Introduction to SIGNAL

SIGNAL program (also called model in the remainder of the paper) is usually a set of equations on which relations among

signals or their clocks are induced. Thanks to the multi-clock feature, every signal has its own clock to specify at which

instant it can carry a value. This section introduces SIGNAL, including its syntax and semantics.

2.1. Signals and clocks

Based on the synchronous hypothesis, behaviors of the system are described as discrete sequences of instants and the

system does the input-computation-output at each instant. The value sequence ðxtÞt2N manipulated in SIGNAL is defined

as a signalwhere t is an index to represent the position of instant. At each instant, a signal can be present or absent (denoted

by ?). When present, a signal can hold values typed with integer, real, complex or boolean. Apart from usual types, there is a

special type called event. When an event signal is present, its value is true. Otherwise, it is absent.

The clock is a set of instants where a signal is present. The clock of signal s is denoted as ŝ, which is an event typed signal.

Moreover, clock relations among signals are defined in the program either explicitly or implicitly.

1 http://www.irisa.fr/espresso/Polychrony.

2.2. Primitive constructs

The program unit of SIGNAL is called process consisting of a set of equations specifying data and clock relations among

signals. SIGNAL provides four primitive constructs: instantaneous function, delay, down-sampling, deterministic merging, to

express such relations.

Instantaneous function: y :¼ f(x1, . . ., xn), where y, x1, . . ., xn are signals, f is the n-ary operator, including arithmetical

operator and Boolean operator. Signals are synchronous: (1) x1, . . ., xn have the same abstract clock; (2) when x1, . . ., xn
are present, y is present and the value is evaluated to f (x1, . . ., xn); otherwise, y is absent. For instance, for function

x3 :¼ x1 + x2, a execution trace is shown below.

x1 1 ? 4 . . .

x2 2 ? 5 . . .

x3 3 ? 9 . . .

Delay: y:¼ x $ init c, where y and x are signals and c is the initial value of y. The function of this operation is similar to a

shift register: (1) at the first non-absent instant, the value of y is c; (2) at the following constants, whenever x is present, y

will get the most recent value of x; (3) x and y have the same clock, meaning that y will be absent when x is absent. An

execution trace is shown below.

x 1 ? 3 2 2 . . .

y c ? 1 3 2 . . .

Down-sampling: y:¼ x when b, where y, x are signals and b is a signal or constant typed Boolean or event. The semantics is

that when x is present and b is true, y is present and the value of y is the value of x. The implicit clock relation is ŷ ¼ x̂ ^ ½b�

where [b] means b is present and b is true. Here is a trace for this equation.

x 1 ? 4 5 . . .

b ? ? f t . . .

y ? ? ? 5 . . .

Deterministic merging: y:¼x1 default x2, where y, x1 and x2 are signals. The semantics is that when x1 is present, y is

present and the value is x1; when x1 is absent and x2 is present, y is present and the value is x2; otherwise y is absent.

Consequently, the clock relation is represented as ŷ=x̂1 _ x̂2. The following is a trace for this equation.

x1 1 ? ? 5 . . .

x2 2 ? 3 ? . . .

y 1 ? 3 5 . . .

Two other basic operators are synchronous composition and local definition.

Synchronous composition: P ¼ P1jP2, where P1 and P2 are processes. The behavior of P is the conjunction of the mutual

behaviors of P1 and P2.

Local definition: P1 = P where t_x1 x1; t_x2 x2; . . .t_xn xn, where t_x1, . . ., t_xn are the types of signal x1, . . ., xn. This

conception is similar to the action scope of variables in programming languages. It means that signals defined within

the process P will only be visible inside P.

From the introduction, one can give the abstract syntax process, shown as below.

P;Q< ¼ x :¼ y f zjPjQ jP=x

The process (P and Q) consists of the synchronous composition (PjQ) of dataflow equations. P/x is the local definition of

signals. Dataflow equation ‘‘x :¼ yfz’’ represents that the value of x is decided by the input signal y, z and the operation f on

them.

Apart from primitive constructs given above, SIGNAL also provides extended language such as unary when, memorization

operator cell and operators explicitly specifying clock relations. However, all extended syntax can be rewritten in primitive

constructs so that this paper assumes that the SIGNAL program is written in primitive constructs. For further introduction to

SIGNAL syntax and semantics, reader can refer to [15,16].

2.3. System of Boolean equations and principles of simulation code

Compilation of SIGNAL program needs clock calculus to get the information about the relations among clock signals. As

mentioned above, not only data dependencies, but also clock relations are implicitly defined in primitive constructs. Table 1

presents the clock relations for each primitive construct. In equations of instantaneous function and delay, signals are

synchronous. These two operators are called mono-clocked operators. Down-sampling and deterministic merging, however,

are multi-clocked operators because signals may have different clocks.

Equations of clock relations can be seen as Boolean equations, that, for each SIGNAL program, a system of Boolean equa-

tions can be extracted. Clock calculus deals with verification of the consistency among clocks and the generation of the con-

trol structure of the simulation code [17]. By resolving the system of Boolean equations, information of synchronization

among signals or the inclusion relations among clocks can be obtained. If the program is endochronous, a single-rooted clock

tree can be constructed. Each node in the tree is the clock and the parent-son relation is the inclusion relation between

clocks: if n1 is the father of n2, clock of n2 is included in clock of n1.

Signal holds value whenever it is present. So the SIGNAL compiler uses the ‘‘if guard then action’’ as the control structure,

in which guard is to check whether the clock is true and action is to get or compute the value of the signal.

Then a simple way for code generation is: (1) compute all clocks; (2) put all computation of signals into the right place

according to the clock and data dependencies. However, to obtain more efficient code, nested condition is needed. A flatten

control structure is shown below, in which action (c_1) is the action to be executed when clock c_1 is true.

c_1:¼c_2 && c_3

if(c_2) then

. . .

if(c_1) then

action(c_1)

It is easy to know that if c_1 = c_2 ^ c_3, c_1 implies c_2 and c_3, whichmeans that c_1 cannot be true if c_2 or c_3 is false.

So we can get a nested control structure shown as below: only when c_2 is true, a check on whether c_3 is needed and it is

obviously more efficient than the previous one. This paper will present a methodology to constructing clock trees to generate

efficient executable code.

if(c_2) then

if (c_3) then

action (c_1)

2.4. Simulation framework for SIGNAL

Several studies have explored on how to use SIGNAL to model and simulate real-time systems. Polychrony, the frame-

work for modeling, analysis and simulation based on SIGNAL, has been developed. The architecture is shown in Fig. 1. Apart

from the use as a modeling language, SIGNAL can be also utilized as a synthesis formalism [18]. Architecture Analysis &

Description Language(AADL) [19] is used to model the architecture of the system while Simulink2 is used to describe the

functional behaviors. Both models will be synthesised by SME [20], the metamodel of SIGNAL. APEX(for ARINC 653) and thread

libraries written in SIGNAL [21] will be used during the modeling. Properties of the SIGNAL program such as deadlock freeness

and reachability can be verified by model checking in SIGALI [22]. Functional behaviors of the systemwill be simulated by trans-

lating into executable code. [23] has proposed a translation to SynDex3 for the distributed simulation. Moreover, software

profiling can be carried out for the performance evaluation of SIGNAL specifications [24]. The SIGNAL simulation framework

has been successfully used in the modeling and simulation of the door management system of Airbus A350 [25].

Table 1

Primitive constructs and corresponding clock relations.

Primitive constructs Clock relation

y :¼ f ðx1; x2; . . . ; xnÞ ŷ ¼ x̂1 ¼ x̂2 ¼ � � � ¼ x̂n
y :¼ x$ init c ŷ ¼ x̂

y :¼ xwhenz ŷ ¼ x̂ ^ ½z�

y :¼ xdefault z ŷ ¼ x̂ _ bz

2 http://www.mathworks.com/products/simulink/.
3 http://www.syndex.org/index.htm.

3. Clock calculus and construction of clock tree

This section presents a new clock calculus and a strategy of the deep insertion and the way to maintain data dependency

in the clock tree.

3.1. Process of clock calculus

3.1.1. Generating the clock equations

The first step is to translate the data flow equations into a system of Boolean equations called clock equations. The set of

clock equations is denoted as SCE (Set of clock equations). The corresponding BNF is given below:

ClockEquation<= cl=e

e< ¼ x̂1j}x1jCondj:eje _ eje ^ eje n e

cl< ¼ x̂j}x

In the definition, x̂ is the clock of x; }x represents the value of Boolean or event typed signal x. Note that in this paper, x, x̂

and }x will all be considered as variables. Furthermore, the expression returning Boolean value is treated as the black box,

denoted as Cond. The operators on clocks are the same as Boolean variables, including negative, union, intersection and

difference. These operators are used to represent the relations among clocks.

The mappings from primitive constructs to clock equations are shown in Table 2. Note that for the convenience of the

resolution, there are at most two operands in the clock equations so that two auxiliary clocks variables, bzt and dxdefault ,

are introduced.

3.1.2. Resolution of clock equations

The generated set of clock equations need to be resolved to: (a) find the implicit synchronization among clocks; (b) get the

definition for each clock; (c) detect the inconsistency among clocks. This paper translates SCE into SNF(Set of Normal Form)

by the resolution process. Compared with SCE, two more constraints are added to SNF:

� Each clock can be defined only once in SNF, which means in SNF there should not be more than one equation with the

same left-hand side (LHS) value; and

� LHS values in SNF are not allowed to exist in right-hand side (RHS) of equations, this means clocks can only be defined by

undefined clocks in SNF.

Algorithm ClockToNF illustrates the resolution process. In each iteration, every clock in eq will first be replaced with its

definition in SNF(line 5, denoted as eq ½SNF�eq). If the replaced eq cannot be resolved for one of the following reasons:

(1) both sides of eq are complex expression (line 6); (2) LHS of eq exists at the RHS of eq (line 11, denoted as

eq:LHS 2 Varsðeq:RHSÞ); (3) LHS of eq has been defined in SNF (line 11), it will be put into USNF(a set storing the equations

that cannot be solved temporarily). Otherwise, LHS of eq in each equation of SNF(denoted as eq2) will be replaced with its

definition (eq.RHS) (line 16). If recursive definition exists after the substitution, eq2 will be put into USNF (lines 17–19). After

that, each clock in USNF will be replaced with its definition in SNF. If both sides of the equation are equivalent, the equation

will be removed from USNF (lines 22–27). At the end of iteration, if eq has not been put into USNF, it will be put into SNF (line

28). This paper uses OBDD (Ordered Binary Decision Diagram) [26] to verify the equivalent relation among expressions (as

they are Boolean expressions). The replacement of variables in the algorithm can be implemented as the substitution of their

OBDD values.

The time complexity of the algorithm is decided by several static and dynamic factors such as the size of SCE, the time

consumed in the construction, substitution and comparison of the OBDD for clock equations and the size of SNF and USNF

during the execution. Consequently, only some estimates can be given on this issue. All equations in SCE need to be repre-

sented by OBDD and the time complexity of the construction will be Oð2nÞwhere n is the number of variables in the boolean

expression. However, since all equations in SCE will at most have two variables in the RHS expression, as shown in Table 2,

the construction time can be seen as a constant time. The execution time of the OBDD substitution depends on the number of

variables in the OBDD to be replaced and the size of set containing the definitions of these variables. For instance, the exe-

cution time of the statement in line 23 depends both on the number of variables in eqd and the number of elements in SNF.

Furthermore, the number of executions of the loops in line 15 to line 20 or line 22 to line 27 have the same magnitude with

the size of SCE. As a result, the magnitude of the worst execution time will be Oðm2 �wÞ where m is the size of SCE and w is

the maximum execution time of the OBDD substitution (as the check on equivalence of OBDDs is less complex than the sub-

stitution operation, the execution time in the loop is represented byw). This paper uses JDD (a Java implementation of BDD)4

4 http://javaddlib.sourceforge.net/jdd/.

as the implementation method of OBDD. The website site shows that the performance is relatively good comparing with other

implementations.

Algorithm 1. clockToNF

1: Inputs: SCE

2: Outputs: SNF

3: SNF £;USNF £

4: for all eq 2 SCE do

5: eq ½SNF�eq

6: if both sides of eq are complex expressions then

7: USNF USNF [feqg

8: else if eq:LHS is a complex expression ^ eq:RHS is a variable then

9: reverseðeqÞ

10: end if

11: if eq:LHS 2 Varsðeq:RHSÞ _ eq:LHS has been defined in SNF then

12: USNF USNF [feqg

13: end if

14: if eq R USNF then

15: for all eq2 is z ¼ e 2 SNF do

16: teq eq2; eq2 z ¼ ½feqg�e

17: if z 2 Varsðeq2:RHSÞ then

18: SNF SNF n fteqg;USNF USNF [feq2g

19: end if

20: end for

21: TUSNF £

22: for all eqd is e3 ¼ e4 2 USNF do

23: eqd ½SNF�e3 ¼ ½SNF�e4

24: if eqd:LHS and eqd:RHS are not equivalent then

25: TUSNF TUSNF [feqdg

26: end if

27: end for

28: USNF TUSNF; SNF SNF [feqg

29: end if

30: end for

31: if NonEmptyðUSNFÞthen

32: error and exit the compilation

33: end if

34: return SNF

After the resolution, if USNF is empty, it can be deduced that there does not exist any inconsistencies or cycle definitions

in the program and all equations in SCE have been normalized.

3.1.3. Generating clock equivalence classes and SRNF

After the resolution, unique definition for each clock (except for clocks on the RHS are undefined, usually clocks for input

signals) is included in SNF. Some of them may have identical definitions, which means they are synchronous. Synchronous

relation is reflexive, symmetric and transitive so that it is the equivalence relation on the set of clocks. To get more efficient

code, the paper introduces the concept of clock equivalence class [27], which is a partition on the set of clocks X ¼ fXiji 2 Zþg.

For each Xi, its elements ĉ1; . . . ; ĉk are clock variables which are synchronous with each other. Definition of clock equivalence

class is given below.

Definition 1. Clock equivalence class(CEC) is a triple <ClassID, Sc, Eq> where,

� ClassId: identification of the class;

� Sc: set of synchronous clocks belonging to this class; and

� Eq: actions to be executed/initiated by the clock of this class, that will be used in the construction of the clock tree.

By traversing all equations in SNF, clocks can be divided into these equivalent classes. For the undefined clocks,

corresponding classes will be also generated. The set of clock equivalence class is denoted as SCEC. Note that as endochrony is

the necessary and sufficient condition to generate executable code, there will be only one class for all undefined clocks.

Reduced Normal Form (RNF) is then introduced to represent the relations among clock equivalence classes. The

corresponding set of these equations is denoted as SRNF, which can be obtained by replacing clocks with their class in SCE.

The BNF definition is shown below:

NCE<=ClassId=e

e< ¼ ClassIdj}x1jCondj:eje _ eje ^ eje n e

ClasseId is the LHS value of the equation and RHS is the expression specifying relations on classes. }x and Cond have the

same meaning as in the definition of clock equations. Note that different from SNF, there is no additional constraint on SRNF

so that defined classes can exist on RHS of equations. In the remainder of the paper, RNF is also called as clock definition equa-

tion. SRNFwill be used in the construction of clock trees. In the remaining sections, the term clock does not only represent the

clock of signals, but also represents a clock-equivalence class: synchronous signals have the same clock represented by their

equivalence classes.

Fig. 1. Modeling, analysis and simulation framework for SIGNAL.

Table 2

Primitive constructs and corresponding clock equations.

Primitive

constructs

Clock relation

y :¼ f ðx1; x2; . . . ; xnÞ ŷ ¼ x̂n ; x̂1 ¼ x̂n; . . . ; x̂nÿ1 ¼ cxn (if f returns a Boolean value, add the

equation }x :¼ f ð}x1; . . . ;}xnÞ)

y :¼ x$ init c ˆ
y ¼x̂

y :¼ xwhenz bzt ¼ bz ^ }z; ŷ ¼ x̂ ^ bzt

y :¼ xdefault z ŷ ¼ x̂ _ bz; dxdefault ¼ bz n x̂

3.2. Clock tree definition, properties and tree construction

By previous steps, clock equivalence classes and relations among them have been obtained in SRNF, from which

hierarchical relations among clocks can be extracted. [27] gives the definition of clock hierarchy relation ‘‘6’’:

� for Boolean signal x, there are relations x̂ 6 ½x� and x̂ 6 ½:x�;

� for variables b and c, if there are relations b 6 c and c 6 b, then b and c are synchronous; and

� for clock equation b1 ¼ c1}c2;} 2 f^;_; ng, if there are relations b2 6 c1; b2 6 c2, then there exists relation b2 6 b1.

If relation b 6 c exists, c is determined or extracted from b, this means that only when b is true, c can be evaluated to be

true. The corresponding implication relation is represented as c ! b. If the program is endochronous, the hierarchy is the

single-rooted tree called the clock tree, the control structure of the simulation code. [9] proposes a process to generate clock

trees. This paper proposes a new methodology with the following features:

� Information of data dependency is added in the clock tree and an insertion algorithm to preserve data dependencies, and

� Clock-implication checking is used to insert the clock node into a deeper position.

Here, the definition of the clock tree and properties are first given below.

3.2.1. Definition and properties of the clock tree

[9] introduces a clock tree. Clock tree is a two-tuple < V ; f > where

� V is the set of nodes, and

� f : V ! V is the function defined on V, satisfying the condition: there is a node r 2 V , for any node v 2 V , there is a positive

integer n and r ¼ f
n
ðvÞ; f ðrÞ ¼ r. r is the unique root of the tree.

Here we give definitions of some useful terminologies.

Parent node, direct-son node: for x; y 2 V , if y ¼ f ðxÞ, then y is the parent node of x and x is the direct-son node of y. In

the clock tree, a node can only have one parent node and the parent node of the root node is itself.

Ancestor node, descendant node: for x; y 2 V , if y ¼ f
n
ðxÞwhere n is a positive integer, y is the ancestor node of x and x is

the descendant node of y.

Brother node: for x; y 2 V , if f ðxÞ ¼ f ðyÞ, x, y are the brother nodes of each other. If x is on the left side of y, x is the

left-brother of y, denoted as x 2 LBðyÞ, and y is the right-brother of x, denoted as y 2 RBðxÞ.

For convenience, this paper gives another form of definition for the clock tree.

Definition 2. A clock tree is a two-tuple < VS;6> where

� VS is the set of nodes of a clock tree(denote as clock node) and

� 6represents the binary relation between two clock nodes, that if v1 6 v2;v1 is the parent node of v2.

Definition 3. A clock node is defined as a four-tuple < Class;RNF; F;AS > where

� Class represents the clock equivalence class corresponding to this node;

� RNF is the reduce normal form equation defining Class;

� F is the parent node; and

� AS is the ordered list of signal definition equations (also denoted as assignments) representing the actions to be executed

when the clock of the node is evaluated to true

To generate the correct executable code from a SIGNAL program, data dependency relations need to be met by the clock

tree obtained:

� for nodes x and y in the tree, if y is the ancestor of x, LHS value of assignments in x cannot be the RHS values of assignments

in y; and

� for nodes x and y in the tree, if x 2 LBðyÞ, LHS value of assignments in y cannot be the RHS value of assignments in x.

If the properties are satisfied, the data dependency relations will be maintained by the DFS traversing of the tree from left

to the right. Note that it is assumed that data dependencies within the node are kept so that only the data dependencies

among nodes need to be considered.

3.2.2. Construction of clock tree

When constructing a clock tree, properties mentioned above need to be preserved. This can be done with three steps.

� Divide all signal definition equations into corresponding clock equivalence classes;

� Sort the signal definition equations and clock definition equations altogether according to the data and clock dependen-

cies, obtaining the ordered list called Elist;

� Traverse Elist to construct the clock tree.

In the first step, data flow equations are translated into signal definition equations and attached to the corresponding

clock equivalence class. The mapping relation is shown in Table 3. Note that SCEC[OBDD(y)] means the clock equivalence

class of signal y. Moreover, since there is no data dependency relation in delay, corresponding equation does not exist.

After this process, each class C in SCEC has a set of assignments(C.Eq). Along with clock definition equations in SRNF, these

equations will be sorted to obtain the ordered list Elist with the following properties:

� For signal definition equation eq1 and eq2, if RHS of eq2 depends on LHS of eq1, then eq1 precedes eq2 in Elist;

� For clock definition equation Ce taking the form c ¼ e and signal definition equation eq, if eq 2 C:Eq, then Ce precedes eq in

Elist;

� For clock definition equation C ¼ C1 op C2; C1 and C2 precede C in Elist; and

� For clock definition equation Ce taking the form C ¼ C1 op }x and signal definition eq taking the form x ¼ e, eq precedes

Ce in Elist.

The clock tree is constructed by traversing the Elist and equations in the Elist will be attached to the clock node. Assume

that for equation x ¼ e, the node it is attached to is denoted as N, then for any node M containing operands in expression e,

one of the relations listed below exists:

� M ¼ f
n
ðNÞ, n is the positive integer;

� f ðNÞ ¼ f ðMÞ, and M 2 LBðNÞ; and

� there exists a positive integer m, P ¼ f
m
ðNÞ, and M 2 LBðPÞ.

The relations mentioned above ensure the data dependency relations are preserved in the tree. Algorithm treeConstruction

illustrates the process of the traversal. If the current equation (denoted as eq) is a clock definition equation (line 6), since no

node representing the clock has been inserted in the tree, a new node called Vc is created (line 9). Vf is the node to which Vc

will be attached (lines 9–10). If the current equation is a signal definition equation (line 13), first it is needed to find a proper

node in the tree to attach (lines 13–14). If no node is found, a so-called copy-node is created (line 17). As its name indicates,

Table 3

Signal definition equations for primitive constructs and input signals.

Syntax Signal definition

equations

Clock equivalence

class

y :¼ f ðx1; x2; . . . ; xnÞ y ¼ f ðx1; x2; . . . ; xnÞ SCEC½OBDDðyÞ�

y :¼ xwhenz y ¼ x SCEC½OBDDðyÞ�

y :¼ xdefault z y ¼ x SCEC½OBDDðxÞ�

y :¼ xdefault z y ¼ z SCEC½OBDDðz n xÞ�

y :¼ x$ init c NULL NULL

?type xx readðxÞ SCEC½OBDDðxÞ�

Fig. 2. A clock tree example.

there has (have) been a node (or nodes) representing the same clock in the tree but the equation is not allowed to attach to it

(anyone of them) due to the violation of properties mentioned above. The copy-nodewill be inserted (lines 18–19) and eqwill

be then attached to it (line 21).

Algorithm 2. treeConstruction

1: Inputs: Elist

2: Outputs: VS

3: Vr VS [Vr

4: for all eq 2 Elist do

5: if eq is the clock definition equation then

6: RST genPathðeq:RHSÞ

7: Vf findInsertClockðRST; eq:LHSÞ

8: Vc createNodeðeq:LHSÞ;Vc:RNF eq

9: buildRelationðVf ;VcÞ

10: VS VS [Vc

11: else

12: find corresponding clock equivalence class of eq; denoted as C

13: RST genPathðeq:RHS [CÞ

14: Vc findInsertDataðRST;CÞ

15: if Vc ¼ NULL then

16: Vf findInsertClockðRST;CÞ

17: Vc createNodeðCÞ

18: buildRelationðVf ;VcÞ

19: Vs VS [Vc

20: end if

21: Vc:AS Vc:AS [eq

22: end if

23: end for

24: return VS

To preserve the clock and data dependency relations, a limit branch called the dependency path of the node needs to be

created first(by genPath() at line 6 and line 13). Dependency path is an ordered list of nodes in the tree n1; . . . ;nk, in which n1

is the leaf, nk is the root and for any neighbor nodes nx;ny; y ¼ xþ 1;ny ¼ f ðnxÞ. Assume NS is the set of nodes which contains

all definitions of the clock or signal on which the target node depends. The node n1 is the rightmost and deepest node in the

tree belonging to NS. An example of the clock tree is shown in Fig. 2. In the figure, C7 is the leaf node. From it, a path

C0! C2! C5! C7 can be obtained. The target node needs to be inserted at the right side of the path(the rectangle part,

denoted as RST). Similarly, when attaching signal definition equation, the node to be attached needs to hold the same

condition. If no node is found in RST, the copy-node will be created(lines 13–14).

After getting the path, the clock node will be inserted into the position at the rightmost position of the path. To insert as

deep as possible, this paper uses the clock-implication checking based on the Breath-First Search algorithm, shown in

Algorithm findInsertClock.

Algorithm 3. findInsertClock

1: Inputs: Elist; SCEC

2: Outputs: VS . clock tree

3: Vr createNodeðRÞ . create clock node for the root clock

4: while nonEmptyðQueueÞ do . Queue is not empty

5: head deQueueðQueueÞ . get the head from Queue

6: for all node 2 directchildrenofhead do

7: if node 2 RST ^ CN:Class! node:Class then . node is in RST and the implication relation holds

8: Queue addNodeðnode;QueueÞ . put node into Queue

9: end if

10: end for

11: end while

12: return head

A queue called Queue is used for the traversal. Note that the direct children of the node is an ordered list: the node

inserted later will be at the right side of the nodes inserted earlier. The root will be first put into Queue, then the iteration

begins: get the head of the node denoted as head; for each element node belonging to the direct children of head, if it is at the

right side of the path (node 2 RST) and the clock of CN implies clock of node (CN:Clock! node:Clock), put node into the rear of

Queue. The iteration will not stop until Queue is empty. CN will be inserted as the direct child of the last element got from

Queue.

The time complexity of algorithm treeConstruction is decided by the size of Elist (denoted as n where number of signal

definition equations is p) and number of clock equivalence classes in SCEC (denoted as m). At the worst case, the number

of nodes in the tree will be p +m (every single definition equation corresponds to a clock node in the tree). As the time

complexity of BFS and DFS in a tree are both OðVÞ where V is the number of nodes in the tree, the magnitude of the time

complexities of genPath, findInsertClock and findInsertNode are OðpþmÞ. Consequently, the worst performance of treeCon-

struction is Oðn � ðpþmÞÞ.

3.3. Generation of simulation code

The sequential simulation code can be generated only when the SIGNAL program is endochronous: the scheduling of the

computation can be obtained in the compilation, independent from the execution environment. There is only one master

clock in the clock hierarchy and all other clocks can be extracted from it. The clock tree can be used as the control structure.

Furthermore, as data dependency relations have been preserved, sequential code can be easily generated by the Depth-First

Search of the clock tree.

In the clock tree, the hierarchy relations indicate the implication among clocks: if node n is the descendant of node m,

the code generated from n will be nested in code generated from m. For the order of code among brothers, node on the left

side will be generated prior to the right side. For each node, the code block takes the form ‘‘if C then AS’’ where C is the

test to the clock and AS is the set of assignments to be executed. The algorithm DFSGen is shown below, and it traverses a

clock tree recursively from left to right and from up to down. If multiple nodes have the same clock, the clock will be

defined once only.

Algorithm 4. DFSGen

1: Inputs: node . clock node of the tree

2: if isRootðnodeÞ ¼¼ false then . if node is not the root node

3: generateClockDef ðnode:RNFÞ . generate the clock definition

4: generateI f ðnode:ClassÞ . generate the guard condition of the clock

5: end if

6: for all assignment 2 node:AS do . generate signal definition equations in the node

7: generateAssignðassignmentÞ

8: end for

9: for all N 2 node:Fÿ1 do . node:Fÿ1 is the list of direct children of node

10: DFSGenðNÞ . recursively generate code for these nodes from left to right

11: end for

4. Case study

Fig. 3 illustrates overall simulation process. The first step is to model the system, then the simulation code is generated by

compilation. After simulation execution, the result will be analyzed to provide guidance to modify the model. This section

will illustrate the proposed clock calculus to generate simulation code.

ABRO is a common example for illustration of synchronous programming [28–30]. It is a data collection process used by a

system to collect data from two channels A and B. The finite state machine of ABRO is shown in Fig. 4. ABRO has three input

signals: A, B and R and one output signal O. Symbol ‘‘?’’ and ‘‘!’’ respectively denote the receipt and emission of signal. At the

initial state, ABRO waits for the input signal. When both A and B are received at the same time or by any order, O will be

outputted. Signal R plays the reset role of the system:

(a) Once O is outputted, ABRO will not receive the input from neither A or B until it receives R and return to the initial

state;

(b) If R is received after one of A or B has been received, ABRO will return to the initial state, waiting for the next inputs of

A and B.

SIGNAL program of ABRO is shown in Fig. 5.

(1) Generating clock equations

For each dataflow equation, a corresponding clock equation is generated to extract the clock relation. For the ABRO

process, dataflow equations from line 3 to line 11 and the corresponding clock equations generated are shown in

Table 4. All clock equations will be put into set SCE.

(2) Resolution of the clock equations

The generated set of clock equations will be resolved to check if the program is consistent and obtain the unique

definition for the clock of signals. For instance, clock equations shown in Table 4 will be resolved as shown in

Fig. 6. One can see that every signal has its own unique and flatten definition while the only undefined signal is ^R.

(3) Generating clock equivalence class and Reduced Normal Form

Clocks will be divided into clock equivalence classes and then Reduced Normal Form can be generated to represent the

relations among classes. SCEC and SRNF generated for the example program are shown in Figs. 7 and 8. One can see

that all clocks of signals have been divided into corresponding clock equivalence classes and the only undefined clock

is C2 so the program is endochronous.

(4) Constructing the clock tree

After generating signal definition equations from dataflow equations, signal definition equations and clock definition

equations will be sorted according to the data and clock dependency relations. Fig. 9 shows part of the result of the

sort.

By traversing the Elist, the clock tree is constructed. Fig. 10 illustrates the structure of the clock tree. Every node

contains the clock definition and ordered list of signal definition equations. Clock node of C_13 is shown in

Fig. 11. One can observe that C_2 is the father of C_13; the clock definition equation for C_13 is C 13 ¼ C 2 ^ A;

two signal definition equations are attached to the node and they have been sorted according to the data

dependencies.

(5) Generating code

Following the Polychorny compiler [14], this paper uses the iteration style to generate the sequential code.

Each step of iteration simulates one instant: reading the input, computing and writing the output. The core

part of the iteration is shown in Fig. 12. According to the definition of clock tree and order of the traversal,

the generation order of the code is C 2;C 13;C 77;C 6;C 75;C 26; C 79;C 82;C 84;C 86 and C 92. One can

observe that lines 2–8 are actions under C 2; line 11 and 12 are actions triggered by C 13. Furthermore, since

C 84 implies C 82 and C 86 implies C 84, the definition of C 84 and C 86 are respectively put under the trigger

of C 82 and C 84.

(6) Simulating the SIGNAL program

A compiler has been implemented to validate the generation of sequential code. After the SIGNAL compilation, the

simulation code is compiled and executed in Visual Studio 2010 to analyze the behavior of ABRO. An execution trace

is shown in Table 5. As A, B and R are synchronous and belong to the root clock, value of each signal will be read at each

step of iteration. Here, value 1 corresponds to true while value 0 correponds to false. For instance, at instant t1, A and B

are both evaluated to value 1 and R is evaluated to value 0 so that O is outputted as value 1. At instant t2, however, O is

absent because R has not be received to reset the state. According to the specification of ABRO and inputs, O will be

Fig. 3. Process of SIGNAL simulation.

Fig. 4. Finite state machine of ABRO process [28].

Fig. 5. Signal program of ABRO process.

Table 4

Dataflow equations and corresponding clock equations.

Dataflow equations Clock equations

A^=B^=R;A^=A received, bA ¼ bR; bB ¼ bR; bA received ¼ bR

A received^=B received^=after R until O bB received ¼ bR; dafter R until O ¼ bR

nR :¼ not R cnR ¼ bR; nR ¼ not R

RT :¼ nR when R cRT ¼ cnR ^ bR true; bR true ¼ bR ^ }R

A received :¼ RT default AR dA received ¼ cRT _ cAR; dA received default ¼ cAR n cRT

AT :¼ A when A ÂT ¼ bA ^ dA true; ^A true ¼ bA ^ }A

AR :¼ AT default Adelay cAR ¼ cAT _ dAdelay; dAR default ¼ dAdelay n cAT

Adelay :¼ A received $init false dAdelay ¼ dA received

Fig. 6. SNF extracted from clock equations in Table 4.

Fig. 7. Clock equivalence classes of the example program.

Fig. 8. Part of SRNF of the example program.

Fig. 9. Part of Elist of the example program.

present and evaluated to value 1 at instant t1, t4 and t7. After executing the simulation code, VCD (Value Change Dump)

file will be generated and illustrated in GTKWave,5 shown in Fig. 13. In the figure, 1 ps corresponds to a instant and red

rectangle represents absent. From top to bottom, four waves depict the trace of A,B,R and O. From the wave, one can

observe that O is absent at 1 ps, 3 ps, 5 ps and 6 ps, consistent with expect result shown in Table 5 so that the generated

C code is able to simulate the behavior of the ABRO program correctly.

(7) Evaluation of the simulation code

Implication checking is used in this paper to generate nested control structure. As shown in Fig. 12, if clock C_82 is

evaluated to false, code from line 21 to line 31 (denoted as BlockC_82) will not be executed. According to the specifi-

cation of ABRO process, C_82 is true whenever signal after_R_until_O is true. Assume that the maximum execution

time of core iteration function is T_core, the maximum execution time of BlockC_82 is t_b and the probability of

C_82 evaluated to true is p. As a result, the average execution time will be T average ¼ T core � pþ

ðT coreÿ t bÞ � ð1ÿ pÞ and the time saved is T coreÿ T average ¼ t b � ð1ÿ pÞ, denoted as t s. Note that in any execu-

tion trace, the value of p is 0.5 at most as signal O cannot be 1 at two successive instants so that the maximum average

time saved at each instant will be t b � 0:5.

An experiment has been done to evaluate the execution time of the generated simulation code. The experiment is done

on a PC with a CPU of Intel(R) Core(TM)2 Quad Q9400 2.66 GHz and a 4 GB memory. The OS is Windows 7 and the

simulation code is compiled and executed in Visual Studio 2010. The paper uses the win32 API QueryPerformanceFre-

quency and QueryPerformanceCounter to count the time elapsed during the code execution. Table 6 shows the data of

the experiment. The value of p is 1254=1387¼
:
0:9 and t s ¼ ð1ÿ 0:9Þ � 1:53 ¼ 0:153us. The overall time saved is

ð1387ÿ 1254Þ � t s ¼ 20:35us. The experiment result illustrates that the nested control structure can effectively

decrease the execution time of the simulation code.

5. Related work

The compilation of SIGNAL has been studied before. [9,10] present various clock calculi. First, a system of Boolean equa-

tions is constructed according to the clock relations to specify the calculation order of the clocks. Then, partition trees are

constructed from the Boolean-valued signal. In each tree, clock of the child node is included in the clock of the parent node.

After this procedure, some clocks are divided into the partition trees while others are the one node tree. Finally, by fusing all

clock trees, hierarchical structure of the clock is built. During the fusion, triangularity is preserved in the depth-first search.

The generated clock tree is used as the control structure of the sequential code. However, no information of the data

dependency is specified in the tree. [14] proposes HCDG(Hierarchical Conditional Dependence Graph) which is composed

Fig. 10. Clock tree of the example program.

Fig. 11. Clock node of C 13.

5 http://www.gtkwave.sourceforge.net.

of a clock hierarchy and a conditioned scheduling graph to generate sequential code. The clock hierarchy and scheduling

graph will be generated separately and then combined together, making the compilation more complicated. As for the

research on the optimization of clock tree, [9] presents that the code generation can take advantage of the inclusion relation

in the clock tree but it is too trivial.

Another problem of the clock calculus is to deal with numerical expressions. At the current implementation of the

compiler, the numerical expressions are seen as the black boxes that may lose information useful for the checking of

synchronization relations among signals. [11] uses the methodology of abstract interpretation and IDD(Interval-Decision

Diagram) to deal with the numerical expressions. Translation from SIGNAL program to its interval abstraction and to IDD

is defined so that the numerical properties can be verified. [12] proposed a non-intrusive methodology for the enhancement

of the compilation of SIGNAL based on the combined numerical-Boolean abstraction. By using the SMT-solver, abstraction is

reasoned to find the empty clocks, mutual clocks and the inconsistency among clock relations. [13] proposed a language

called Clock Language(CL) that is more expressive than the Clock Algebra used in the clock calculus. CL is based on an exten-

sion by numerical aspects of the purely Boolean clocks used in the SIGNAL context. SAT solver is used to prove the clock

Fig. 12. Core part of the iteration.

Table 5

An execution trace of the program.

Signal t1 t2 t3 t4 t5 t6 t7

A 1 1 1 1 0 1 0

B 1 1 1 1 1 0 1

R 0 0 1 0 1 0 0

O 1 ? ? 1 ? ? 1

Fig. 13. Wave diagram of the simulation result.

properties. [31] presents a verified transformation from polychronous specification to a variant of Clock Guarded Actions

called S-CGA. The semantics preservation is proved using Coq, a proof assistant based on a higher-order logic [32]. The study

is also the foundation of the work proposed in this paper, from which the correctness of the clock calculus can be verified in

the same idea.

Furthermore, some studies focuses on the distributed or multi-threaded code generation for SIGNAL programs. [14]

proposes two methods, static scheduling and dynamic scheduling, to generate multi-threaded code. In static scheduling,

compiler will generate clusters based on the scheduling graph. Every cluster has its own clock tree. In dynamic scheduling,

every dataflow equations corresponds to a micro-thread. Each thread synchronizes with other threads using atomic action

‘‘wait-notify’’ according to the data dependencies. But these methods requires target SIGNAL program has to be endochro-

nous, which means there has to be only one root clock but this property is too strict and unnecessary in the multi-thread

code generation. [33] defines property called weak endochrony which allows the program to have multiple root clocks.

The concurrency can be then exploited to generate distributed or multi-threaded code. Based on weak endochrony theory,

[34,35] respectively presents methods to generate multi-threaded code. [36] proposes a methodology generating parallel

OpenMP code from SIGNAL program but clock calculus is not discussed. [37] presents a method translating S-CGA [31] to

multi-threaded code and maps multi-thread code to multi-core architecture.

Compared with existing approaches, this paper makes the following contributions:

� Different from the method proposed in [14], this paper combines clock hierarchy with data dependencies to reduce the

compilation complexity(this is done in Section 3). Moreover, evaluations on major algorithms have shown that the time

complexities are acceptable for practical use.

� Clock-implication checking is used in the construction of the clock tree so that the clock can be inserted as deep as

possible to make the simulation code efficient(this is done in Section 3.2.2). Specifically, an experiment has been done

in Section 4 showing that the nest control structure can effectively reduce the execution time of the simulation code.

� The proposed new clock calculus method is used to generate simulation code(this is done in Section 4). By executing the

simulation code, the behavior of synchronous programs can be verified.

6. Conclusion

This paper proposed a new clock calculus for the simulation of the SIGNAL program. By resolving the system of Boolean

equations, relations among clocks can be obtained to generate the clock tree. When developing the clock tree, clock-impli-

cation checking is used for the deeper insertion. Deeper the node is inserted, higher the efficiency of the control structure

will be. Furthermore, data dependencies are considered during the insertion of the tree. By simply using depth-first search,

executive code satisfying both clock and data dependency relations can be generated. The time complexity of major algo-

rithms have also been carried out to show the practicality of the method. Moreover, the whole process has been illustrated

by using an example. The performance of the generated code illustrates that the method has improved the efficiency of the

simulation code.

In the future, we will take the resolution of numerical expression into consideration. In addition, to generate code for

correctly simulating the behavior of the SIGNAL program, the process of the compilation needs to be verified. The formaliza-

tion and verification of the methodology is one of our future work.

Acknowledgment

This work was supported by National Natural Science Foundations of China (No. 61073013), State Key Laboratory of Soft-

ware Development Environment (No. SKLSDE-2014ZX-09) and Aviation Science Foundation of China (No. 2012ZC51025).

Grateful acknowledgment is made to Mr. Mamoun FILALI-AMINE and Prof. Jean-Paul BODEVEIX from IRIT-CNRS. They have

given a lot of instructive advice to this paper.

References

[1] D. Potop-Butucaru, R. de Simone, J.-P. Talpin, The synchronous hypothesis and synchronous languages, in: The Embedded Systems Handbook, 2005, pp.
1–21.

[2] G. Berry, G. Gonthier, The esterel synchronous programming language: design, semantics, implementation, Sci. Comput. Programm. 19 (2) (1992) 87–
152.

[3] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous data flow programming language lustre, Proc. IEEE 79 (9) (1991) 1305–1320.
[4] K. Schneider, The synchronous programming language quartz, Tech. rep., Internal Report 375, Department of Computer Science, University of

Kaiserslautern, Kaiserslautern, Germany, 2009.
[5] P. LeGuernic, T. Gautier, M. Le Borgne, C. Le Maire, Programming real-time applications with signal, Proc. IEEE 79 (9) (1991) 1321–1336.

Table 6

Data of the experiment.

T core t b Execution times of core function Execution times of BlockC_82

46.1us 1.53us 1387 1254

[6] W. Tsai, X. Sun, Q. Huang, H. Karatza, An ontology-based collaborative service-oriented simulation framework with microsoft robotics studio, Simul.
Modell. Pract. Theory 16 (9) (2008) 1392–1414.

[7] P. Le Guernic, J.-P. Talpin, J.-C. Le Lann, Polychrony for system design, J. Circ. Syst. Comput. 12 (03) (2003) 261–303.
[8] N. Saeedloei, G. Gupta, Timed p-calculus, in: Trustworthy Global Computing – 8th International Symposium, TGC 2013, Buenos Aires, Argentina,

August 30-31, 2013, Revised Selected Papers, 2013, pp. 119–135. doi:http://dx.doi.org/10.1007/978-3-319-05119-2_8.
[9] T.P. Amagbegnon, L. Besnard, P. Le Guernic, et al., Arborescent canonical form of boolean expressions, Tech. Rep. 2290, INRIA, 1994.
[10] P. Amagbégnon, L. Besnard, P. Le Guernic, Implementation of the data-flow synchronous language signal, ACM SIGPLAN Notices 30 (6) (1995) 163–173.
[11] A. Gamatié, T. Gautier, P. Le Guernic, Toward static analysis of SIGNAL programs using interval techniques, in: Synchronous Languages, Applications,

and Programming, Vienna, Autriche, 2006 (SLAP 2006). <http://hal.archives-ouvertes.fr/hal-00544123>.
[12] P. Feautrier, A. Gamatié, L. Gonnord, Enhancing the Compilation of Synchronous Dataflow Programs with a Combined Numerical-Boolean Abstraction,

Tech. Rep. 2nd Version, July 2013. <http://hal.archives-ouvertes.fr/hal-00780521>.
[13] M. Nebut, Specification and analysis of synchronous reactions, Formal Aspects Comput. 16 (3) (2004) 263–291.
[14] L. Besnard, T. Gautier, J.-P. Talpin, Code generation strategies in the Polychrony environment, Tech. Rep. RR-6894, INRIA, 2009. <http://hal.inria.fr/inria-

00372412>.
[15] L. Besnard, T. Gautier, P. Le Guernic, Signal v4-inria version: Reference manual, IRISA, March 2004.
[16] Z. Yang, J.-P. Bodeveix, M. Filali, A comparative study of two formal semantics of the signal language, Front. Comput. Sci. 7 (5) (2013) 673–693.
[17] M. Nebut, An overview of the signal clock calculus, Electron. Notes Theor. Comput. Sci. 88 (2004) 39–54.
[18] H. Yu, Y. Ma, T. Gautier, L. Besnard, P.L. Guernic, J.-P. Talpin, Polychronous modeling, analysis, verification and simulation for timed software

architectures, J. Syst. Architect. 59 (10, Part D) (2013) 1157–1170.
[19] SAE, Architecture Analysis & Design Language (AADL) v2, AS-5506, SAE International, 2004.
[20] C. Brunette, J.-P. Talpin, A. Gamatié, T. Gautier, A metamodel for the design of polychronous systems, J. Logic Algebraic Programm. 78 (4) (2009) 233–

259. {IFIP} WG1.8 Workshop on Applying Concurrency Research in Industry.
[21] A. Gamatié, T. Gautier, Modeling of avionics applications and performance evaluation techniques using the synchronous language signal, in:

Proceedings of SLAP03, ENTCS, vol. 88, Elsevier, 2003.
[22] H. Marchand, P. Bournai, M.L. Borgne, P.L. Guernic, Synthesis of discrete-event controllers based on the signal environment, Discr. Event Dynam. Syst.

10 (4) (2000) 325–346.
[23] H. Yu, Y. Ma, T. Gautier, L. Besnard, J.-P. Talpin, P.L. Guernic, Y. Sorel, Exploring system architectures in aadl via polychrony and syndex, Front. Comput.

Sci. 7 (5) (2013) 627–649.
[24] A. Kountouris, P.L. Guernic, Profiling of signal programs and its application in the timing evaluation of design implementations, in: The IEEColloq. on

HW-SW Cosynthesis for Reconfigurable Systems, HP Labs, 1996.
[25] H. Yu, Y. Ma, Y. Glouche, J.-P. Talpin, L. Besnard, T. Gautier, P.L. Guernic, A. Toom, O. Laurent, System-level co-simulation of integrated avionics using

polychrony, in: SAC, 2011, pp. 354–359.
[26] S.B. Akers, Binary decision diagrams, IEEE Trans. Comput. 100 (6) (1978) 509–516.
[27] J.-P. Talpin, J. Ouy, T. Gautier, L. Besnard, P. Le Guernic, Compositional design of isochronous systems, Sci. Comput. Programm. 77 (2) (2012) 113–128.
[28] A. Gamatié, Designing Embedded Systems with the SIGNAL Programming Language, Springer, 2010. p. 29.
[29] G. Berry, The foundations of esterel, in: Proof, Language, and Interaction, 2000, pp. 425–454.
[30] G. Berry, The Esterel v5 language primer: version v5_91, Centre de mathématiques appliquées, Ecole des mines and INRIA, 2000.
[31] Z. Yang, J.-P. Bodeveix, M. Filali, K. Hu, D. Ma, A verified transformation: from polychronous programs to a variant of clocked guarded actions, in:

International Workshop on Software and Compilers for Embedded Systems (SCOPES 2014), ACM, 2014, pp. 128–137.
[32] B. Barras, S. Boutin, C. Cornes, et al., The Coq Proof Assistanct Reference Manual Version 6.1, INRIA, May 1997.
[33] D. Potop-Butucaru, B. Caillaud, A. Benveniste, Concurrency in synchronous systems, Formal Methods Syst. Des. 28 (2) (2006) 111–130.
[34] B.A. Jose, S.K. Shukla, H.D. Patel, J. Talpin, On the deterministic multi-threaded software synthesis from polychronous specifications, in: 6th ACM/IEEE

International Conference on Formal Methods and Models for Co-Design, 2008 (MEMOCODE 2008), IEEE, 2008, pp. 129–138.
[35] D. Potop-Butucaru, Y. Sorel, R. de Simone, J.-P. Talpin, From concurrent multi-clock programs to deterministic asynchronous implementations,

Fundam. Inform. 108 (1) (2011) 91–118.
[36] K. Hu, T. Zhang, Z. Yang, Multi-threaded code generation from signal program to openmp, Front. Comput. Sci. 7 (5) (2013) 617–626.
[37] Z. Yang, J. Bodeveix, M. Filali, Multi-core code generation from polychronous programs with time-predictable properties, in: Proceedings of the First

International Workshop on Architecture Centric Virtual Integration co-located with the 17th International Conference on Model Driven Engineering
Languages and Systems, ACVI@MoDELS 2014, Valencia, Spain, September 29, 2014, 2014. <http://ceur-ws.org/Vol-1233/acvi14_submission_4.pdf>.

