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Abstract 

Many scientific areas make extensive use of computer simulations to study complex real-world processes. These 
computations are typically very resource-intensive and present scalability issues as experiments get larger even in 
dedicated clusters, since these are limited by their own hardware resources. Cloud computing raises as an option to 
move forward into the ideal unlimited scalability by providing virtually infinite resources, yet applications must be 
adapted to this new paradigm. This process of converting and/or migrating an application and its data in order to make 
use of cloud computing is sometimes known as cloudifying the application. We propose a generalist cloudification 
method based in the MapReduce paradigm to migrate scientific simulations into the cloud to provide greater 
scalability. We analysed its viability by applying it to a real-world railway power consumption simulator and running 
the resulting implementation on Hadoop YARN over Amazon EC2. Our tests show that the cloudified application is 
highly scalable and there is still a large margin to improve the theoretical model and its implementations, and also to 
extend it to a wider range of simulations. We also propose and evaluate a multidimensional analysis tool based on the 
cloudified application. It generates, executes and evaluates several experiments in parallel, for the same simulation 
kernel. The results we obtained indicate that out methodology is suitable for resource intensive simulations and 
multidimensional analysis, as it improves infrastructure’s utilization, efficiency and scalability when running many 
complex experiments. 
 

1. Introduction 

Scientific simulations constitute a major set of applications that attempt to reproduce real-world 
phenomena in a wide range of areas such as engineering, physics, mathematics and biology. Their 
complexity usually yields a significant resource usage regarding CPU, memory, I/O or a 
combination of them. 

In order to properly scale these applications, they can be distributed to a cluster or grid. While 
these approaches have proved successful, they often rely on heavy hardware investment and they 
are tightly conditioned by the available resources. This de facto limits actual scalability and the 
addressable simulation size. Since sharing resources across multiple clusters implies several 
limitations, cluster applications cannot be considered sustainable, because their scalability is 
strongly dependent on the cluster size. 

Despite scientific simulations will likely benefit from the upcoming Exascale infrastructures 
[1], the challenges that must be overcome –power consumption, processing speed and data 
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locality, for instance [2]– will probably rise again in the future as applications become more 
complex. Therefore, the ideal situation of unlimited scalability seems difficult to reach with this 
approach. 

Another option is cloud computing, which has been increasingly studied as an alternative to 
traditional grid and high-performance distributed environments for resource-demanding and data-
intensive scientific simulations [3]. Cloud computing emerged with the idea of elasticity: virtual 
unlimited resources obtainable on-demand with minimal management effort [4]. It would enable 
the execution of large simulations with virtual hardware properly tailored to fit specific use cases 
like memory-bound simulations, CPU-dependent computations or data-intensive analysis. It holds 
further advantages, such as elasticity, automatic scalability and instance resource selectivity. 
Moreover, its so-called pay-as-you-go model allows to adjust the required instances to the 
particular test case size while cutting-down the resulting costs. 

Furthermore, recent advances in cloud interoperability and cloud federations can contribute to 
separate application scalability from datacenter size [5,6]. From that point of view, applications 
would become more sustainable, as they can be operated in a more flexible way through 
heterogeneous hardware, cross-domain interactions, and shared infrastructures. There are several 
issues that should be tackled in order to develop a sustainable application, such as: 

• Virtual unlimited scalability could be achieved by reducing the number architectural 
bottlenecks, such as network communications or master-node dependencies. This 
would minimize the added overhead of working with more nodes, making a better use 
of the available resources. 

• By making the application platform independent, we can aggregate computational 
resources possibly located in different places, hence local data center size would not be 
a limitation. Moreover, we can exploit cluster and cloud resources simultaneously 
following an hybrid scheme. 

• An application that could behave in a flexible manner efficiently would be able to scale 
up or down easily according to instantaneous user needs, thus adapting computing 
resources to specific simulation sizes and deadlines. 

• If the application already exists and has to be adapted, it is desirable to minimize the 
impact on the original code, thus performing the minimal modifications needed to 
achieve the aforementioned objectives. 

Given the former, resource-intensive scientific simulations hold potential scalability issues on 
large cases, since standalone and cluster hardware may not satisfy simulation requirements under 
such stress circumstances. Therefore, in previous work we have explored the possibility of 
performing a paradigm shift from single-node HPC computations to a datacentric model that 
would distribute the simulation load across a set of virtual instances [7,8]. In this paper we propose 
a generic methodology to transform scientific simulations into a cloud-suitable data-centric 
scheme via the MapReduce framework. Moreover, in this paper we provide an optional 
experiment generation stage that allows users to configure a full set of simulations with a varying 
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parameter for solution optimization purposes. This multidimensional analysis capability is 
translated to a many-task problem within our methodology. 

The processes mentioned are illustrated by means of a real-world application, a simulator which 
calculates power consumption on railway installations. This simulator, starting from the train 
movements (train position and consumption), calculates the instantaneous power demand (taking 
into account all railway elements such as tracks, overhead lines, and external consumers) 
indicating whether the power provisioned by power stations is enough or not. Simulator internals 
consist on composing the electric circuit on each instant, and solving that circuit using modified 
nodal analysis. The starting version of the simulator, based on multi-threading, is memory 
bounded, strongly limited by the number of instants to be simulated simultaneously (and therefore 
by the number of threads). The resulting performance is evaluated on Amazon Elastic Compute 
Cloud running Hadoop YARN MapReduce. 

The rest of this paper is organized as follows: Section 2 discusses related works, Section 3 
describes our proposed methodology, Section 4 illustrates the cloudification transformation 
method on a particular use case, Section 5 evaluates how the resulting design implementation on 
Hadoop MapReduce 1.1.2 (MRv1) and Hadoop YARN Mapreduce 2.2.0 (MRv2) behaves on both 
a local cluster and Amazon Elastic Compute Cloud (EC2), Section 6 describes the process of 
transforming the methodology into a multidimensional analysis by means of a many-task 
experiment generation and evaluation process and, finally, Section 8 provides key ideas as 
conclusions and some insight in future work. 

2. Related work 

Scientific applications and their adaptability to new computing paradigms have been dragging 
increasing attention from the scientific community in the last few years. The applicability of the 
MapReduce scheme for scientific analysis has been notably studied, specially for data-intensive 
applications, resulting in an overall increased scalability for large data sets, even for tightly 
coupled applications [9]. 

Hadoop MapReduce is nowadays widely used as base platform for new programming languages 
and architectures. Hadoop MapReduce is used in Pig Latin [10], an associative language used in 
Yahoo for taking advantage of both declarative languages and map-reduce programming style. 
This approach is strongly focused on processing data sets, and does not tackle the issue of scientific 
workflows. Apache Hive [11] and Bigtable [12] are two storage systems developed on the top of 
Hadoop. Hive expresses data queries in an SQL-like declarative language which is compiled into 
map-reduce jobs. Bigtable uses a sparse, distributed, multi-dimensional sorted map to provide a 
fast method to access data, although de data structures exposed to the user are rows, columns, and 
tables. 

Nevertheless, the most popular evolution of Hadoop MapReduce is Spark [13]. Spark evolves 
the map-reduce programming style operating on resilient in-memory distributed data sets, thus 
improving performance in workflows (since the data does not have to be written to disk between 
tasks). Finally, an approach more related to scientific simulations is Twister [14], a runtime 
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specifically designed for iterative map-reduce works and, therefore, more suitable for repetitive 
computations over the same data. 

The possibility to run simulations in the cloud in terms of cost and performance was studied in 
[15]. This work concludes that performance in the Abe HPC cluster and Amazon EC2 is similar –
besides the virtualization overhead and high-speed connectivity loss in the cloud–, and that clouds 
are a viable alternative for scientific applications. Hill [16] investigated the trade-off between the 
resulting performance and achieved scalability on the cloud versus commodity clusters. Despite 
at the time of this work the cloud could not properly compete against HPC clusters, its low 
maintenance and cost made it a viable option for small scale clusters with a minimum performance 
loss. 

The relationship between Apache Hadoop MapReduce and the cloud for scientific applications 
has also been tackled in [17], which establishes that performance and scalability tests results are 
similar between traditional clusters and virtualized infrastructures. In [18], Srirama, Jakovits and 
Vainikko study how some scientific algorithms could be adapted to the cloud by means of the 
Hadoop MapReduce framework. They establish a classification of algorithms according to the 
structure of the MapReduce schema these would be transformed to. They suggest that not all of 
them would be optimally adapted by their selected MapReduce implementation, yet they would 
suit other similar platforms such as Twister or Spark. They focus on the transformation of 
particular algorithms to MapReduce by redesigning the algorithms themselves, and not by 
wrapping them into a cloudification framework as we propose. A similar approach is HAMA [19], 
a framework which provides matrix and graph computation primitives on the top of MapReduce. 
An advantage of this framework over traditional MPI approaches to matrix computations is the 
fault tolerance provided by the underlying Hadoop framework. Finally, an approach for using 
Hadoop MapReduce in scientific workflows is that explained in [20], whose authors propose a 
new architecture named SciFlow. This architecture consists on a new layer added on the top of 
Hadoop, enhancing the patterns exposed by the framework with new operations (join, merge, etc.). 
Scientific workflows are represented as a DAG composed of these operations. 

More related with the proposed approach is the so-called parameter sweep [21], in which the 
same simulation kernel is executed multiple times with different input parameters, thus providing 
task independence. A related point of view is the many-task computing paradigm [22], in which a 
high number of loosely coupled tasks are executed over data sets for a short time. In this context, 
cloud computing has been proved as a good solution for scientists who need resources instantly 
and temporarily for fulfilling their computing needs [23]. On the other hand, these evaluations 
show that better performance is needed for clouds to be useful for daily scientific computing. 
SciCumulus [24] is proposed as a lightweight cloud middleware to explore many-task computing 
paradigm in scientific workflows. This middleware includes a desktop layer to bring the scientist 
the possibility of composing their own workflows, a distribution layer to schedule the flows in a 
distributed environment, and an execution layer to manage the parallel execution of the tasks. The 
preliminary results demonstrate the viability of the architecture. 

In this context, trends are naturally evolving to migrate applications to the cloud by means of 
several techniques, and this includes scientific simulations as well. D’Angelo [25] describes a 
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Simulation-as-a-Service schema in which parallel and distributed simulations could be executed 
transparently, which requires dealing with model partitioning, data distribution and 
synchronization. He concludes that the potential challenges concerning hardware, performance, 
usability and cost that could arise could be overcome and optimized with the proper simulation 
model partitioning. Application cloudification middlewares have also been developed to allow 
legacy code migration to the cloud. For instance, in [26] a virtualization architecture is 
implemented by means of a Web interface and a Software-as-a-Service market and development 
platform. This generalist approach is suitable to provide multi-tenancy in desktop applications, but 
might not suffice for the resource-intensive computations required by large-scale simulations. 

Finally, in [27] we find interesting efforts to move desktop simulation applications to the cloud 
via virtualized bundled images. These run in a transparent multi-tenant fashion from the end user’s 
point of view, while minimizing costs. As previously discussed, we believe the virtualization 
middleware might affect performance since it does not take into account any structural 
characteristics of the model, which could be exploited to minimize cloudification effects or 
drastically affect execution times or resource consumption. 

 
3. Methodology description 

The MapReduce paradigm consists of two user-defined operations: map and reduce. The former 
takes the input and produces a set of intermediate ðkey;valueÞ pairs that will be organized by key 
by the framework, so that every reducer gets a set of values that correspond to a particular key 
[28]. 

As a data-centric paradigm, in which large amounts of information can be potentially processed, 
these operations run independently and only rely upon the input data they are fed with. Thus, 
several instances can run simultaneously with no further interdependence. Moreover, data can be 
spread across as many nodes as needed to deal with scalability issues. 

Simulations, however, are usually resource-intensive in terms of CPU or memory usage, so their 
scalability is limited to hardware restrictions, even in large clusters. Our goal is to exploit the data-
centric paradigm to achieve a virtually infinite scalability. This would permit the execution of 
large numeric simulations independently of the underlying hardware resources, with minimal 
effects to the original simulation code. From this point of view, numeric simulations would 
become more sustainable, allowing us to spread simulation scenarios of different sizes in a more 
flexible way, using heterogeneous hardware, and taking advantage of shared inter-domain 
infrastructures. 

To achieve this, we will take advantage of MapReduce’s lack of task interdependence and data-
centric design. This will allow to disseminate the simulation’s original input to distribute its load 
among the available nodes, which will yield the scalability we aim for. The steps involved in our 
proposed methodology are described in the following sections. 
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3.1. Application analysis 

Our purpose is to divide the application into smaller simulations that can run with the same 
simulation kernel, but on a fragment of the full partitioned data set, so that we can parallelise the 
executions and lower the hardware requirements for each. 

Hence, we must analyse the original simulation domain in order to find an independent variable 
–Tx in Fig. 1– that can act as index for the partitioned input data and the following procedures. 
This independent variable would be present either in the input data or the simulation parameters 
and it could represent, for example, independent time-domain steps, spatial divisions or a range of 
simulation parameters. 

At the moment, the analysis and selection of such variable is done by direct examination of the 
original application. As this process is critical, and it is intimately related with the application’s 
structure, procedures and input, it should be performed by an expert in the simulator to be 
cloudified. Future work could simplify this stage by mean of automatic analysis and variable 
proposal, yet an expert would still be needed to assess the correctness of the suggestion. 

3.2. Cloudification process design 

Once verified that the application is suitable for the process, it can be transformed by matching 
the input data and independent variables with the elements in Fig. 1. This results in the two 
MapReduce jobs described below: 

 Adaptation stage: reads the input files in the map phase and indexes all the necessary 
parameters by Tx for every execution as intermediate output. The original data must be 
partitioned so that subsequent simulations can run autonomously with all the necessary data 
centralized in a unique ðTx; parametersÞ entry. 

 Simulation stage: runs the simulation kernel for each value of the independent variable along 
with the necessary data that was mapped to them in the previous stage, plus the required 
simulation parameters that are shared by every partition. Since simulations might generate 
several output files, mappers would organize the output by means of file identifier numbers 
as keys, so as reducers could be able to gather all the output and provide final results as the 
original application. 

3.3. Virtual cluster planning 

The former stages would most likely require different amounts of CPU and memory resources, 
depending on the application to be cloudified. In this section, we provide an heuristic to detect the 
slaves’ instance requirements to maximize resource utilization. First of all, we define the concept 
of an entry. An entry is a piece of data processed by the mappers on any of the methodology stages. 
There will be different entries for the adaptation and simulation phases: 
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 For the adaptation phase, an entry is one of the registers by which the input files are arranged 
according to. Mappers in adaptation phase process these registers indexing them according the 
independent variable Tx. 

 For the simulation phase, an entry is one of the ðTx; parametersÞ pair. This is the autonomous 
piece of data which is going to be simulated by the mappers of the simulation phase. 

 

Next, we consider the following assumptions: 

 All the slaves must be equal in terms of memory and number of cores. 
 The execution time required to process an entry, te € R+, is known and homogeneous for all the 

entries. For the adaptation phase, this is the time required to parse an index the parameters 
according to the independent variable. For the simulation phase, this is the time required to 
execute the simulation kernel over a single autonomous piece of the input data. 

 The amount of memory required to process an entry, me € R+, is known and homogeneous for 
all the entries. For the adaptation phase, this is the memory needed to perform the grouping 
of input parameters according to the independent variable. For the simulation phase, this is 
the memory needed to allocate and simulate one single simulation kernel and merge the 
results. 

 The number of entries, ne € N, is known. 

Of course, te and me may vary, depending on the problem domain. In that case the expert should 
either estimate an accurate value, or consider inserting probabilistic distributions in formulae. In 
this first approach, we assume te and me constant along all entries, in order to simplify the heuristic. 
Given these parameters and assumptions, the objective is to minimize the total execution time of 
the cloudified application, T € R+. The minimization problem is defined as follows: 

minT =   ((te * ne)  / (ni * Ci)) + a 
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where cI € N represents the number of cores per instance, nI € N is the number of instances in the 
targeted cluster, and a € R+ is a parameter that represents the compute overhead factor of the 
underlying platform (spawning the tasks, etc.), which is considered constant. 

Subject to the following constraint: 

 me * Ci  + B<= mI ð2Þ 

where mI € R+ represents the amount of memory per instance and b represents the memory 
overhead added by the platform on each instance. Eq. 2 indicates that the aggregated memory 
required by the entries that can be concurrently processed by each node must not exceed the total 
memory of it. 

Once nI; cI and mI are found, one can select the instances that have greater or equal resources for 
both metrics, simultaneously. 

This minimization problem can be modified by letting T be a fixed value, in order to find 
suitable instances to meet a specific deadline. This deadline-oriented planning can be very 
beneficial to minimize costs in pay-as-you-go infrastructures, as deadlines can be multiples of the 
time slices covered by successive charges. For instance, Amazon charges the user for slices of one 
hour (even if the user only allocates VMs for 15 min). Therefore, this heuristic can be used for: 
(a) providing a VM configuration and calculate the expected execution time using that 
configuration, or (b) choosing the best VM configuration in order to meet a given deadline. 

As an example of the former formulation, let E be the set of ne =  105 entries the user wants to 
process, each one requiring me =  1 GB of memory and te =  1 s for its execution. Assuming the 
user wants to process E within one hour, using instances with cI =  2 and mI =  17 GB, the execution 
time, T, becomes a deadline of 3600 s. Let assume a =  30 s and b =  1 GB. Solving the resulting 
equation, the number of instances necessary to process all entries within one hour is 15. 

 
4. Case study 

To illustrate how this methodology works on a real-world use case, we applied it to transform a 
memory-bound railway electric power consumption simulation. We selected this tool due several 
facts. First of all, it is a real tool currently used by ADIF, the Spanish railway company, to test and 
verify different scenarios (e.g. developing new routes, increasing train traffic across the tracks, or 
testing failure situations where services have to be operated on degraded mode), so it portraits a 
general sort of engineering simulators commonly used which would be desirable to move to the 
cloud. Secondly, the tool requires a high amount of computing power, performing multiple matrix 
operations for each simulated instant (and a typical train traffic scenario has to be simulated during 
the whole day), so it is worthwhile improving the application scalability in order to reduce 
simulation times. Thirdly, the application is memory-bound, as will be explained in Section 4.2, 
so it is a perfect test case for our methodology. 
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4.1. Application description 

The aim of this simulator is, provided a number of trains circulating across the lines, calculate 
if the amount of power supplied by the electrical substations is enough or not. Starting from a 
description of the railway infrastructure (i.e. tracks, catenaries deployed over the tracks, electric 
substations placed along the tracks, as well as additional elements like feeders and switches, the 
simulator reads the position of the trains and its instantaneous power demand. Then, the electric 
circuit formed by the trains and the infrastructure is composed and solved using modified nodal 
analysis (MNA). Useful mean voltages, voltage drops, and temperatures of the wires are examples 
of results provided by the tool. The structure of the selected application is shown in Fig. 2. It 
consists of a preparation phase in which all the required input data is read and fragmented to be 
executed in a predefined number of threads. Two classes of input files are handled: 

 A common infrastructure specification file containing the initial and final time of the 
simulation, besides a wide range of domain-specific simulation parameters such as station 
and railway specifications and power supply definition. 

 A set of train movement parameters files, structured in a time-based manner, in which each 
line contains the calculation of speed and distance profiles for a particular train at a specific 
instant regarding the infrastructure constraints, with a one second interval. 

Each of the resulting threads then performs the actual simulation by means of an electric 
iterative algorithm, storing in shared memory the results that will be merged in the main thread to 
constitute the final output files. Simulator internals consist on composing the electric circuit on 
each instant, and solving that circuit using modified nodal analysis performing the following steps: 

1. Given infrastructure data, and train positions at current instant, the matrices representing the
electric circuit are composed following the MNA technique.

2. The main matrix is inverted using LU decomposition.
3. Given train consumption at present instant, the aim is to obtain the corresponding values of

current and voltage (both unknown). An iterative process is conducted, performing the
following substeps:
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Fig. 2. Case study original simulation structure. 

 
(a) A value for train voltage is proposed (e.g. 3000 V). 
(b) The circuit is solved using that proposed value. The current is obtained. 
(c) The new consumption is calculated as the product of proposed voltage and current 

obtained. This new value is compared against the original one provided as input data. 
(d) If the error is less than certain percentage (e.g. 0.5%), current and voltage values for each 

train have been found, so the algorithm ends. If not, another iteration is conducted, 
proposing a different voltage. 

4. Finally, results are written to the disk. 

The application is multi-threaded, so simulation workload is split among the available cores in 
the computer. Each thread simulates a different subset of the total simulated time (see Fig. 2).  

Resource analysis 

As we said before, the application is compute and memory-bound, because its memory usage 
pattern leads to a lack of scalability if we want to simulate bigger and bigger problems. There are 
two independent factors that have influence on application memory usage, and should be analyzed 
independently: 

 Problem size. The number of simulated elements on the same instant (e.g. trains, tracks, 
catenaries, etc.) is proportional to the size of the circuit to be calculated (problem size). 
Actually, for each new element, a minimum of two nodes and one branch are added to the 
circuit (the twice as much for certain elements such as trains). Following the MNA technique, 
this means two more rows and one more column in the problem matrix. 

 Number of simulated instants. The circuit must be solved for each instant of the simulation. 
As said before, a typical train traffic scenario has to be simulated during the whole day, 
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leading to 86,400 instants with the duration of one second. While we can split this workload 
across the node cores using threads, for each thread solving an instant the matrices must be 
allocated in memory. This increases the memory usage linearly to the number of threads. 
There is a trade-off between execution time and memory usage. The more threads we add to 
shorten the simulation time, the more memory we consume. 

The application is also very demanding in terms of processing power, since it deals with several 
matrix operations per simulated instant: LU decomposition, inversion, multiplication, etc. which 
traditionally require a great amount of floating point operations. But unlike the memory, this 
limitation can be addressed either by adding more cores to a compute node, or extending the 
execution time of the simulation. 

In order to illustrate this analysis, we conducted a study of the application memory consumption 
given different problem and simulation sizes. Four test cases were considered with variations on 
the circuit size, simulation’s initial and final time and, consequently, input data volume, execution 
time, and memory consumption. A description of these simulations is provided in Table 1. Cases 
I and II should not yield any significant load, yet simulation III is expected to reflect the system’s 
behavior under average problems. The biggest experiment, case IV, should reveal the platforms’ 
actual limitations as simulations become larger, if any. These tests are meant to indicate the 
performance of the cloudified adaptation versus the original application under an increasing 
amount of input data and simulation time. All test cases are based on the same real case, a particular 
railway line at Madrid surroundings, with increasingly levels of detail and simulation periods. This 
line has been used before in other works [29] because it is a good example in size and complexity 
of a real railway project. 

Fig. 3 displays the memory consumption of the application as we increase the number of 
concurrent threads. Measurements have been taken by means of the Linux proc. OS policies about 
memory pages assignment introduce a slight randomness, so we have repeated each measurement 
10 times. As we can see in the figure, this application does not scale well for large test cases in 
terms of memory usage in a standalone environment (memory tests were conducted on a single 
node with 48 cores and 110 GB of RAM).The most determining factor is the number of 
simultaneous threads, which increases the memory consumption linearly. As we said before, each 
thread operates a different matrix which can reach a size of 

Table 1 Test cases definition. 

Experiment Avg elements per instant Simulated time (hours) Input size 
(MB) 

I 77 1 1.7 
II 179 33 170 
III 525 177 1228.8 
IV 755 224 5324.8 
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Fig. 3. Original simulation kernel memory consumption. 

thousands of elements. On the other hand, using more threads is the best option to shorten the 
simulation time. We believe we can achieve greater scalability by cloudifying the application, 
since we can distribute the simulation load across several nodes. It would also disperse memory 
usage so that we could always add a new node in case we need to tackle a larger case. To show its 
feasibility, next we will apply the method described in Section 3. 

4.2. Cloudification 

The key to adapt such algorithm to a cloud environment resides its input files, for they hold an 
indexed structure that stores in each line an ðinstant; parametersÞ pair. As we said before, each 
simulated instant (ti in Fig. 2) is independent from the others, because for each instant the circuit 
has to be composed, solved, and the results obtained, so we can divide the whole simulation period 
(e.g. from 06:00:00 to 22:00:00) in multiple smaller simulations, each one of length 1 s. Therefore, 
we can consider the temporal key as the independent variable required for the theoretical model. 
But in order to do that, first we have to adapt the input data, rearranging that data from the initial 
set to multiple smaller subsets, each one containing those information necessary to simulate one 
single instant. Following the cloudification schema, the application was transformed into two 
independent MapReduce jobs executed sequentially. 

In the first job, which matches the first MapReduce in Fig. 1, the movement input files, Ik, are 
divided into input splits by the framework according to its configuration. Each split is then 
assigned to a mapper, which reads each line and emits ðkey;valueÞ pairs where the key is the 
instant, ti, and the value is the corresponding set of parameters for such instant. The intention 
behind this is to provide reducers with a list of movement parameters per instant In;...; Im –each 
element representing the movement of one of the trains involved in the overall system for a 
particular ti– to concatenate and write to the output files, so that the simulation kernel can be 
executed once per instant with all the required data. 

As described in Fig. 1, the output of the previous job is used as input to the mapper tasks by 
parsing each line. Then, the resulting data –which corresponds to the instant being processed– is 
passed to the electric algorithm itself along with the scenario information obtained from the 
infrastructure file that is also read by the mapper. The mappers’ output is compound by an output 
file identifier Fj as key and the actual content as value. 
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Reducers simply act as mergers gathering and concatenating mappers’ output organized by file 
identifier and instant as a secondary key injected in the value content. This arranges the algorithm’s 
output so that the full simulation results are shown as in the original application, in which each 
output file contains the results for the whole temporal interval of the simulation. 

4.3. Implementation and platform configuration 

The previous design could be implemented in any of the available MapReduce frameworks. 
Among them, we selected Apache Hadoop platform [30] given its popularity and community 
support. Its distributed file system is a great addition to the framework, since it allows automatic 
load balance. Moreover, it includes a distributed cache that supports auxiliary read-only file 
storage for tasks among all nodes, which suits neatly the shared infrastructure parameter file’s 
needs. 

Besides the former technical features, Hadoop has been adopted into many Cloud environments, 
along with other MapReduce frameworks, resulting in reduced costs given its parallelism 
exploitation capabilities [31]. 

We implemented this design via Hadoop Pipes API, since the original code was written in C++ 
and we wanted to maximize code re-use. Despite Pipes does not allow to take full advantage of 
Hadoop’s potential given its limited functionality, it provided all the necessary tools to execute 
our framework, including map and reduce interfaces, basic data type support, and Distributed 
Cache access on job submission. 

As a constantly changing technology, Hadoop evolved fast into more sophisticated and flexible 
versions. We started our implementation and tests with the stable version 1.1.2 and moved to 
Hadoop 2.2.0 in order to evaluate the effect of next generation MapReduce over YARN (MRv2) 
in terms of resource management and overall performance. The following paragraphs give an 
overview of both platforms configuration settings. 

 
Table 2. Job-specific configurations on MRv1. 

 Job 1 Job 
2 

Maximum no. of map 
slots (GB) 

16 6 

Number of reducers 2 4 
JVM memory (GB) 4 8 

 

 

Table 3  Platform configuration parameters for MRv2. 

 Single-node 
cluster 

Virtual cluster 
on EC2 
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Node memory 
(GB) 

92 16 

Virtual cores 16 4 
Minimum 
allocation (GB) 

1 0.5 

Virtual memory 
ratio 

4 8 

 
 

Table 4. Job-specific configurations on MRv2. 

 
 Job 1 Job 2 Job 1 Job 

2 
Container memory (GB) 1.5 7 1 6 
Number of reducers 2 13 5 10 
 
 
Hadoop 1.1.2 (MRV1) MapReduce’s architecture is based on a fixed number of slots that can 

be assigned to mappers and reducers. These are fully managed across the nodes by a unique 
JobTracker, which also assigns TaskTrackers, coordinates mappers and reducers and provides 
progress information to the client. This constitutes a single-point of failure and may become a 
bottleneck in very large clusters [32]. 

Hadoop’s Distributed File System (HDFS) replication was disabled in order to make HDFS 
interactions less time-consuming. The parameters shown in Table 2 permitted to achieve a 
significant balance between memory consumption –especially in the second job– and the required 
time to finish the job in the worst case tested. Besides the former, we forced reducers to wait for 
at least the 85% of the mappers to finish before start processing their output. This was considered 
to minimize the shuffle overload and maximize the available resources at the map phase, which is 
especially relevant in the second job. 

Hadoop 2.2.0 (MRv2 on YARN), Next Generation MapReduce, encapsulates cluster resource 
management capabilities into YARN (Yet Another Resource Negotiator), leaving MapReduce-
specific functionalities and configuration in an independent module. This avoids some scalability 
issues originated in the JobTracker by dividing its functionality and providing a general-purpose 
platform for other paradigms [33]. The MapReduce functionalities handled by the previous 
JobTracker were moved to the new ApplicationMaster. A ResourceManager is in charge of the 
cluster’s resource management and a HistoryServer provides clients with information on 
completed jobs. TaskTrackers were replaced with NodeManagers that are responsible for the 
resources and container management on each node. Each container can hold a map or reduce task 
and can be configured regarding the available computational power, memory and input/ouput 
capabilities of the node, which yields an increased flexibility. 
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Given the eager algorithm in terms of memory we are working with, our container configuration, 
shown in Table 4, aimed to provide enough memory for the second job in the worst case tested. 
With similar purposes, we implemented the configuration for node resource dedication that can be 
seen in Table 3. We did also maintain the slow-start configuration in both phases and the HDFS 
parameters mentioned previously. 

5. Evaluation of cloudified application 

In order to asses the application’s performance we compared its execution times on both a 
cluster and the cloud. The following sections describe the utilized resources and a discussion on 
the obtained outcome. 

5.1. Execution environments 

Table 6 summarizes the infrastructures and software platforms on which the tests were 
conducted. In a first place, we tested the original multi-thread application’s memory consumption 
and performance on a cluster node consisting of a 48 Xeon E7 cores and 110 GB of RAM 
(Configuration 1). 

This node was also used to test the resulting cloudfied application to avoid variations that may 
arise from heterogeneous configuration, resource differences, or network latency in case of the 
MapReduce application [15]. This isolation favors the multi-thread application, which is 
especially designed to perform in standalone environments. However, it allows to focus on the 
actual limiting factors that may affect scalability in large test cases like I/O, memory consumption 
and CPU usage. Both Hadoop versions –MRv1 and MRv2– were installed and configured on the 
single-node cluster to benchmark their performance against the original application 
(Configurations 2 and 3, respectively). 

MRv2 was chosen to be deployed on EC2 given its improved resource management options and 
better overall performance (Configuration 4). The selected cloud infrastructure consisted of a 
general purpose m1.medium node as dedicated master and several memory optimized m2.xlarge 
machines as slaves. Table 5 shows the main aspects of the selected instances, which were selected 
in order to maximize the number of cores for the first stage, while holding enough memory to 
execute as many containers as cores with sufficient memory for the second stage. The number of 
slaves was selected to match roughly the resources present in Configuration 1, so that the 
comparison is fair for both infrastructures, leading to a total of 24 slaves to match the 48 cores 
present in Configuration 1. Additionally, further tests have been conducted on EC2 using a 
variable number of slaves, in order to check if scalability issues arise as the number of nodes 
increases. 

5.2. Results discussion 

As we already discussed in Section 4, the original multi-thread application’s memory usage 
suggests a lack of scalability in a cluster environment. We will now analyse whether the cloudified 
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simulation behaves as expected in relation to performance and scalability by examining its 
execution times on several execution environments, which are shown in Fig. 4. This figure shows 
the time measurements obtained on the configurations in Table 6, in which the EC2 cluster is 
constituted 

Table 5 EC2 instances description. 
Type Role Virtual CPUs Memory (GB) Local 

storage 
(GB) 

m1.medium master 1 3.75 410 
m2.xlarge slave 2 17.1 420 

  
 
 
 
          (a)	Adaptation	phase	 (b)	Simulation	execution 

 

(c)	Aggregated	time (d)	MRv2	on	EC2	
scalability 

 

Fig. 4. Evaluation results. 
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Table 6.  Execution environments. 

Configuration Platform Underlying 
infrastructure 

1 Multi-thread Cluster node 
2 Hadoop 1.1.2 

(MRv1) 
Cluster node 

3 Hadoop 2.2.0 
(MRv2) 

Cluster node 

4 Hadoop 2.2.0 
(MRv2) 

EC2 

 

Table 7 Execution times per stage for the configurations defined in Table 6, in minutes. 

Configuration Experiment Copy to HDFS Adaptation Simulation Aggregated 
MRv1 I 2.17 0.43 0.53 3.13 

 II 17 2 28 47 

 III 110 18 270 398 

 IV 977 78 561 1616 

MRv2 I 0.05 0.63 0.88 1.57 
 II 0.18 2.62 8.23 11.03 

 III 1.43 12.43 55.5 69.37 

 IV 5.68 70.52 310.27 386.47 

MRv2/EC2 I 0.12 1 0.95 2.07 
 II 0.4 1.45 7.15 9 

 III 1.28 4.87 63.7 69.85 

 IV 5.53 18.63 165.57 189.73 

Original I – – – 0.15 
 II – – – 46.33 

 III – – – 221.45 

 IV – – – 1221.17 
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by five slaves –graphs (a), (b) and (c)–. The EC2 values also served as baseline for the scalability 
study shown in (d). Additionally, we include the execution times in Table 7, as the values for the 
extreme cases make the first experiment hard to compare with the others visually. 

(a) Cloudification phase 
The cloudification phase –graph (a)– performs better on EC2 than on he same MapReduce 
version in the local cluster for the three largest experiments (at least a 55% faster, in the worst 
case, up to a 74%). The smallest experiment, however, runs a 57% slower, mainly due to the 
execution time being too short to make up for the platform’s launching and synchronization 
overhead; this issue can be observed in all of the remaining stages. 

(b) Kernel execution 
The simulation execution stage, (b), is the most determinant phase in the whole process, 
ranging from the 46% of the whole execution time, in case I on EC2, to a 91%, in case III in 
the same environment. Since we selected our virtual cluster to match the number of cores of 
the physical environment, we can claim that the application deployed in the Cloud shows 
outstanding performance against the other configurations for the largest experiment (47% 
faster in the worst case against MRv2 on the local node). Experiments I, II and III, however, 
have similar execution times in EC2 and the physical node running MRv2, yet this sustains 
the scalability of the application, as no singnificant performance loss (14% tops) is perceived 
in average sized experiments after cloudification. 

(c) Aggregated time 
In (c) we observe the overall execution time for the application including both MapReduce 
jobs and input data upload. The latter has to be considered given that replication and balance 
must be achieved by the platform to distribute load evenly. The graph indicates that the 
performance obtained with MapReduce on Yarn in both the single-node cluster and the 
elastic cloud is remarkably better than the original multi-thread application –68% and 85% 
less total simulation time for the largest experiment, respectively–. The shared memory 
simulator’s results might be caused by the bottleneck constituted by the physical memory 
and the disk. The latter is particularly critical, as all threads write their results to disk while 
they perform their computations in the original simulator. 
As we have already mentioned, the smallest experiment is an interesting exception, with 

execution times ten times greater than the original application in all the platforms. This reflects 
how the MapReduce framework’s overhead significantly affects the time taken to complete such 
a small simulation compared to the original application benchmark. (d) Scalability study 

Finally, in (d) we observe the speed-up obtained on EC2 running YARN when the number 
of slaves is increased. The speed-up shown in the figure is related to the execution times 
commented in the previous paragraphs, which were obtained in a five-slave cluster. As the 
figure indicates, increasing the number of slaves decreases the total simulation time. 
However, the performance does not scale up linearly with the number of nodes: while with 
16 nodes the speedup is 3.3, with 64 nodes it is only 7.6. The reason behind this result is that 
the problem size becomes small for the cluster size as more nodes are added. Hence, less data 
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is assigned to each slave and some resources become underutilised. Moreover, as we 
mentioned in the previous paragraph, in very small experiments the measured execution time 
is mostly spent in the platform’s task preparation and scheduling, and not in the actual 
simulation. This results in degraded performance due to platform overhead. Therefore, it is 
necessary to increase the problem size as well as the number of slave nodes in order to achieve 
linear scalability. 
 

6. Empowering the methodology: multidimensional analysis 

Most simulators rely on several parameters to configure a specific experiment. For instance, the 
railway simulator presented in Section 4 requires an infrastructure definition to determine the 
number and position of power stations, the association between trains and tracks, the catenary 
sections and the number of trains in operation, among others. All of these variables can be changed 
independently, yielding an exponential number of possible experiments. This complexity is further 
problematic if one decides to combine more than one variable at a time in a multidimensional 
experiment analysis. Therefore, it is meaningful to consider multidimensional analysis within our 
methodology, thus providing a mechanism to execute concurrently a large number of simulations 
in the same infrastructure. 

Since the methodology we described in Section 3 aims to provide task independence between 
concurrent simulation partitions, we can perform a multidimensional analysis by spawning several 
simulations in a many-task manner. 

Many-task computing (MTC) is a new computing paradigm that mixes high throughput 
computing (HTC) and high performance computing (HPC). Its main goal is to make an efficient 
use of a large number of computing resources over short periods of time to execute many 
computational tasks [22]. The main difference with HTC is that the throughput is measured as 
tasks over very short periods of time –such as FLOPS, and tasks/s– instead of jobs per month, for 
instance. 

The kinds of applications that benefit the most of this paradigm are the ones with many loosely 
coupled tasks, including heterogeneous tasks with some interdependencies. Most of these 
applications are focused on big data analysis on clusters, grids and supercomputers. For instance, 
scientific simulations such as DNA database analysis, data processing in the Large Hadron 
Collider (LHC) and climate modeling constitute examples of applications that make use of many-
tasks to analyse their huge amount of data. These applications rely on large quantities of data, 
therefore data locality seems critical for large scale MTC. In fact, [22] states that data-aware 
scheduling minimizes data movement across nodes and benefits performance. Given this context, 
it seems natural to enhance out data-centric methodology with a many-task deployment to support 
multidimensional analysis, while enforcing efficient resource utilization and balance. 

Finally, in previous works [34], the authors expose the advantages of developing simulators 
with an increased set of capabilities: not only simulating and testing scenarios provided by the 
user, but also generating a new set of scenarios by its own, thus exploring the solution search 
space. A simulator should also implement the evaluation function necessary to score the simulated 
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scenario, off-loading this task from the user. Combining these two properties, a third one arises, 
since with a little additional development the simulator should be capable of conducting a guided 
search for optimal solutions across the problem’s domain space. 

Given this context, it seems natural to enhance out data-centric methodology with a many-task 
deployment to support multidimensional analysis, while enforcing efficient resource utilization 
and balance. The following sections describe, implement and evaluate a multidimensional analysis 
tool, implemented as a many-task deployment based on our cloudification methodology. 

6.1. Description 

In order to enhance our methodology implementing the many-task programming paradigm, we 
added some elements to the methodology structure proposed in Fig. 1. This enhancement is 
represented in Fig. 5. The idea behind the figure is to wrap the adaptation and simulation phases 
described in Section 3 with an scenario generator, an evaluator and a search engine that performs 
an iterative loop. In [34], a general structure which includes all these components is introduced, 
as well as a proposal to translate this structure into a cloud-based architecture. Therefore we use 
this architecture as a starting point for implementing our many-task enhancement. 

There are two major goals to be accomplished. The first is to increase the number of scenarios 
simulated concurrently to support multidimensional analysis, instead of simulating just one case 
like in the aforementioned evaluation. By dispatching several concurrent simulations we follow a 
many-task paradigm and take further advantage of the Hadoop cluster resources. The second goal 
is to provide further functionality for the end user by permitting the exploration of the solution 
space generated by introducing variations of the initial scenario, and simulating each of them. 
Through the proposed approach we can iteratively evolve the initial scenario in order to find better 
solutions according to an user-defined evaluation function and a search engine. 

The elements included in the deployment’s architecture are the following: 

Adaptation and simulation stages. These phases correspond to the ones belonging to the 
methodology described in Section 3, with a few considerations. 
First, we could make use of different adaptation procedures, each tailored for a subset of the 
generated experiments datasets. However, the simulation kernel would remain the same for 
every experiment, allowing to execute the same simulator while varying several parameters at 
the same time. 
Second, we remark every task is independent between experiments. This means we can execute 
the adaptation stage of one experiment at the same time we run the simulation stage of a 
different one. Therefore, we can interleave many heterogeneous tasks as in MTC paradigms. 
This approach allows us to perform a better usage of the cluster resources, since a double-
grained workload is distributed 

20



 

 
Fig. 5. Methodology enhancement including many-task deployment and optimum search for multidimensional analysis. 

across the nodes. First, we run multiple simulation kernels (maps) which correspond to the same 
simulation scenario (i.e. the same map-reduce task). Second, we run multiple map-reduce jobs, 
since we are simulating several scenarios concurrently. Note that, since multiple map-reduce 
jobs can be on execution at the same time, the Hadoop task scheduler has a potential impact on 
performance across the global workload. 
Scenario generator and evaluator. We propose that an efficient simulator should evaluate and 
simulate a set of solutions with a minimal user involvement. New generation simulators should 
be capable of proposing and evaluating new designs based on a range of possible parameters. 
Besides, generating new scenarios to be tested allows us to deploy the many-task paradigm in 
an easy way, with minimal user involvement. The proposed methodology aims these objectives 
through introducing two new components: a scenario generator and an evaluator. We define 
scenarios as independent simulations, each one of them with a different input data set (though 
parts, or even almost of the data can be similar), that have to be evaluated separately. Varying 
the input data leads to a different scenario (e.g. a different infrastructure to be tested, or different 
environmental conditions the current infrastructure have to be checked with). 
The scenario generator and the evaluator wrap the simulation model (i.e. the adaptation and 
simulation phases) generating different solutions to be evaluated. The scenario generator creates 
new scenarios through variations in the input data, thus allowing experimentation with different 
simulation parameters, components or domain restrictions. Those scenarios are provided to the 
map-reduce cluster, which performs the simulation as described in Section 3. The evaluator 
analyses the output from that simulations and scores the generated solutions, stating whether 
they are acceptable or providing a measure of their quality. 
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Generating and evaluating multiple scenarios automatically allows a simulator to test different 
solutions, thus providing a faster way of exploring the solution space. Rather than obtaining a 
single solution, this method obtains a set of feasible solutions from which the user can select 
the best one. Moreover, advanced search algorithms may be implemented. For instance, the 
generator and the evaluator could implement a guided search using heuristics in order to find 
an optimal solution. 

6.2. Case study 

The cloudified application selected to perform the multidimensional analysis was the railway 
electric power consumption simulator presented in Section 4. The implementation proceeded as 
follows: starting from an initial test case, the scenario generator introduced variations in some key 
parameters of the railway infrastructure simulation. Specifically, the position of the power supply 
stations that feed the railway infrastructure was modified, thus generating a series of child test 
cases to be scored by the evaluator. Hence, the simulation dimensions are time, number of power 
stations and their position. 

The simulation result which we aimed to optimize was the mean useful voltage, described in 
European normative UNEEN-50388 [35]. This measure is defined as the mean of all voltages at 
the pantograph of each train in the geographic zone, at each simulation time step. Let t =  ft1; t2;...; 
tpg be the simulation steps, and let ni =  fni1; ti2;...; tiqg be the number of trains in the scenario 
operating at step ti. Thus, the mean useful voltage Umu is calculated following Eq. 4, where Uij is 
the voltage at 

Table 8. CENELEC test case definition. 

Trains Tracks Electrical 
substations 

Circuit branches 
(mean) 

Simulated time Input size 
(MB) 

6 2 3 150 1 h 20 min. 4.2 
 

 

Fig. 6. Schema of the main railway elements in the CENELEC test case. Parallel connections between catenaries or 
tracks are not shown. 

pantograph calculated at step ti for train tij. This measure indicates the quality of the power supply. 
The lower the mean useful voltage is, the less energy is transferred from the supply stations to the 

Track	1 

Track2 

Electrical	 
Substation	1 

Electrical	 
Substation	2 

Electrical	 
Substation	3 

Train	2 Train	1 Train	3 Train	4 

Train6 Train5 
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trains, on average. The many-task workload consisted of finding a solution which maximizes this 
value. 

 
In order to find that solution, we conducted a breath-first search. Starting from the an initial test 
case, the position of the first electrical substation is modified by displacing its position 1 km., then 
2 km, etc. Once all possible positions of this first electrical substation have been tested, we start 
to modify the position of the second electrical substation as well. We established a maximum 
number of generated scenarios, in order to reduce the solution search space. Improved search 
algorithms may be implemented in order to reach an optimum more efficiently. In this case, 
implementing an easy algorithm is more appropriate since now we are evaluating the scalability 
and performance of the solution. 

The initial test case from which we modify the power stations position is none of the described 
in Table 1. Instead, we use a standard railway scenario described in the proposed draft of the 
European normative UNE-EN-50641.1 This proposal of normative establishes the requirements 
for the validation of simulation tools used for the design of traction power supply systems. 
Therefore, it is meaningful to apply such normative to our cloudified railway simulator. 
Composing elements of this case are described in Table 8, and an schema describing the railway 
elements of the test case is shown in Fig. 6. Notice that not all the branches of the electric circuit 
are shown in this schema. The arrows in the diagram indicate the displacement direction of the 
electrical substations as more cases are generated and evaluated. 

7. Multidimensional analysis evaluation 

We performed a second battery of tests in order to illustrate the many-task deployment 
capabilities of our methodology. In the first evaluation we only executed one of the test cases at a 
time. This was conducted to study the behavior of the workload distribution in a cloud and cluster. 
In this evaluation, many experiments will be spawned in the same Hadoop cluster, following the 
MTC paradigm. While the first evaluation focused on the speed-up and computing time required 
to perform a single test case, this second evaluation was centered in the number of test cases 
simulated simultaneously and the obtained scalability and throughput. 

The selected platform to deploy the evaluation of the multidimensional analysis was MRv2 on 
Amazon EC2. MRv2 outperformed MRv1 in the first evaluation, getting better results than its 
counterpart in all tests. Amazon EC2 was selected in order to take advantage of the cloud’s 
possibility to allocate resources (slave nodes in this case) on demand. The virtual cluster consisted 
of a general purpose m3.xlarge node as dedicated master and memory optimized m2.xlarge 
machines (see Section 5) as slaves. These tests have been conducted using four virtual clusters of 
1, 4, 16, and 64 slaves respectively. In each virtual cluster we perform tests simulating 1, 4, 16, 
and 64 experiments, always following the breadth-first search pattern aforementioned. 

As shown by Fig. 7, our tests indicate that the enhanced system scales linearly with the number 
of experiments for every cluster size tested. This suggests that the proposed methodology is 

 
1 This normative is still a proposal under vote by the CENELEC committee until 30th of January, 2015, when it will be finally either approved or discarded. 
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suitable for multidimensional analysis via MTC, as we can run several interleaved heterogeneous 
tasks making an efficient use of the infrastructure’s resources. Furthermore, we can see that 
linearity is not loss in any case, so the end user can run the many-task job successfully with either 
a few nodes or a 

 
Number	of	experiments 

Fig. 7. Execution times for the enhanced methodology with increasing number of nodes and experiments. 

 
Number	of	experiments 

Fig. 8. Speed-up for the enhanced methodology, over one node. 

 

Fig. 9. Per node efficiency of the enhanced methodology with increasing number of experiments. 
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larger infrastructure. That allows to tailor the underlying infrastructure to reduce of economical 
costs or provide higher performance. 

In Fig. 8 we show the resulting speed-up of the enhanced deployment, taking as base a single-
node execution with increasing number of nodes and experiments. In Fig. 9 we include the per 
node efficiency, e, which corresponds to the normalized speed-up with relation to the number of 
slaves. The worst result corresponds to 64 nodes and one experiment because of the significant 
impact of the Hadoop platform’s overhead in the overall execution time. Noticeably, with four 
nodes and 64 experiments we obtain superlinear speed-up due to the efficient utilization of the 
cluster resources. As seen in Fig. 9, when more nodes are added, the system becomes underused 
and the platform’s overhead becomes noticeable, thus losing efficiency. The same situation occurs 
if we run less experiments in the same environment. Therefore, the overall system’s efficiency is 
tightly related to the ratio between the number of nodes and experiments. It is also remarkable that 
the system increases its efficiency as more experiments are executed, and that it is not needed to 
rely on a large cluster to execute them if efficiency is more relevant than total execution time. 

 
8. Conclusions 

As the cloud is increasingly shown as a viable alternative to traditional computing paradigms 
for high-performance applications and resource-intensive simulations, we propose a general 
methodology to transform numeric simulations into a highly scalable MapReduce application that 
re-uses the same simulation kernel while distributing the simulation load across as many nodes are 
desired in a virtual cluster running on the cloud. The procedure requires an application analysis 
phase in which at least one independent variable must be found, since this element will act as index 
for the cloudification phase. The cloud adaptation stage transforms the original input into a set of 
partitions indexed by the previous variable by means of a MapReduce job; these partitions are fed 
to a second MapReduce job that executes the simulation kernel independently for each, merging 
the final results as well. 

This methodology performs a paradigm shift from resource-bound applications to a data-centric 
model; such cloudification mechanism provides effective cloud migration of simulation kernels 
with minimal impact on the original code and achieves great scalability since limiting factors are 
scattered. Therefore, it provides a way to increase application’s sustainability, breaking the 
dependence on local infrastructure, and allowing to spread simulation scenarios of different sizes 
in a more flexible way, using heterogeneous hardware, and taking advantage of shared inter-
domain infrastructures. 

Additionally, we provide a way to enhance the methodology to support multidimensional 
analysis. This allows the generation, scheduling, execution and evaluation of many different 
experiments for a single simulator. We implemented this new scheme following a many-task 
model. The results we obtained show that the more parallel executions we have, the more efficient 
is the infrastructure’s resources utilization. 
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Future works are strongly focused on extending the current methodology to a generalized 
framework which would allow to cloudify any scientific application. With this aim, several issues 
have to be solved. 

First of all, Hadoop MapReduce is constrained to a specific set of operations that limit the 
flexibility of the methodology. This is one of the reasons why more advanced and complex 
platforms are arising nowadays to substitute Hadoop and MapReduce [37]. We are considering 
other implementations to migrate to, such as Spark, that provide further functionality and support 
for complex algorithms that require iterative MapReduce procedures. 

Secondly, the behavior of the methodology should be analysed with other kind of applications 
(CPU or network intensive). Currently we are cloudifying a classic MPI application, the n-bodies 
problem, in order to assure performance even in clusteroriented applications. Moreover, parameter 
extraction and application analysis is currently performed manually by the user, who is 
accountable for selecting an independent variable Tx. Current development is also oriented to ease 
this tasks through creating data definitions which would allow the adaptation phase to select and 
split the input data automatically. 
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