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Abstract

Resource scheduling in infrastructure as a service (IaaS) is one of the keys for large-scale Cloud
applications. Extensive research on all issues in real environment is extremely difficult because it requires
developers to consider network infrastructure and the environment, which may be beyond the control. In
addition, the network conditions cannot be controlled or predicted. Performance evaluations of workload
models and Cloud provisioning algorithms in a repeatable manner under different configurations are
difficult. Therefore, simulators are developed. To understand and apply better the state-of-the-art of
cloud computing simulators, and to improve them, we study four known open-source simulators. They
are compared in terms of architecture, modeling elements, simulation process, performance metrics and
scalability in performance. Finally, a few challenging issues as future research trends are outlined.
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1. Introduction

Cloud computing is developed based on vari-
ous recent advancements in virtualization, Grid
computing, Web computing, utility computing
and related technologies. Cloud computing pro-
vides both platforms and applications on demand
through the Internet or intranet [19]. Some of the
key benefits of Cloud computing include the hid-
ing and abstraction of complexity, virtualized re-
sources and efficient use of distributed resources.
Some examples of emerging Cloud computing
platforms are Google App Engine [15], IBM blue
Cloud [16], Amazon EC2 [6], and Microsoft Azure
[20]. Cloud computing allows the sharing, al-
location and aggregation of software, computa-
tional and storage network resources on demand.
Cloud computing is still considered in its infancy
as there are many challenging issues to be resolved
[19][1][23]. Youseff et al. [18] establish a detailed
ontology of dissecting Cloud into five main lay-
ers from top to down: Cloud application (SaaS),
Cloud software environment (PaaS), Cloud soft-
ware infrastructure (IaaS), software kernel and
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hardware (HaaS), and illustrate their interrela-
tions as well as their inter-dependency on preced-
ing technologies.

Cloud data center can be a distributed network
in structure, which is composed of many comput-
ing nodes (such as servers), storage nodes, and
network devices. Each node is formed by a se-
ries of resources such as CPU, memory, network
bandwidth and so on. Each resource has its cor-
responding properties. There are many different
types of resources for Cloud providers. The defi-
nition and model defined by this paper are aimed
to be general enough to be used by a variety of
Cloud providers. In this paper, we focus on Infras-
tructure as a service (IaaS) in Cloud data centers.

In a traditional data center, applications are
tied to specific physical servers that are often
over-provisioned to deal with workload surges
and unexpected failures [5]. Such configuration
rigidity makes data centers expensive to main-
tain with wasted energy and floor space, low re-
source utilizations and significant management
overheads. With virtualization technology, to-
day’s Cloud data centers become more flexible,
secure and on-demand allocating.

One key technology plays an important role in
Cloud data center is resource scheduling. One
of the challenging scheduling problems in Cloud
data center is to consider allocation and migration
of reconfigurable virtual machines and integrated
features of hosting physical machines.
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It is extremely difficult to research widely for
all these problems in real platforms because the
application developers can’t control and process
network environment. What is more, the network
conditions cannot be predicted or controlled.

The research of dynamic and large-scale dis-
tributed environment can be achieved by build-
ing data center simulation system, which supports
visualized modeling and simulation in large-scale
applications in cloud infrastructure. Data cen-
ter simulation system can describe the application
workload statement, which includes user informa-
tion, data center position, the amount of users
and data centers, and the amount of resources in
each data center. Using this information, data
center simulation system generates requests and
allocates these requests to virtual machines.

By using data center simulation system, ap-
plication developers can evaluate suitable strate-
gies such as distributing reasonable data cen-
ter resources, selecting data center to match
special requirements, improving resource utiliza-
tion and load balancing, reducing total energy-
consumptions, reducing costs and so on. We will
look at some closely related work firstly.

1.1. Related Work

There is quite intensive research conducted for
cloud simulators. In this paper, we concen-
trate on open-source simulators which we can eas-
ier access. Dumitrescu and Foster [8] introduce
GangSim tool for grid scheduling. Buyya et al.
introduce GridSim [24] toolkit for modeling and
simulation of distributed resource management
for grid computing. Calheiros et al. [25] intro-
duce modeling and simulations of Cloud comput-
ing environments at application level, a few sim-
ple scheduling algorithms such as time-shared and
space-shared are discussed and compared. Sakel-
lari et al. [14] complement a survey of mathemat-
ical models, simulation approaches and testbeds
in cloud computing, which aims to enable re-
searcher to find suitable modelling approach and
simulation implementation. Ikram et al. [2] in-
troduce a novel cloud resource management ser-
vice model and its simulation-based evaluations
are mainly focusing on two applications dynamic
service composition. Nuu et al. [27] propose
a scheme for modeling and experimenting com-
bined smart sleep and power scaling algorithms
in energy-aware data center networks. Gurout et
al. [26] provide a survey on energy-aware sim-
ulation techniques with DVFS (Dynamic Voltage
and Frequency Scaling). CloudAnalyst [7] aims to
achieve the optimal scheduling among user groups
and data centers based on the current configura-
tion. Both CloudSim and CloudAnalyst are based

on SimJava [13] and GridSim [24], which treat a
Cloud data center as a large resource pool and
consider application-level workloads. Kliazovich
et al. [10] propose an energy-aware simulation en-
vironment named GreenCloud for Cloud datacen-
ters at package level. Nunez et al. [4] introduce
a new simulator of cloud infrastructure named
iCanCloud using C++ and compare the perfor-
mance with CloudSim. Tian et al. [32] propose
CloudSched, a novel lightweight simulation tool
for VM scheduling with lifecycle in Cloud data
centers.

1.2. Comparative Guideline of Open-Source
Cloud Simulators

Cloud simulators can be divided into various
categories according to their features. In this sec-
tion, we will give a brief comparison with different
categories by extending the comparison category
in [9]. The open-source simulators are selected be-
cause we can study their source codes in details,
develop new algorithms and improve them if nec-
essary. The four open source simulators, namely
CloudSim, iCanCloud, GreenCloud, CloudSched,
are representative of many related simulators be-
cause we study the architecture design, modeling
elements, simulation process, performance met-
rics and scalability. These simulators have com-
mon features such as in architecture, modeling
elements, simulation process as well as their own
characteristics such as focusing on different ser-
vice layers and with different performance met-
rics. CloudSim is well known simulator for cloud
computing, it can be extended easily but cur-
rently it does not consider parallel experiments
or lifecycles of VMs. The iCanCloud implements
parallel experiments but does not consider en-
ergy consumption or VM migration. GreenCloud
models detailed energy consumptions for differ-
ent physical components. CloudSched can model
lifecycle of requests, and provide different metrics
for load-balance, energy efficiency and utilization
etc. Four open source cloud data centers simula-
tors (CloudSim, GreenCloud, iCanCloud, Cloud-
Sched) are compared together in Table 1.

Platform: The platform that the simulator
based on makes it bind with some specific fea-
tures. CloudSim and CloudSched are both im-
plemented with Java, so they can be executed on
any machine installed JVM. While built based on
GridSim and SimJava, CloudSim is heavy to exe-
cute. GreenCloud is an extension of NS2 network
simulator, and it’s a packet level simulator. As
for iCanCloud, it’s based on OMNET, which can
simulate in-depth physical layer entities.

Language: The languages implemented the
simulators are related to the platforms. CloudSim
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Table 1: Comparison Guideline

Items CloudSim [24] GreenCloud [9] iCanCloud [3] CloudSched [30]

Platform any NS2 OMNET, MPI any
Programming Language Java C++/OTcl C++ Java
Availability Open Source Open Source Open Source Open Source
Graphical Support Limited (Via CloudAnalyst) N N Y
Physical Models N Limited (Via Plug-in) Y Y
Models for public cloud N N Y Y
Parallel experiments N N Y N
Energy Consumption Y Y N Y
Migration algorithms Y N N Y
Simulation time Seconds Tens of minutes seconds seconds
Memory space small large medium small

and CloudSched are implemented with Java,
while GreenCloud needs combining C++ and
OTcl, iCanCloud is in C++.

Availability: The four simulators under dis-
cussion are free or open-source, available for pub-
lic download.

Graphical support: The original CloudSim
supports no graphical interface, the graphical in-
terface is supported in CloudAnalyst. However,
full support is not provided in CloudAnalyst, only
the configurations and results can be presented.
So we label it as limited, the same reason is
also applicable for GreenCloud. CloudSched and
iCanCloud support whole scheduling process to
be showed on the interfaces.

Physical server models: The details about
the simulated components can reflect the preci-
sion of the simulator and the validity of the re-
sults. iCanCloud and CloudSched provide de-
tailed simulation for physical analogs for the
scheduling, which can trace resource utilization
in physical servers and rejected requests informa-
tion. GreenCloud needs to use a plug-in to simu-
late and then it can even capture the packet loss.
CloudSim treats resource pool as a whole.

Models for public cloud providers: Ama-
zon, as a cloud provider, has proposed its VM
models and informed that by using these specifica-
tions, better scheduling effects could be obtained.
Both iCanCloud and CloudSched use the model
suggested by Amazon, in which physical machine
and virtual machine specifications are pre-defined.

Parallel experiments: Parallel experiments
could combine more than one machine to work
together to process the tasks. Supporting for mul-
tiple machines running experiments together is a
main feature of iCanCloud and that feature is not
presented in other three simulators.

Energy consumption model: The energy
consumption model can enable the simulators to
compare energy efficiency of different scheduling
strategies and algorithms. Except for iCanCloud,
other three simulators can support energy con-

sumption modeling. The energy consumption
model implemented in GreenCloud can trace ev-
ery element in a data center. DVFS energy con-
sumption model is proposed in CloudSim with ex-
tension tools. CloudSched provides energy con-
sumption metrics for different scheduling algo-
rithms.

Migration algorithms: Migration algorithms
are proposed to satisfy specific objectives, for in-
stance dealing with the overloaded scenario in
load balancing applications, reducing the total
number of running machines to save total energy
consumption, improving the resource utilization
and so on. CloudSim and CloudSched support
migration algorithms, while other two simulators
do not.

Scalability: This mainly means how fast the
simulator can run (simulation time) and how
much memory space the simulator will consume
as the total number of requests is increasing, es-
pecially to a large amount. We will provide com-
parison in performance evaluation.

In summary, CloudSim, GreenCloud, iCan-
Cloud and CloudSched are open source and avail-
able to download. CloudSim and GreenCloud of-
fer no graphical interface support; CloudSched
and iCanCloud all provide user interface to oper-
ate. CloudSched and iCanCloud support physical
server models, and GreenCloud supports physical
models with a plug-in. In addition, CloudSched
and iCanCloud offer models for public cloud
providers. Parallel experiments are supported
only in iCanCloud, but only iCanCloud does not
support energy consumption model. CloudSim
and CloudSched implement migration algorithms
while others not. In the following sections, we
will provide in-depth comparative study in terms
of architecture design, simulation process, ele-
ments, performance metrics and scalability in per-
formance.

The organization of remaining parts of this pa-
per is as follows: from section 2 to section 6,
detailed comparisons from different views about
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CloudSim, GreenCloud, iCanCloud and Cloud-
Sched are given. Section 2 compares the architec-
ture and main features of these simulators; sec-
tion 3 compares the way how elements are mod-
eled in different simulators; section 4 presents the
basic simulation process and compares minor dif-
ferences in those simulators; section 5 lists the
metrics in use; section 6 shows how performance
are evaluated in those simulators; finally conclu-
sions about cloud simulators are given.

2. Comparison 1: Architecture and Main
Features

In this section, we will discuss the simulators
architectures.

Figure 1: The Architecture of CloudSim [25]

Fig. 1 shows the multi-layered design and im-
plementation of CloudSim. At the fundamental
layer, management of applications, hosts of VMs,
and dynamic system states are provided. By ex-
tending the core VM provisioning functionality,
the Cloud provider can also study the efficiency
of different strategies at this layer. As for the
top layer, the User Code represents the basic en-
tities for hosts, and through extending entities at
this layer, developer can enable the application to
generate requests in a variety of approaches and
configurations, model cloud scenarios, implement
custom applications, and etc.

GreenCloud structure could be mapped on the
three-tier data center architectures as in Fig. 2,
which are the most common architectures. Basi-
cally, the architectures are composed of access lay-
ers, aggregation layers and cores layers. Servers
are placed at the access layer and responsible for
task execution. Switches and Links form the in-
terconnection fabric that delivers workload to any
of the computing servers for execution at the ag-
gregation layer. The core layer constitutes the

Figure 2: Three-tier data center architecture of
GreenCloud[10]

workloads that can model various cloud user ser-
vices.

Figure 3: The Architecture of iCanCloud [4]

The iCanCloud adopts the architecture shown
in Fig. 3, which is also a layered architecture. The
bottom of the architecture consists of the hard-
ware models layer, which basically contains the
models that are in charge of modeling the hard-
ware parts of a system. A set of system calls are
connected with the hardware models layer in the
basic systems API module. In this module, a set
of system calls are provided as Application Pro-
gramming Interface for all applications run in a
VM. The upper layer is a VMs repository, which
contains a collection of VMs previously defined
by the user. The cloud hypervisor is at the up-
per layer that is managing all produced jobs and
the instances of VMs where those jobs are exe-
cuted. As for the top of architecture, it contains
a definition of the entire cloud system.

CloudSched is implemented under a simplified
layered architecture as shown in Fig. 4. From
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Figure 4: A Simplified Layered Architecture of CloudSched
[32]

top to bottom layer, at the top layer, there is an
interface for a user to select resources and send re-
quests, basically, a few types of virtual machines
are preconfigured for a user to choose. The lower
layer is the core layer of scheduling: once user re-
quests are generated, those requests are forwarded
to next level, which is responsible to choose appro-
priate data centers and physical machines based
on user requests. CloudSched provides support
for modeling and simulation of Cloud data cen-
ters, especially allocating virtual machines (con-
sisting of CPU, memory, storage and bandwidth
etc.) to suitable physical machines. This layer
can manage a large scale of Cloud data centers
consisting of thousands of physical machines. Dif-
ferent scheduling algorithms can be applied in dif-
ferent data centers based on customers’ character-
istics. At the bottom layer, there are Cloud re-
sources which include physical machines and vir-
tual machines, both of them consisting of certain
amount of CPU, memory, storage and bandwidth
etc. In summary, from the architecture view, the
compared simulators all adopt the layered archi-
tecture and the layers can be mainly divided into
three parts. Each layer is responsible for some
basic functions. At the bottom layer, these sim-
ulators provide management for servers (in both
GreenCloud and iCanCloud) or hosts of VMs (in
CloudSim and CloudSched). The upper layer are
in charge of scheduling the tasks (comparing ef-
ficiency of different algorithms or strategies). At
the top layer, interface for users are offered, in-
cluding configurations or scenarios that can be set
by the users in all these simulators. Besides these
basic functions, some extra functions are extended
in different simulators, while the basic ones are
quite similar.

3. Comparison 2: Building Blocks in Sim-
ulators

In this section, we discuss the building blocks,
i.e., the elements modeled in each simulator.

3.1. Modeling Cloud Data Centers

In CloudSim and CloudAnalyst, the
infrastructure-level services related to the
clouds are simulated by modeling the data center
entity. In CloudSim, an entity represents an
instance of a component, like data center or
host. The data center entity manages a number
of host entities and these hosts can be assigned
to one or more VMs based on allocation policy.
Host represents a physical computing server in
a Cloud, with processing capability, including
CPU, memory, storage, etc. In data center, both
hosts and VMs can be managed during their life
cycles.

In GreenCloud, elements are modeled based on
the multi-tier data center architecture. Servers,
switches and links, and workloads constitute the
basic elements of GreenCloud. Servers are re-
sponsible for task execution, quite similar to
the servers in the CloudSim, and workloads can
be viewed as the VM requests (tasks) in the
CloudSim simulator. As for the switches and
links, they form the interconnection fabric that
delivers workload to any of the computing servers
for execution in a timely manner. The VMs are in
a variety of specification in CloudSim or Cloud-
Sched, while workloads in GreenCloud are divided
into three types: Computational Intensive Work-
loads, Data Intensive Workloads and Balanced
Workloads.

In iCanCloud, the elements model has some dif-
ferences. The main difference lies in the servers
modeling. In iCanCloud, hardware model repre-
sents the resources provided in the simulator and
VM instances take the place of servers in other
simulators. A data center represents a set of Vir-
tual machines, and the VMs are responsible for
executing the scheduled jobs, which are a list of
tasks submitted by users.

In CloudSched, the core hardware infrastruc-
ture related to the Cloud is modeled with a data
center component for handling VM requests. The
data center component is mainly composed of
a set of hosts, which are responsible for man-
aging VMs activity during their life cycles. A
host is a component that represents a physical
computing node in a Cloud: it is assigned a
pre-configured processing capability (expressed in
computing power in CPU units), memory, band-
width, storage, and a scheduling policy for allo-
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Table 2: 8 types of virtual machines (VMs) in Amazon
EC2

MEM (GB) CPU (units) BW(G) VM

1.7 1 (1 cores x 1 units) 160 1-1(1)
7.5 4 (2 cores x 2 units) 850 1-2(2)
15.0 8 (4 cores x 2 units) 1690 1-3(3)
17.1 6.5 (2 cores x 3.25 units) 420 2-1(4)
34.2 13 (4 cores x 3.25 units) 850 2-2(5)
68.4 26 (8 cores x 3.25 units) 1690 2-3(6)
1.7 5 (2 cores x 2.5 units) 350 3-1(7)
7.0 20 (8 cores x 2.5 units) 1690 3-2(8)

cating processor cores to virtual machines. A VM
could be represented in a similar way like the host.

3.2. Modeling Virtual Machine Allocation

VM allocation is the process of generating VM
instances on hosts that match the critical re-
sources, configurations, and requirements of the
Cloud provider. With virtualization technologies,
Cloud computing provides flexibility in resource
allocation. For example, a PM(Physical Machine)
with two processing cores can host two or more
VMs on each core concurrently. Only if the total
used amount of processing power by all VMs on
a host is not more than available capacity in that
host, VMs can be allocated.

Taking the widely used example of Amazon
EC2 [6], we show that a uniform view of dif-
ferent types of VMs is possible. Table 2 shows
eight types of virtual machines from Amazon EC2
online information. The speed per CPU core
is measured in EC2 Compute Units, being each
C.U. equivalent to a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor. We can therefore form
three types of different PMs (or PM pools) based
on compute units. In real Cloud data center,
for example, a physical machine with 2×68.4GB
memory, 16 cores×3.25 units, 2×1690GB storage
can be provided. In this or similar way, a uni-
form view of different types of virtual machines is
possibly formed. This kind of classification pro-
vides a uniform view of virtualized resources for
heterogeneous virtualization platforms e.g., Xen,
KVM, VMWare, etc., and brings great benefits
for virtual machine management and allocation.
Customers only need selecting suitable types of
VMs based on their requirements. There are eight
types of VMs in EC2 as shown in Table 2, where
MEM is for memory with unit GB, CPU is nor-
malized to unit (each CPU unit is equal to 1Ghz
2007 Intel Pentium processor [6]). Three types
of PMs are considered for heterogeneous case as
shown in Table 3.

Table 3: 3 types of physical machines (PMs) in Amazon
EC2

CPU (units) MEM(G) BW(G) Pmin Pmax

16(4 cores x 4 units) 30 3380G 210W 300W
52(16 cores x 3.25 units) 136.8 3380G 420W 600W
40(16 cores x 2.5 units) 14 3380G 350W 500W

CloudSim supports the development of custom
application service models that can be deployed
within a VM and its users are required to extend
the core Cloudlet object for implanting their ap-
plication services. To be exactly, VMs or jobs
in CloudSim, iCanCloud can only be allocated to
hosts that have enough resources, like memory,
storage, etc.

Workloads in GreenCloud need a complete sat-
isfaction of its two main requirements: computing
and communicational, which define the amount of
computing that has to be executed before a given
deadline and the size of data transfers that must
be performed prior, during, and after the work-
load execution.

Currently CloudSched implements dynamic
load-balancing scheduling algorithms, utilization
maximization and energy-efficient scheduling al-
gorithms. Other algorithms such as reliability-
oriented and cost-oriented etc. can be applied as
well.

3.3. Modeling Customer Requirements

CloudSim models the customer requirements by
deploying VM instances and users can extend the
core Cloudlet object for implementing their ap-
plication services. The VM instance may require
some resource such as memory, storage and band-
width on the host to enable its allocation, which
means assign specific cores of CPU, amount of
memory and bandwidth to specific VMs.

GreenCloud models customer requirements by
configuring the workload arrival rate/pattern to
the data center following a predefined distribu-
tion (like exponential distribution), or generating
requests from traces log files. In addition, differ-
ent random distributions can also be configured
to trigger the time of a workload arrival as well as
specify the size of the workload. This flexibility
enables users to adopt various choices to inves-
tigate network conditions, traffic load, and influ-
ences on different switching components. More-
over, the trace-driven workload generation makes
it more realistic to simulate the workload arrival
process.

In iCanCloud, VMs are the building blocks for
creating cloud systems. Both in the application
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repository and VMs repository, collections of pre-
defined models can be customized by user. Those
models will be used in order to configure the cor-
responding jobs that will be executed in a specific
instance of a VM in the system. Also, new appli-
cation models can be easily added to the system.

CloudSched models customer requirements by
randomly generating different types of VMs and
allocates VMs based on appropriate scheduling
algorithms in different data centers. The arrival
process, service time distribution and required ca-
pacity distribution of requests can be generated
according to random processes. The arrival rate
of customers’ requests can be controlled. Distri-
bution of different types of VM requirements can
be set too. A real-time VM request can be repre-
sented in an interval vector: vmID(VM typeID,
start-time, end-time, requested capacity). For
example, vm1(1, 0, 6, 0.25) shows that the re-
quest ID is 1, virtual machine is of type 1 (cor-
responding to integer 1), start-time is 0 and end-
time is 6 (here 6 means the end-time is the sixth
slot). Other requests can be represented in sim-
ilar ways. Fig. 5 shows the life cycles of virtual
machine allocation in a slotted time window using
two PMs, where PM#1 hosts vm1, vm2 and vm3
while PM#2 hosts vm4, vm5 and vm6. Notice
that at any slot, the total capacity constraint of a
PM has to be met by all VMs allocated on it, and
each VM has a start-time, end-time constraint.

In summary, in order to satisfy the flexibility
and extendibility of customer requirements, these
simulators all provide predefined configurations as
well as interfaces for extending. CloudSim can
extend the core Cloudlet object; GreenCloud can
generate customer requests in trace log file; iCan-
Cloud can modify the application model in the
application and VMs repository; CloudSched can
change the VM and PM specification in the con-
figuration files.

4. Comparison 3: Simulation Process

Generally, the simulation process for cloud data
centers can be mainly divided into four parts: 1)
generating customer requests; 2) initiating data
centers; 3) defining allocation policy; 4) collecting
and outputing results. The simulators that we
discussed in this paper all have these four parts,
though some differences existed when extending
the basic parts.

Generating customer requests: Requests
are generated in this phase and prepared to be
allocated. In different simulators, the requests
generation approaches may vary and preparation
process before requests allocation would also have

Figure 5: An Example of User Requests and Allocation

minor differences. Requests in CloudSim, Cloud-
Sched are generated as VM instances and put into
different queues in different phases, like waiting
queue represents the requests are waiting to be ex-
ecuted. Workloads are produced in GreenCloud
with its size satisfying exponential distribution.
Jobs in iCanCloud can be submitted by user or
pre-defined model as list and then be added into
the waiting queue to be executed.

Initiating data centers: In this phase, data
center are started to provide resources. The dis-
cussed simulators are almost similar in initial-
izing cloud data centers and they initialize the
servers/hosts to offer resource like CPU, memory,
storage and etc. To be noticed, the servers/hosts
may be geographical separated, which means lo-
cated in different data centers.

Defining allocation policies: Allocation pol-
icy describes scheduling process, including when
and how to allocate the specific request to the
specific server/host. Allocation policy has a tight
relationship with the goal of scheduling. For in-
stance, load balancing and energy saving may use
different allocation policies. In CloudSim and
iCanCloud, First Come First Service (FCFS) pol-
icy is implemented as a basic choice. Cloud-
Sched develops some load balancing policies to
compare performance and GreenCloud contains
DVFS (Dynamic Voltage Frequency Scaling) poli-
cies to evaluate energy saving effects.

Collecting and outputting results: After
the scheduling process is completed, results would
be gathered to evaluate the performance of a pol-
icy. Except CloudSim, other simulators would
present part of simulation results in the user in-
terface. Similarly, with different scheduling goals,
evaluated indices would vary. The comparison in-
dices and typical outputs would be introduced in
the following sections.

7



5. Comparison 4: Performance Metrics

For different objectives of scheduling, there are
different performance metrics. In this section,
we discuss some usual metrics that adopted in
cloud simulators, like for utilization maximiza-
tion, load-balancing, energy-efficient goals. Other
metrics for different objectives can be extended
easily based on these usual metrics. Note that the
four simulator use quite different metrics, here we
just try to cover the metrics which are applied in
the four simulators. Table 4 summaries the met-
rics name, metrics objective and the simulators
that adopt the corresponding metric.

5.1. Metric for Maximizing Resource Utilization

In the following, we firstly review two metrics
for maximizing resource utilization and these
two metrics are the basis for load balancing and
energy efficient in the following subsections.
(1). Average resource utilization. Average uti-
lization of CPU, memory, hard disk and network
bandwidth can be computed and an integration
utilization of all these resources can be used too.
(2). The total number of PMs used. It is closely
related to the average and whole utilization of a
Cloud data center.

5.2. Metrics for Multi-dimensional Load-
Balancing

In view of advantages and disadvantages
of existing metrics for resource scheduling
[5][28][21][31], integrated measurement on total
imbalance level of Cloud data center and each
server are developed for load-balancing strategy
[33]. The following parameters are considered:
(1). average CPU utilization (CPUU

i ) of a single
CPU i: For example, if the observed period is one
minute and CPU utilization is recorded every 10
seconds, then CPUu

i is the average of six recorded
values of CPU i. This metric could represent the
average load on a single CPU during a period of
observed time.
(2). average utilization of all CPUs in a Cloud
datacenter: Let CPUn

i be the total number of
CPUs of server i, then the average utilization of
all CPUs on server i is

CPUA
u =

∑N
i CPUU

i CPUn
i∑N

i CPUn
i

(1)

where N is the total number of physical servers
in a Cloud datacenter. Similarly, average utiliza-
tion of memory, network bandwidth of server i, all
memories and all network bandwidth in a Cloud
datacenter can be defined as MEMU

i , NETU
i ,

MEMA
u , NETA

u respectively.
(3). integrated load imbalance value (ILBi) of
server i: Variance is widely used as a measure of
how far a set of numbers is spread out from each
other in statistics. Using variance, an integrated
load imbalance value (ILBi) of server i is defined
as:
(Avgi − CPUA

u )2 + (Avgi −MEMA
u )2 + (Avgi −NETA

u )2

3
(2)

where

Avgi = (CPUU
i +MEMU

i +NETU
i )/3 (3)

ILBi could be applied to indicate load imbalance
level comparing utilization of CPU, memory and
network bandwidth of a single server itself.
(4). the imbalance value of all CPUs, memories
and network bandwidth: Using variance, the im-
balance value of all CPUs in a data center is de-
fined as

IBLCPU =
N∑
i

(CPUU
i − CPUA

u )2 (4)

Similarly, imbalance values of memory (IBLmem)
and network bandwidth (IBLnet) can be calcu-
lated. Then total imbalance values of all servers
in a Cloud datacenter is given by

IBLtot =

N∑
i

ILBi (5)

(5). average imbalance value of a physical server i:
The average imbalance value of a physical server
i is defined as

IBLPM
avg =

IBLtot

N
(6)

where N is the total number of servers. As its
name suggests, this value can be used to measure
average imbalance level of all physical servers.
(6). average imbalance value of a Cloud data-
center (CDC): The average imbalance value of a
Cloud datacenter (CDC) is defined as

IBLCDC
avg =

IBLCPU + IBLmem + IBLnet

N
(7)

(7). average running times: Average running
time of proceeding same amount of tasks can be
compared for different scheduling algorithms.
(8). makespan: In CloudSched, it is defined as
the maximum load (or average utilization) on all
PMs, and in some other simulators, it is defined
as the longest processing time on all PMs.
(9). utilization efficiency: It is defined as (the
minimum load on any PM) divides (maximum
load on any PM) in this case.
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5.3. Metrics for Energy-efficiency

(1). energy consumption model:
Most of energy consumption in data centers is
from computation processing, disk storage, net-
work, and cooling systems. In [5], authors
proposed a power consumption model for blade
server:

14.5+0.2UCPU+(4.5e−8)Umem+0.003Udisk+(3.1e−8)Unet

(8)

where UCPU , Umem, Udisk, Unet are utilization of
CPU, memory, hard disk and network interface
respectively. From this formulation, it is observed
that except CPU, the other factors such as mem-
ory, hard disk and network interface have very
small impact on total energy consumption.

In [3], authors found that CPU utilization is
typically proportional to the overall system load,
hence proposed a power model as follows:

P (U) = kPmax + (1− k)PmaxU (9)

where Pmax is the maximum power of a server; k
is the fraction of power when a server is idle, and
studies show that on average the k is about 0.7;
and U is the CPU utilization.

In GreenCloud, Dynamic Voltage/Frequency
Scaling (DVFS) is considered, the power con-
sumption of an average server can be expressed
as follows:

P = Pfixed + Pf × f3 (10)

where Pfixed accounts for the portion of the con-
sumed power which does not scale with the op-
erating frequency f , while Pf is a frequency-
dependent CPU power consumption.

The energy consumed by a switch and all its
transceivers can be defined as:

Pswitch = Pchassis+nlinecards+Plinecard+

R∑
r=0

nports,r+Pr

(11)

where Pchassis is related to the power consumed
by the switch hardware, Plinecard is the power
consumed by any active network line card, Pr

corresponds to the power consumed by a port
(transceiver) running at the rate r.

In real environment, the utilization of the CPU
may change over time due to the workload vari-
ability. Thus, the CPU utilization is a function
of time and is represented as u(t). Therefore, the
total energy consumption by a physical machine
(Ei) can be defined as an integral of the energy
consumption function over a period of time as:

Ei =

∫ t1

t0

P (u(t))dt (12)

When the average utilization is adopted, u(t)=u,
then Ei=P (u)(t1 − t0).
(2). The total energy consumption of a Cloud
data center: The energy consumption is com-
puted as the sum of energy consumed by all PMs:

Ecdc =

n∑
i=1

Ei (13)

It should be noted that the energy consumption
of all VMs on PMs is included.
(3). The total number of PMs used: This is the
total number of PMs used for the given set of VM
requests. It is important for energy-efficiency.
(4) The total power-on time of all PMs used:
According to the energy consumption equation of
each PM, the total power-on time is a key factor.

5.4. C/P (Cost/per task) Metric

In iCanCloud, in order to deal with the com-
plexity level added by an infrastructure following
a pay-as-you-go basis, the C/P metric is defined
as:

C/P = CT =
ChTexeI

iN2
c

b TexeI

iNvmNc
c (14)

where Texe is the task execution time, the val-
ues of I and i correspond to the whole tracing
interval and the tracing interval per task, that is,
the grain of the application. On the other hand,
Nvm and Nc are the number of Virtual Machines
and number of cores per Virtual Machine, Ch is
the machine’s usage price per hour. In this way,
the best infrastructure setup would be that which
produced the lowest C/P value.

5.5. Confidence Interval

Confidence intervals can be calculated for dif-
ferent metrics as follows: Let x1, x2, x3, ..., xn be
the calculated metrics (such as IBLtot and Ecdc

values etc.) from n times of repeated simulations.
Then the mean is

xmean =
1

n

n∑
i=1

xi (15)

and the standard deviation s is

s =

√∑n
i=1(xmean − xi)2

n− 1
(16)

and the confidence interval at 95% confidence
(normal distribution) is given by

(xmean − 1.96
s√
n
, xmean + 1.96

s√
n

) (17)
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Table 4: Metrics Comparison Guideline

Metrics Optimization Objectives Simulators

average resource utilization maximizing resource utilization All Four
total number of PMs (hosts) need maximizing resource utilization All Four
average CPU utilization load balancing All
average utilization of all CPUs in a cloud datacenter load balancing All Four
integrated load imbalance value of a server load balancing CloudSched
imbalance value of all CPUs load balancing CloudSched
average imbalance value a physical server load balancing CloudSched
average imbalance value of a Cloud datacenter load balancing CloudSched
total simulation time All All Four
makespan or longest processing time load balancing CloudSim, CloudSched
energy consumption model energy-efficiency CloudSim, GreenCloud, CloudSched
total energy consumption of a Cloud data center energy-efficiency CloudSim, GreenCloud, CloudSched
total number of PMs used energy-efficiency CloudSim, GreenCloud, CloudSched
total power-on time of all PMs energy-efficiency CloudSim, GreenCloud, CloudSched
cost / per task C / P iCanCloud
confidence interval confidence interval CloudSched

6. Comparison 5: Performance Evaluation

In this section, we will discuss the performance
comparison of iCanCloud and CloudSim, Cloud-
Sched and CloudSched with a focus on the scala-
bility. We also compare the typical outputs of all
compared simulators.

6.1. Performance Comparison of iCanCloud and
Cloudsim

6.1.1. Experimental Environment Settings

In the comparison between iCanCloud and
CloudSim, jobs in CloudSim are modeled by con-
figuring input size, processing length and output
size. The jobs in the simulation experiments have
5 MB input size, 30MB output size, 1,200,000 MI
processing length. In addition, jobs would take
advantage of all the available CPU capacity on
VMs and the VMs they used are 9,500 MIPS. Of
course, a new application model is developed in
iCanCloud to execute the same functionality as
CloudSim. The experimental environment is on a
computer with a CPU core i3 and 4GB of RAM
memory.

6.1.2. Performance Comparison

Fig. 6(a) demonstrates the execution time com-
parison of CloudSim and iCanCloud, the x-axis
presents the number of jobs executed in each ex-
periment, y-axis presents the VMs number and
its type, and z-axis presents the time required to
execute each experiment (measured in seconds) in
log-scale. It’s obvious that both simulators need
more execution time when increasing the num-
ber of jobs, while these simulators would have dif-
ferent impact when increasing the VMs number.
When the VMs number is more than 2500, the
execution time keeps stable in iCanCloud, while
the execution time is influenced directly by both

VMs number and jobs number. In most exper-
imental cases with jobs amount less or equal to
50000, iCanCloud is faster than CloudSim, and
in all tests with 250k jobs, iCanCloud is faster.
Under all tests, iCanCloud shows better perfor-
mance in execution time than CloudSim.

Fig. 6(b) presents the memory consumption
comparison in each experiment for CloudSim
and iCanCloud. It can be noticed in this
graph that iCanCloud requires more memory
than CloudSim. Up to 1000 VMs, the amount
of memory required by both simulators is similar.
However, when using more than 1000 VMs, the
amount of memory required by iCanCloud goes
up much faster than CloudSim.

In general, iCanCloud is faster in large scale
experiments and provides better scalability, but
requires more memory than CloudSim.

6.2. Performance Comparison of CloudSim and
CloudSched

6.2.1. Experimental Environment Settings

In the comparison between CloudSim and
CloudSched, the comparison is a bit complex than
the comparison in section 7.1, a new construct
method is created with start-time and end-time
parameters, which refers to the lifecycle of a re-
quest. The file size of request represents the re-
quired capacity of all requests. The start-time,
end-time generation approaches are same, servers
(named VMs in CloudSim) and requests (named
cloudlet in CloudSim) both adopt the EC2 spec-
ifications. List Scheduling algorithm is imple-
mented in both simulators, in which requests
would be allocated to a PM with the lowest uti-
lization. The experimental environment is based
on a Dell computer with a CPU core i5 and 8GB
of RAM memory.
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(a) (b)

Figure 6: Performance comparison of CloudSim vs. iCanCloud [4]

(a)） (b)

Figure 7: Performance Comparison of CloudSim vs. CloudSched
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6.2.2. Performance Comparison

Fig. 7(a) illustrates the time consumption of
each experiment, where x-axis shows the requests
number in each experiment for CloudSim and
CloudSched, y-axis shows the number of PMs and
simulators they belong to, and z-axis shows the
time required in millisecond unit to simulate each
experiment. It is also apparently observed that
larger number of requests and number of PMs
need more time in both simulators. When the
number of VMs is less than 10,000, CloudSched
always costs less time to complete simulation. As
for the numbers of VMs are 50,000 and 25,000,
CloudSched takes less time than CloudSim, while
CloudSched takes longer time when the number
of PMs is more than 5,000. As the ratio of the
number of VMs to the number of PMs increases,
like 500,000: 500, CloudSim shows its strength.
Note that the ratio of VMs to PMs may be vary-
ing from a few to a few tens in a real cloud data
center.

Fig. 7(b) shows the memory consumption
comparison of each simulation in CloudSim and
CloudSched. In cases when the VMs num-
ber is relative small, like from 1,000 to 10,000.
CloudSched needs a little more memory, several
megabytes, to execute simulations. While as
the requests number becomes larger, CloudSched
costs much less memory than CloudSim, the large
difference happens when the request number is
500,000. The reason is that the VM and PM
model in CloudSched is simpler than the models
in CloudSim.

In general, CloudSched costs less time when the
ratio of the number of VM requests to the number
of PMs is not too large (like below 100) and costs
much less memory than CloudSim.

6.3. Typical Outputs Compared

In Fig. 8, we compare the performance of four
energy-conscious resource management strategies
against a benchmark technique NPA (NonPower-
Aware). In the benchmark technique, the pro-
cessors can be operated at higher possible pro-
cessing capacity as 100% and do not consider
energy-optimization during provisioning of VMs
to hosts. The first energy-conscious strategy for
comparison is DVFS enabled, which means that
the VMs are resized during the simulation based
on the dynamics of CPU utilization of the host.
The other strategies are extensions of DVFS pol-
icy: MU (minimum utilization) strategy allocates
VMs on the minimal utilization nodes; RS (Ran-
dom selection) strategy randomly allocates VMs
to hosts; MC (maximum correlation) strategy al-
locates VMs on the maximal correlation hosts.

All these extensive strategies enable the idle nodes
into sleep mode to save total energy and live mi-
gration of VMs every 5s for adapting to the al-
location. VMs can be migrated to another host,
if this operation will reduce energy consumption.
In our simulation, the requests come randomly
and we vary the number of hosts and VMs to
obtain data for the energy consumption and the
number of migrations. From our simulations, MC
strategy shows the best energy-efficient effects as
shown in Fig. 8 (b). As for the number of migra-
tions, NPA and DVFS both have no migrations,
while in other three strategies, MC strategy takes
least number of migration in most cases. The data
shown in Figure 8 is the average of 5 times of re-
peated simulation.

Figure 9: Typical Output of GreenCloud

In Fig.9 with GreenCloud simulations, we col-
lect the total energy consumption under variable
data center load (varying from 0.0, 0.3, 0.6 to
1.0) and variable number of servers (varying from
100 to 400) both for DVFS only and DNS+DVFS
power management schemes. The x-axis formats
like (100, 0.0) represents the tests with 100 servers
and 0.0 load, and (400, 1.0) shows tests with 400
servers and 1.0 load. In our simulations, we set
the type of workloads as HPC (High Performance
Computation) and the results gathered are aver-
aged over 5 runs with the random number gen-
erator. From the bar chart, generally, it’s obvi-
ous that the total energy consumption increases
as the number of servers increases. It also demon-
strates that the DVFS scheme shows itself little
sensitive to the input load of servers, while by
contrast the DNS+DVFS scheme shows precise
sensitive to variable load. We also observe that
under same number of servers and identical loads,
the DNS+DVFS scheme saves more energy than
DVFS scheme.

In iCanCloud, Fig. 10 illustrates the results
gathered by executing the model of Phobos ap-
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Figure 8: Typical Output of CloudSim

Figure 10: Typical Output of iCanCloud [4]

plication along with the results of the same ap-
plication implemented on iCanCloud. The figure
represents the C/P metric for the experiments,
where the small instance type recommended by
Amazon EC2 is provided, and the VMs number
and tracing intervals are varied. From the results,
we can notice that in some cases, using the same
size for the interval (in years) and increasing the
VMs number, causes an upward trend in the C/P
metric. Then, increasing the VMs number pro-
vides the same execution time, which contributes
to a increasing of the cost for this configuration.
Besides that, the mathematical model does not
represent the time spent on performing I/O oper-
ations. Because that there are still some problems
for installation of current release of iCanCloud,
we cannot test more data but using results in its
original publication.

In CloudSched, Fig. 11 shows average imbal-
ance level of a cloud data center and five differ-
ent scheduling algorithms for load balancing are
compared. ZHCJ algorithm introduced in [28],
ZHJZ algorithm [21], LIF algorithm [30], Rand
algorithm, and Round-Robin (Round) are com-
pared. In these simulations, different requests are
generated as follows: the total numbers of arrivals
(requests) can be randomly set; all requests fol-
low Poisson arrival process and have exponential

Figure 11: Typical CloudSched Outputs: Average Imbal-
ance Values of a Cloud Data Center when PMs=100
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length distribution; the maximum length of re-
quests can be set; for each set of inputs (requests),
simulations are run six times and all the results
shown in this paper are the average of the six
runs. In these simulations, the number of PMs
is fixed as 100, the number of requests is varying
from 250 to 1500, and a PC with 2 GHz CPU,
2 GB memory is used for all simulations. From
these simulations, we observe that LIF algorithm
outwits other four algorithms with average imbal-
ance values, which shows that LIF has a better
load balance effects than others.

7. Conclusions and Future Work

In this paper, we mainly compare four open
source simulators, namely CloudSim, Green-
Cloud, iCanCloud and CloudSched. These simu-
lators can simulate the cloud data center scenar-
ios from different layers in the cloud computing
architecture. From their architectures, elements
modeling, simulation process, performance met-
rics and outputs, we provide detailed comparisons
about these simulators. Considering the complex-
ity of networks and the difficult to control the
network traffics, simulators are crucial tools for
research. We can see that none of them is perfect
for all aspects and there are still much work to
do to improve. One suggestion is to use different
tools or their combinations for different optimiza-
tion objectives such as load balance and energy-
efficiency. For future work, there are still quite a
few challenging issues for cloud simulating:

• Modeling different Cloud layers. As we
compared in the paper, each tool may focus
on one layer. Currently there is still lack of
tools that can model all Cloud layers (IaaS,
PaaS and SaaS).

• High extensibility. When new policies and
algorithms are added, modular design of the
simulators can assure that new modules can
be easily added, currently the four simulators
still need improving this.

• Easy to use and repeatable. The simula-
tors should enable users to set up simulation
easily and quickly with easy to use graphi-
cal user interfaces and outputs. It can ac-
cept inputs from text files and output to text
files; can save simulation inputs and outputs
so that modelers can repeat experiments, en-
suring that repeated simulation yield identi-
cal results.

• Considering user priority. This is a real
requirement. Currently the four simulators

do not consider this yet. Different priority
policies can be created for users to have dif-
ferent priorities for certain types of VMs, so
that more realistic scenarios can be consid-
ered.

• Supporting multiple or federated data
centers. The simulator should be able to
reflect and model the multiple or federated
data centers in real world. CloudAnalyst pro-
vides a framework by extending CloudSim
and there is still much work to improve.
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