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Abstract

Besides the dierent approaches suggested in the literature, accurateaéisn of the
order of a Markov chain from a given symbol sequence is an égmre, especially
when the order is moderately large. Here, parametric samifie tests of conditional
mutual information (CMI) of increasing orden, I.(m), on a symbol sequence are
conducted for increasing ordersn order to estimate the true ordeof the underlying
Markov chain. CMI of ordemis the mutual information of two variables in the Markov
chain beingntime steps apart, conditioning on the intermediate vaembf the chain.
The null distribution of CMI is approximated with a normaldagamma distribution
deriving analytic expressions of their parameters, andnanga distribution deriving
its parameters from the mean and variance of the normalldistn. The accuracy
of order estimation is assessed with the three paramettis, @@nd the parametric tests
are compared to the randomization significance test ana kitosvn order estimation
criteria using Monte Carlo simulations of Markov chainstwdifferent ordet., length

of symbol sequencl and number of symbols. The parametric test using the gamma
distribution (with directly defined parameters) is coreigly better than the other two
parametric tests and matches well the performance of th#oraization test. The
tests are applied to genes and intergenic regions of DNAes&ms, and the estimated
orders are interpreted in view of the results from the sitratestudy. The application
shows the usefulness of the parametric gamma test for lompalysequences where
the randomization test becomes prohibitively slow to cotapu

Keywords: Symbol sequence, Markov chain order, conditional mutufarination,
significance test, DNA

1. Introduction

Symbol sequences are directly observed on real-world psese such as DNA
sequences and on-line transaction logs, but can also beeddrbm discretization of
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time series. Sequence analysis, initially developed mdstlbiological applications
[E|], has expanded with regard to both applications and nuetlogies, and sequence
mining techniques are constantly being develoﬂad [2]. Hemeever, we concentrate
on a classical and fundamental problem that regards the myeoidhe underlying
mechanism to a symbol sequence. In the presence of assadiaiymbol sequences,
the first step of the analysis is to assume a Markov chain aidas the order of the
Markov chain.

There are many Markov chain order estimators proposed aas$sed in the liter-
ature. The Bayesian information criterion (BIC) and the ikkanformation criterion
(AIC) are the two oldest and best known order estimatorsdasemaximum likeli-
hood [3] 4] 5]. Another estimator is given by the maximal fliatton method proposed
by Peres-Shield$][6] and modified by Dalevi and Dubhashiiip found that the
Peres-Shields (PS) estimator is simpler, faster and méestdo noise than other cri-
teria like AIC and BIC l[__’V]. Other order estimation schemeslude the method of
Menéndez et al.[[8], which uses thedivergence measures [9], the method of global
dependency level (GDL), also called relative entrdﬂ [80[ the Eicient determina-
tion criterion (EDC) ILT.tL]. Based on the information-reldteeasures, and specifically
the conditional mutual information (CMI), we recently poged the order estimation
by means of randomization significance tests for CMI at iasirey orderSIEZ]. Ina
somewhat similar way, Pethel et AE[B] propose a randadinizéest for the examined
Markov chain order using the Chi-squared statistic.

In the approach ofIiZ] we made no assumption on the distobwf CMI. Here
we propose the order estimation with parametric tests,cqapiating the null distri-
bution of CMI by normal and gamma distributions. We follove thias correction and
the approximation for the variance E[14] av@[lS] and apprate the distribution of
mutual information with Gaussian distribution as an obgipossible choicé?[_iﬂ?].
We also consider the result in Goebel et al.| [18] that thessimbf mutual informa-
tion (MI), and subsequently CMI, follows gamma distributid=inally, we consider a
second gamma approximation with shape and scale paranegieed from the mean
and variance approximations of the normal distribution.ikvlement the three para-
metric significance tests for CMI and compare them to theaanidation test ofi[12],
as well as other known Markov chain order estimation meth&dsther, we attempt
to assess the Markov chain order of DNA sequences and infshft and long range
correlation on the basis of the parametric and randomia&M]I testing. A systematic
investigation of long range correlation of DNA sequencdagithe CMI approach is
reported in].

The structure of the paper is as follows. First, in SecfibiC®II is defined and
estimated on symbol sequences. Parametric significansefeesSCMI of increasing
orders are presented, approximating the null distributib@MI by the normal and
gamma distributions. In Sectiémh 3, we assess fhieiency of the parametric tests in
estimating the Markov chain orders and compare them to dhewn methods. In
Sectiorl#, we apply the parametric and randomization te<I8\A sequences, and in
Sectiorb, the results are discussed and the main conctuaierdrawn.



2. Conditional Mutual Information and Markov Chain Order Estimation

We start with the definition of entropy, mutual informatidvilj and conditional
mutual information (CMI) for Markov chains. L&k} denote a symbol sequence gen-
erated by a Markov chaifX;}, t > 1, of an unknown ordek > 1 in a discrete space
of K possible stateé&\ = {a;,...,ax}, p(x) the probability ofx, € A occurring in
the chainX; = [ X, X1, ..., X-m+1] @ vector (word) ofm successive variables of the
Markov chain ang(x) the probability of a word = {X;, X1, . .., Xt_ms1} € A™ occur-
ring in the chain. The entropy of a random variable of the Mar&hainX; is H(X;) =
— Xx P(x) In p(x;) and the entropy of a work; is H(Xt) = — X« x_.., P(%) In p(Xt).
The Ml of two random variables in the Markov chain bemgime steps apart iEiZO]

(M) = 1(X; Xe=m) = H(X0) + H(Xe-m) — H(Xe, Xi-m)

p(Xt, Xt—m)
= X, Xt_m) IN ————
2 Pl X e

and quantifies the amount of information for the one varighblen the other variable.
The fundamental property of a Markov chain of ordles

Pl Xi—1, Xi—2, -+, XeeL, Xty - - ) = Pt X1, Koo, - ooy KoL), 1)

meaning that the distribution of the variabte of the Markov chain at time is de-
termined only in terms of the precedihgvariables of the chain. It is noted thigim)

for m > L may not drop to zero due to the existence of M| between themediate
variables. Thus for estimating we consider CMI that accounts for the intermediate
variables. CMI of ordem s defined as the mutual information ¥f and X;_, condi-
tioning oNXems, - - ., X1 [20]

le(m) = 1(X; Xeeml X1, - - -5 Xemme1)
—H(Xt, ey Xt—m) + H(Xt,l, ey Xt—m) + H(Xt, ey Xt—rml) - H(Xt,l, ey Xt—erl)

P(XXe-1, - - - Xt-m)
Xt, ..., Xe—m) IN . )
><1,Z>;1,m Pl tom) P(Xe|%e-1, - - - » Xt—me1) )

CMI coincides with Ml for successive random variables in ¢hain,l¢(1) = 1(1).

From the Markov chain property ial(1), fon > L the logarithmic term in the sum
of (@) is zero and thuk(m) = 0. On the other hand, fon < L, we expect in general the
two variableamtime steps apart be dependent givenrthe 1 intermediate variables,
andlc(m) > 0. It is possible that;(m) = 0 form < L, but not form = L, as then the
Markov chain order would not ble. So, increasing the orden, we expect in general
whenl¢(m) > 0 andl;(m+1) = 0 to havem = L. To account for complicated and rather
unusual cases whetgm+ 1) = 0 occurs fom+ 1 < L, we can extend the condition
Ic(m) > 0 andl;(m+ 1) = O to require alsd.(m+ 2) = 0, and even further up to some
maximum order.

2.1. Parametric tests for Markov chain order estimation

The estimate of entropy, MI and CMI from a symbol sequepel’, of length
N is derived directly by the maximum likelihood estimate oé throbabilities given



simply by the relative frequencies. As entropy and Ml aredfamental quantities of
information theory with many applications, there is ridetdature about the statistical
properties and distribution of their estimates. Some wbekige focused on correcting
the bias in the estimation of entrodﬂ p2,[18,[23 | ¥5/25], whereas other
works give approximations with parametric distributi,,hﬂ?]. For ex-
ample, RoulstodﬂS] estimates the bias and variance oflikereed entropy and gives
evidence for normal distribution of the estimates. Pd@)sﬁhows that, under fferent
assumptions, the MI estimate is either normal or a lineartgoation ofy? variables,
while Goebel et al. |ﬂ8] using a second-order Taylor appration of the MI esti-
mate derives a gamma distribution, and the same does for Bter and Z#&alon
[Iﬂ] use a Bayesian framework with Dirichlet prior distrilmn to obtain the posterior
distribution of Ml estimate and derive expressions for itsam and variance.

For simplicity in the expressions below, we assigor X;, Y for X;_m andZ for
the vector variable 0K;_1, ..., Xi_mr1. The number of observed distinct symbolsof
andY areK but forZ there may be less observed distinct words tK&n' denotedK;.
Similarly, Kxz, Kyz andKxyz denote the number of observed distinct words concate-
nating the respective indexed variables. Note that the sv§iland Y Z correspond
to Xe, Xeo1, - - - » Xeeme1 @nd Xe_1, . . ., Xeeme1, Xt-m, respectively, and therefore we have
Kxz = Kyz (discrepancy by one may occur due to edffect). Further, we denote
Nm=N-m.

2.1.1. Approximation with normal distribution (ND)
An expression for the mean of the entropy estimta(X), (H(X)), is given by the
bias correction of Miller]

KOO = HEO - St @

The same expression holds for vector variables (wordskéidgiaccordingly the num-

ber of observed distinct words. The mean of the CMI estirmdie) can thus be derived

by substituting the mean of entropy estimate§df (3) in thEession of CMI of[(R)
Kxvz = Kzx = Kyz + Kz

N, (4)

For the CMI variance, we follow the variance approximation I in [E]. We
start with the error propagation formula f{m)

K K Kz r 2
V[is(m)] = ZZZ(?;E&?) VInuwd. (5)

u=1 v=1 w=1

<rc(m)> = le(m) +

whereV[.] denotes the variance amg,,, is the frequency of the concatenated word of
XY Zthat corresponds to the indicesw. We want to expresis(m) in (8) in terms of the
observed probabilities (relative frequencies) of jointsas ofXY Z gjjx = Nijx/Nm, and
the marginal probabilities, e.@j = X, dik anda.x = £, X, gij. Substituting
these probabilities in the four entropy termslih (2) we get

K K Kz K Kz K Kz Kz
I}(m) = Z Z Z Gijk In qijk—z Z qi.kln qi.k—z Z g jk In q.jk+z q..kln Q.- (6)
k=1

i=1 =1 k=1 i=1 k=1 =1 k=1



Differentiation of the observed joint and marginal probakiitin [6) with respect to
Nuw gives the following expressions

ik Nijk  Oiudjvlkw

=X 7
INuvw N2 " Npm )
.k 1< 8 v Siaw
=—-— > Nnj 8
Movw N% ; jjk + No, s ( )
0. 1 Oiuo)
Ci-k - ik iuOkw (9)
ONyyw Nz, =
K K
6q..k 1 Okw
_ = Niie + — 10
ONuyw N,% ; ; e Nm, ( )

wheredmn is the Kronecker delta defined g, = 1 whenm = n anddm, = 0 when
m # n. Substitution of[({=10) intd {5) gives

K K Kz
1 A2
V[l (m] = Z Z Z N_ —InQuuw + INQuw + INGyw — IN QL + |c) V[nuw).

u=1 v=1 w=1

The observed frequenay,,, of the concatenated word ofYZis itself a binomial
random variablenyu ~ B(Nm, Quw), considering the occurrence of the word as success
with probabilityqu,wand as number of trials the numbéy, of possible words of length
min the symbol sequence. Thus the variancegf is V[nuw] = NmOuuw(1— guww) and
substituting it in the expression above we have the finalesgion of the variance &f

K K Kz
1 ~\2
VIie(m)] =ZZZN— = I Gy + I G + 10 G = 1N G + ) Gl L = G
Tw=1 M

u=1 v=
(11)
ThusV[i¢(m)] is directly derived when the observed probabilitigs, are first com-
puted on the symbol sequence.

In [@], similar expressions for the mean and variance (of) were derived to
define the normal approximation of the Ml distribution. Samly, we assume that the
distribution of CMI follows approximately the normal ditution (denoted hereafter
ND)

|c(m) ~ Nm(('c(m», V[lc(m)]), (12)

where(i¢(m)) is given by [@) and/[i-(m)] by @T).



2.1.2. Approximation with gamma distribution (GD1)

Goebel et aI.|_L_1|8] approximate the expression of distrdufor CMI by means of
a second order Taylor series expansion. The second ordier Bpproximation of Ml
aboutp(x,y) = p(X)p(y) (assuming independence) is

_ (P(x.Y) = P(X)P(y))?
=57 32,27 o)

and the estimaté&(X, Y) is defined accordingly substituting(x, y) with the observed
probabilityq;; = njj/N, wherei, j € {1,..., K}, and the same for the marginal proba-
bilities. The expression for Ml is related to tlyé statistic of the standard chi-square
test of independence, which is defined as

_KK(m—mm/M
‘Z,Z (nm)/N-

and follows a chi-square distribution with (— 1)(K — 1) degrees of freedom under
the assumption of independenceXofindY. The above equations are relatedydy=
2N In 2((X, Y), from which the approximate gamma distributlb((K - 1)%/2,1/(NIn 2))

of I[(X,Y)is establishedﬂ8]. Further, it follows thiiX, Y|Z) is approximately gamma
distributed (denoted hereafter GD1)

m = 012) ~ T S0 DK - 1. ) (19
2.1.3. Approximation with gamma distribution and momersfnormal distribution
(GD2)

It is known that a gamma distributidr(«, 8) with shape parameterbeing a pos-
itive integer and scale paramefgy can be approximated by a normal distribution
N(apB, o?) if « is sufficiently large IL_ZB]]Q]. Reversing this result, using the mea
and variance of (X, Y|Z) in @) and [I1), respectively, we can estimate the parasete
of gamma distribution and obtain approximately the gammsgitiution fori(X, Y|Z)
(denoted hereafter GD2)

. -
k,VWQ. (14)
V[l ¢
2.1.4. Parametric tests for the significance of CMI
Having determined the three parametric approximationthidistribution of o(m),
we use them as null distributions for the null hypothesis H(m) = 0. Given that it
always holdd:(m) > 0, all three parametric tests are one-sided. We compute-the
value from the cumulative function of the null distribut®oND, GD1 and GD2 of the
observed CMIi;(m), and we reject kiif the p-value is less than the nominal signifi-
cance levelr (we seta = 0.05 for all simulations below). We apply the significance
test for increasing orders until we obtain rejection of bifor m and no rejection of
Ho for m+ 1, and then the estimate bfis m. The parametric tests are denoted as ND,
GD1 and GD2 corresponding to the respective null distringi

umzﬂxwa~r(



2.2. Randomization test for the significance of CMI(RD)

In arecent Work]EZ], we developed a randomization signifeestest fol (m) = 0
and formed the null distribution for ¢ 1(m) = 0, empirically. For the randomization
test, we first generat®! randomized symbol sequenceg!} .. ..., (M}, by ran-
dom permutation of the initial sequenpe}t’\il. Then we computé,(m) on the orig-
inal symbol sequence, denoté?(m), and on theM randomized sequences, denoted
[EXm), ..., I:M(m). Finally, we reject K if I%(m) is at the right tail of the empirical
null distribution formed byIAgl(m), cs fg""(m). To assess this we use rank ordering,
wherer? is the rank oﬂAQ(m) in the ordered list of th&1 + 1 values, assuming ascend-
ing order. Thep-value of the one-sided test is-1(r® — 0.326)/(M + 1 + 0.348) using
the correction in|EO]. The randomization test is denoteRRs

2.3. Parametric and randomization significance test for CMI

Here, we show the élierences of the distributions ND, GD1 and GD2 in approxi-
mating CMI with an example of two Markov chains of ordee 3 andL = 6, number
of symbolskK = 2 and symbol sequence lendth= 1600 andN = 256000. The true
distribution of CMI,i¢(m), for orderm = L, is approximated by 1000 Monte Carlo real-
izations, as shown in Figuiévtith the broken line displaying the histograithe three
approximating distributions are drawn setting their pagtars as defined i (12], (13)
and [14) to the corresponding average values from the 1Q@i2adons. As shown
in Figured, all three approximations match quite well thestdistribution of CMI for
L = 3 (see Figurg]la), but fdr = 6 ND and GD2 lie to the left while GD1 tends to
lie to the right of the true distribution (see Figlide 1b).dems that as the chain order
increasesthe approximations diD, GD1 and GD2 tend to deviate more from the true
distribution. The match tends to be regained by increadiegchain length. Indeed
when we increase the sequence lengtN te 256000, all distributions translate closer
to zero and have smaller width, as expected, and the distitsiof ND and GD2 ap-
proximate better the true distribution, whereas the diistion of GD1 is still at the left
of the true distribution (see Figuké 1c). The latter indésathat the significance test
with GD1 is more conservative, and for this case the proligluf rejection of H, is
expected to be smaller than the nominal significance level.

The three parametric tests are then compared to the randtomizest. For one
realization of the same Markov chains with= 3 andL = 6 (N = 1600), the three
parametric null distributions and the null distributiomrfted by CMI values from 1000
surrogates are shown in Figue 2. Foe 3 in Figure[2a, the Hof I(L) = 0 is not
rejected for any of the one-sided tests with the statistiecause all four distributions
cover well the observed value &f(L) (shown by a vertical dashed line in Figtite 2).
On the contrary, fot. = 6, i¢(L) lies towards the right tail of ND and GD2 distribution
tending to give false rejection, and on the left of the RD amilGlistributions giving
correctly no rejection (see Figure 2b). Moreover, the nigliribution of GD1 is further
to the right of the observed valuigL) than the null distribution of RD, suggesting that
the test with GD1 may be more conservative than with RD far fleitting.
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Figure 1: The true distribution df(L) and the three approximations ND, GD1 and GD2, formed fro8010
Monte Carlo realizations of a Markov chainiéf= 2. (a)L = 3 andN = 1600, (b)L = 6 andN = 1600, and
(c) L = 6 andN = 256000.

3. Monte Carlo Simulations

We evaluate the three parametric tests (ND, GD1 and GD2)renchhdomization
test (RD) using Monte Carlo simulations for varying Markdam order., number of
symbolskK and symbol sequence lendgth We also compare the RD and parametric
tests with four known criteria for the estimationlafthe Akaike’s information criterion
(AIC) [, B], the Bayesian information criterion (BICﬁ|[51],1e criterion of Dalevi and
Dubashi which is based on the Peres and Shields estimatp[ﬁ,@ and the criterion
of Menéndez et al. (Sfmﬂ 8]. For each parameter settiguse 100 realizations,
andM = 1000 randomized sequences for each realization for theoraizdtion test.
The Markov chain order is soughtinthe range: 1,..., L+ 1 by applying each of the
four significance tests df.(m) for increasing ordem, as well as the aforementioned
criteria. In the first simulation setup, Markov chains arevas by randomly selected
transition probability matrices of given order while in the second simulation setup,
Markov chains are derived by transition matrices of givetheoL. estimated on two
DNA sequences of genes and intergenic regions.

3.1. Randomly selected transition probabilities

For each selection df andK, a symbol sequence of lengthis generated from a
transition probability matrix of siz&" x K with randomly selected components from
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Figure 2: The three parametric approximations of the niirittiution of[.(L) and the distribution formed
by M = 1000 surrogates for one realization of length= 1600,K = 2, and (a)L = 3, (b)L = 6. The
observed value aof;(L) is shown by a vertical dashed line.

the uniform distribution [01] under the restriction that the rows of the matrix sum to
one. In a pilot study we considered both the setting of selga diferent transition
probability matrix for each of the 100 realizations and tk#isg of using the same
transition probability matrix for all realizations with féérent initial conditions. The
results were qualitatively the same and we chose to procébdhve first setting.

As expected, the simulations suggest that for all methoelsticcess rate in iden-
tifying the true ordel. increases witiN and decreases with andK. As shown in
Figure[3 forK = 2, all criteria attain about the same success rate in detgthe cor-
rectL for L = 2,3. WhenN > 1600, the success rate increases Wtheing close to
100% (see Figurgl 3e and f). We can also notice that the suteskecreases with
for anyN and for all methods, but it decreasefeliently across the methods. For each
N and asL increases, the success rate of GD1, RD and PS decreases wlithwé
than for the other criteria, with the success rate of PS teptdi stay positive even for
L = 10, e.g. see Figufd 3c fot = 400. It is worth noting that GD1 follows well with
RD for all N andL and at cases it even scores higher, e.gNfer 200 (Figuré Bb) GD1
and RD have a success rate at about 40% fer 5, while forL = 6 the success rate
decreases slightly for GD1 but dramatically for RD (the ssscrate of GD1 drops to
zero forL = 7). In the same example, the success rate for PS decreasethmuath
L. For largem the three best criteria tend to align, and thus we can sabelglude that
these methods perform similarly and distinctly better tttamother order estimation
criteria. While all criteria improve wittN, Sf tends to score low even for small

The estimation ot is more data demanding as the number of symbols increases,
as shown in Figurigl4 fak = 4. The success rate tends to increase Withut for ND,
GD2, AIC and BIC this can be seen only for smalk 2, 3 (Figure[4a and b), while
for largerL = 4,5 (Figure[4c and d) even for the largest examined sequengghlen
N = 6400 the success rate is zero. The three best criterid for2 perform also best
for K = 4 with Sf following close for smallL and scoring lower ak increases. Here,
GD1 and RD have very similar performance, with GD1 scoringexajten higher, and
they both score highest in most cases, especially for lamysdN.



3.2. Transition probabilities estimated on DNA

DNA consists basically of four nucleotides, the two puriregenine (A) and gua-
nine (G), and the two pyrimidines, cytosine (C) and thymihg §o a DNA sequence
can be considered as a symbol sequence on the symbols A,@r analysis we
use a large segment of the Chromosome 1 of the plaabifdopsis thaliana. We
use two sequences, one sequence derived by joining todbthgenes, which contain
non-coding regions, called introns, in between the codaggons, called exons, and
another sequence joining together the intergenic regidrshahave solely non-coding
character. The sequences used here are segments of theduemeses used iﬂ32].

In this simulation setup we form the Markov chains from tidos probabilities
matrices of given orddr estimated on the two DNA sequences of genes and intergenic
regions, and we generate 100 symbol sequences from eacobseftarkov chains for
different initial conditions. The purpose here is to considerkda chains of distinct
structure of the probability transition matrix for each ert that relate to a real world
Markov chain. The results for the success rate of correghatibn of the true order
L with all the criteria and foK = 2 (purine and pyrimidine) an& = 4 (all four
nucleotides), where we skt= 2, 3,4,5 andN varying from 100 to 6400, are shown
in Figure[® for the genes and in Figure 6 for the intergeni¢oregy For both genes
and intergenic regions, all the criteria fail when the orgets largel( > 3) and only
PS maintains a positive success rate but at the same lowoet6% - 20% and rather
independently oN. For smaller ordersl(= 2, 3), all criteria tend to improve witi
but at low levels of success ratefféiring across the criteria (fdr = 2 see Figurél5a
and b for genes and = 2 andK = 4, respectively, and the same in Figlife 6a and b
for intergenic regions). These results suggest that thedbestimating the trué. of
a Markov chain with the structure of transition probalslitias in DNA sequences is
more dificult than when the transition probabilities are selectedrmtom. Concerning
the CMI-based tests, again ND and GD2 fail to estimate the lirfor both genes
and intergenic regions, while GD1 follows tightly with RDgth being suboptimal but
scoring consistently well compared to all other criteriaor Example for genes and
L = 2, whenK = 2 (Figureg[ba) GD1 and RD score lower than PS and AIC foNalll
(and higher than all others), but wh&n= 4 (Figure[bb) GD1 and RD score higher
than AIC for allN and PS at largdl. AIC scores highest of all criteria fa¢ = 2 but it
has zero success rate wh€n= 4, and only for. = 2 the success rate increases above
zero with largeN (Figure[®b), indicating that the data requirement for AlGhathe
increase oK is disproportionately high compared to the other critef@m the other
hand, PS estimates correctly the ortiet the same low rate regardlesd\ofor L > 3,
being however higher than for other criteria. This someheautiar performance of
PS is explained by the fact that far> 3 PS estimates at random the ortleso that
it hits the true order at a percentage of cases dependenteamanige of the testeih
values, whereas the other criteria underestimate the.o@i2t and RD have thus the
most consistent behavior, increasing the probability ¢sas rate) to identify the true
order withN at a level depending onandK.

Comparing the results of the criteria for the two types of DBguences, they

1Data were obtained from the datab&se: Jitpvw.ncbi.nim.nih.gov
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match pretty well for the correspondikg L andN. Though the relative dlierences of
the criteria are the same, the level of success rate tendshaher for the intergenic
regions, specifically foK = 2, indicating that the Markov chain of the same order
L obtained on the basis of intergenic regions is less compkexthe order is better
detectable than for the genes. For example,Koe 2 andL = 3, it can be seen
in Figure[Bc that GD1 and RD reach a success rate of 40% atrhestaested =
6400 for genes, while for the intergenic regions the cowagg success rate is at
60% (Figure bc). The overall results show that when the itiansprobabilities are
estimated on DNA sequences of genes and intergenic regbiribe criteria fail for
larger orders, having somehow higher success rates faogarie regions.

4. Application on DNA sequences

Much of the statistical analysis of DNA sequences is focusedhe estimation
of properties of coding and non-coding regions as well ashendiscrimination of
these regions. There has been evidence that there iesedit structure in coding
and non-coding sequences and that the non-coding sequence® have long range
correlation, whereas the correlation in coding sequengbibiés exponential decay
[@,,]. Here we use intergenic and gene sequences.aftbe ik a mixture of
coding regions (exons) and non-coding regions (introny), therefore we expect to
have also long range correlation due to the non-coding nsgiwo it, but it should be
less than the correlation in the intergenic regions coingjginly of non-coding parts.
Thus both DNA sequences cannot be considered as Markovsstatifeast not of a
moderate order, and the estimation of the ondeshould increase with the available
data size.

We estimate the ordérof a hypothesized Markov Chain underlying Chromosome
1 of plant Arabidopsis thalianaby the three parametric tests ND, GD1 and GD2, the
RD, as well as the criteria of AIC, BIC, PS and Sf. The compatetare done for both
genes and intergenic regions of lenfth- 800Q 1600Q 3200Q 64000 and 128000 and
for K = 2 (purines, pyrimidines). As shown in Figdrk 7, the ordeinested by any
of the four criteria based on CMI, and for both genes and geteic regions, increases
with the lengthN of the DNA sequence, indicating the presence of a Markovrchai
of a very large order (larger than the maximum order that @addtected for thifN)
or a chain with long range correlations. The limits of dedbts order folN = 8000
(FigureTa) ard. = 4 for intergenic regions, obtained by GD1, RD and AIC, and 6
for genes,obtained by AIC whereas all four CMI-based ddtestimatel = 1). The
largest estimations df increase folN = 16000 toL = 8 andL = 4 for intergenic
regions and genes, respectively (Figure 7b). The critesfd®f gives about the same
pattern of increasing estimated order withand larger estimate df for intergenic
regions than for genes. On the other hand, the estimat&dm the criteria AIC,
BIC and PS changes irregularly witk and is not always larger for the intergenic
regions, giving inconclusive results. The agreemerit eStimation by GD1 and RD
is remarkable, both giving exactly the same estimate fora e two DNA types
and for any but the largest lengthh = 128000. ForN = 128000 (Figuré]7e), the
difference is small for genes with GD1 estimating 11 and RDL = 10, and larger
for intergenic regions with GD1 giving = 16 and RDL = 11. The other two CMI
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based criteria, ND and GD2, give estimated aflose to these of GD1 and RD, and so
does Sf but tending to give somewhat smaller estimateasfN increases. The overall
results suggest that the symbol sequence of intergenicne¢end to have larger order
and thus being more consistent to the hypothesis of longerangelation. This is
confirmed by the four CMI based criteria and Sf, but RD and GDaddition turn out
to be able to estimate larde as justified also by the simulation results.

5. Conclusions

In this work we propose and assess parametric tests of siginde of the condi-
tional mutual information (CMI) for the estimation of thedar of Markov chain. The
null distribution of CMI is approximated by the normal dibtrtion and two difer-
ent approximations of gamma distribution. Simulationsvet that among the three
parametric tests the one based on gamma distribution (G&rfpnmed best for any
Markov chain ordet. and number of symbolk and even for short lengths of symbol
sequences. The practical aim of the study was to investigag¢her a parametric test
can reach the order estimation accuracy of the respectidoraization test (RD), re-
cently implemented and found to be compatible and oftereb#iain the known order
estimation criteria. The simulation study confirmed thatiGigrforms similarly to RD
and both compare favorably to other known criteria (AIC, Bliiz Peres and Shields
estimator and the criterion of Menéndez et al! Bl, 8]).

Having established the equivalence of performance of GIIRD, the advantage
of GD1 is the computationalfigciency, allowing the order estimation based on CMI
to be possible for very long symbol sequences, such as the 88gfences. Obvi-
ously, RD applied with a numbevl of randomized sequences (in this work we used
M = 1000) requires aboW times more computation time than GD1, and thus appli-
cation of RD is prohibitive for very long symbol sequencekisiwas the case of DNA
sequences, and fdéd = 128000, RD was running on a PC Intel Core CP8&GHz
3,5GB RAM for about 2 days.

Using the parametric and randomization tests, as well aSttlegterion on purine
and pyrimidine sequences of genes and intergenic regionstiie Chromosome 1 of
plant Arabidopsis thalianawe could establish an increase of the estimated order with
the length of the DNA sequence, indicating the presenceloéea very large Markov
chain order not reached by the tested sequence lengthsgrdage correlations (this
is further explored in a focused study in [19]). Further, voaild also distinguish
genes from intergenic regions as lower order was estimate@gmes, which consists
of coding and non-coding parts, than in intergenic regioh&kcontains non-coding
parts exclusively.
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