
ar
X

iv
:1

51
1.

02
33

9v
1 

 [s
ta

t.M
E

]  
7 

N
ov

 2
01

5

Markov chain order estimation with parametric significance
tests of conditional mutual information

Maria Papapetrou, Dimitris Kugiumtzis

Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124
Thessaloniki, Greece

Abstract

Besides the different approaches suggested in the literature, accurate estimation of the
order of a Markov chain from a given symbol sequence is an openissue, especially
when the order is moderately large. Here, parametric significance tests of conditional
mutual information (CMI) of increasing orderm, Ic(m), on a symbol sequence are
conducted for increasing ordersm in order to estimate the true orderL of the underlying
Markov chain. CMI of orderm is the mutual information of two variables in the Markov
chain beingm time steps apart, conditioning on the intermediate variables of the chain.
The null distribution of CMI is approximated with a normal and gamma distribution
deriving analytic expressions of their parameters, and a gamma distribution deriving
its parameters from the mean and variance of the normal distribution. The accuracy
of order estimation is assessed with the three parametric tests, and the parametric tests
are compared to the randomization significance test and other known order estimation
criteria using Monte Carlo simulations of Markov chains with different orderL, length
of symbol sequenceN and number of symbolsK. The parametric test using the gamma
distribution (with directly defined parameters) is consistently better than the other two
parametric tests and matches well the performance of the randomization test. The
tests are applied to genes and intergenic regions of DNA sequences, and the estimated
orders are interpreted in view of the results from the simulation study. The application
shows the usefulness of the parametric gamma test for long symbol sequences where
the randomization test becomes prohibitively slow to compute.

Keywords: Symbol sequence, Markov chain order, conditional mutual information,
significance test, DNA

1. Introduction

Symbol sequences are directly observed on real-world processes, such as DNA
sequences and on-line transaction logs, but can also be derived from discretization of
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time series. Sequence analysis, initially developed mostly for biological applications
[1], has expanded with regard to both applications and methodologies, and sequence
mining techniques are constantly being developed [2]. Herehowever, we concentrate
on a classical and fundamental problem that regards the memory of the underlying
mechanism to a symbol sequence. In the presence of association in symbol sequences,
the first step of the analysis is to assume a Markov chain and estimate the order of the
Markov chain.

There are many Markov chain order estimators proposed and assessed in the liter-
ature. The Bayesian information criterion (BIC) and the Akaike information criterion
(AIC) are the two oldest and best known order estimators based on maximum likeli-
hood [3, 4, 5]. Another estimator is given by the maximal fluctuation method proposed
by Peres-Shields [6] and modified by Dalevi and Dubhashi [7],who found that the
Peres-Shields (PS) estimator is simpler, faster and more robust to noise than other cri-
teria like AIC and BIC [7]. Other order estimation schemes include the method of
Menéndez et al. [8], which uses theφ-divergence measures [9], the method of global
dependency level (GDL), also called relative entropy [10],and the efficient determina-
tion criterion (EDC) [11]. Based on the information-related measures, and specifically
the conditional mutual information (CMI), we recently proposed the order estimation
by means of randomization significance tests for CMI at increasing orders [12]. In a
somewhat similar way, Pethel et al. [13] propose a randomization test for the examined
Markov chain order using the Chi-squared statistic.

In the approach of [12] we made no assumption on the distribution of CMI. Here
we propose the order estimation with parametric tests, approximating the null distri-
bution of CMI by normal and gamma distributions. We follow the bias correction and
the approximation for the variance in [14] and [15] and approximate the distribution of
mutual information with Gaussian distribution as an obvious possible choice [16, 17].
We also consider the result in Goebel et al. [18] that the statistic of mutual informa-
tion (MI), and subsequently CMI, follows gamma distribution. Finally, we consider a
second gamma approximation with shape and scale parameter derived from the mean
and variance approximations of the normal distribution. Weimplement the three para-
metric significance tests for CMI and compare them to the randomization test of [12],
as well as other known Markov chain order estimation methods. Further, we attempt
to assess the Markov chain order of DNA sequences and infer for short and long range
correlation on the basis of the parametric and randomization CMI testing. A systematic
investigation of long range correlation of DNA sequences using the CMI approach is
reported in [19].

The structure of the paper is as follows. First, in Section 2,CMI is defined and
estimated on symbol sequences. Parametric significance tests for CMI of increasing
orders are presented, approximating the null distributionof CMI by the normal and
gamma distributions. In Section 3, we assess the efficiency of the parametric tests in
estimating the Markov chain orders and compare them to otherknown methods. In
Section 4, we apply the parametric and randomization tests to DNA sequences, and in
Section 5, the results are discussed and the main conclusions are drawn.
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2. Conditional Mutual Information and Markov Chain Order Estimation

We start with the definition of entropy, mutual information (MI) and conditional
mutual information (CMI) for Markov chains. Let{xt} denote a symbol sequence gen-
erated by a Markov chain{Xt}, t ≥ 1, of an unknown orderL ≥ 1 in a discrete space
of K possible statesA = {a1, . . . , aK}, p(xt) the probability ofxt ∈ A occurring in
the chain,Xt = [Xt,Xt−1, . . . ,Xt−m+1] a vector (word) ofm successive variables of the
Markov chain andp(xt) the probability of a wordxt = {xt, xt−1, . . . , xt−m+1} ∈ Am occur-
ring in the chain. The entropy of a random variable of the Markov chainXt is H(Xt) =
−

∑

xt
p(xt) ln p(xt) and the entropy of a wordXt is H(Xt) = −

∑

xt ,...,xt−m+1
p(xt) ln p(xt).

The MI of two random variables in the Markov chain beingm time steps apart is [20]

I (m) = I (Xt; Xt−m) = H(Xt) + H(Xt−m) − H(Xt,Xt−m)

=
∑

xt ,xt−m

p(xt, xt−m) ln
p(xt, xt−m)

p(xt)p(xt−m)

and quantifies the amount of information for the one variablegiven the other variable.
The fundamental property of a Markov chain of orderL is

p(Xt|Xt−1,Xt−2, . . . ,Xt−L,Xt−L−1, . . .) = p(Xt|Xt−1,Xt−2, . . . ,Xt−L), (1)

meaning that the distribution of the variableXt of the Markov chain at timet is de-
termined only in terms of the precedingL variables of the chain. It is noted thatI (m)
for m > L may not drop to zero due to the existence of MI between the intermediate
variables. Thus for estimatingL we consider CMI that accounts for the intermediate
variables. CMI of orderm is defined as the mutual information ofXt andXt−m condi-
tioning onXt−m+1, . . . ,Xt−1 [20]

Ic(m) = I (Xt; Xt−m|Xt−1, . . . ,Xt−m+1)

= −H(Xt, . . . ,Xt−m) + H(Xt−1, . . . ,Xt−m) + H(Xt, . . . ,Xt−m+1) − H(Xt−1, . . . ,Xt−m+1)

=
∑

xt ,...,xt−m

p(xt, . . . , xt−m) ln
p(xt|xt−1, . . . , xt−m)

p(xt|xt−1, . . . , xt−m+1)
. (2)

CMI coincides with MI for successive random variables in thechain,Ic(1) = I (1).
From the Markov chain property in (1), form > L the logarithmic term in the sum

of (2) is zero and thusIc(m) = 0. On the other hand, form≤ L, we expect in general the
two variablesm time steps apart be dependent given them− 1 intermediate variables,
andIc(m) > 0. It is possible thatIc(m) = 0 for m < L, but not form = L, as then the
Markov chain order would not beL. So, increasing the orderm, we expect in general
whenIc(m) > 0 andIc(m+1) = 0 to havem= L. To account for complicated and rather
unusual cases whereIc(m+ 1) = 0 occurs form+ 1 < L, we can extend the condition
Ic(m) > 0 andIc(m+ 1) = 0 to require alsoIc(m+ 2) = 0, and even further up to some
maximum order.

2.1. Parametric tests for Markov chain order estimation

The estimate of entropy, MI and CMI from a symbol sequence{xt}
N
t=1 of length

N is derived directly by the maximum likelihood estimate of the probabilities given
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simply by the relative frequencies. As entropy and MI are fundamental quantities of
information theory with many applications, there is rich literature about the statistical
properties and distribution of their estimates. Some workshave focused on correcting
the bias in the estimation of entropy [14, 21, 22, 15, 23, 16, 24, 25], whereas other
works give approximations with parametric distributions [26, 27, 15, 18, 17]. For ex-
ample, Roulston [15] estimates the bias and variance of the observed entropy and gives
evidence for normal distribution of the estimates. Pardo [26] shows that, under different
assumptions, the MI estimate is either normal or a linear combination ofχ2 variables,
while Goebel et al. [18] using a second-order Taylor approximation of the MI esti-
mate derives a gamma distribution, and the same does for CMI.Hutter and Zaffalon
[17] use a Bayesian framework with Dirichlet prior distribution to obtain the posterior
distribution of MI estimate and derive expressions for its mean and variance.

For simplicity in the expressions below, we assignX for Xt, Y for Xt−m andZ for
the vector variable ofXt−1, . . . ,Xt−m+1. The number of observed distinct symbols ofX
andY areK but forZ there may be less observed distinct words thanKm−1 denotedKZ.
Similarly, KXZ, KYZ andKXYZ denote the number of observed distinct words concate-
nating the respective indexed variables. Note that the words XZ andYZ correspond
to Xt,Xt−1, . . . ,Xt−m+1 andXt−1, . . . ,Xt−m+1,Xt−m, respectively, and therefore we have
KXZ = KYZ (discrepancy by one may occur due to edge effect). Further, we denote
Nm = N −m.

2.1.1. Approximation with normal distribution (ND)
An expression for the mean of the entropy estimateĤ(X), 〈Ĥ(X)〉, is given by the

bias correction of Miller [14]

〈Ĥ(X)〉 = H(X) −
K − 1
2N
. (3)

The same expression holds for vector variables (words) adjusting accordingly the num-
ber of observed distinct words. The mean of the CMI estimateÎc(m) can thus be derived
by substituting the mean of entropy estimates of (3) in the expression of CMI of (2)

〈Îc(m)〉 = Ic(m) +
KXYZ− KZX − KYZ + KZ

2Nm
. (4)

For the CMI variance, we follow the variance approximation for MI in [15]. We
start with the error propagation formula forÎc(m)

V[ Îc(m)] =
K

∑

u=1

K
∑

v=1

KZ
∑

w=1

(

∂Îc(m)
∂nuvw

)2

V[nuvw], (5)

whereV[�] denotes the variance andnuvw is the frequency of the concatenated word of
XYZthat corresponds to the indicesuvw. We want to expresŝIc(m) in (5) in terms of the
observed probabilities (relative frequencies) of joints words ofXYZ, qi jk = ni jk/Nm, and
the marginal probabilities, e.g.q· jk =

∑K
i=1 qi jk andq··k =

∑K
i=1

∑K
j=1 qi jk . Substituting

these probabilities in the four entropy terms in (2) we get

Îc(m) =
K

∑

i=1

K
∑

j=1

KZ
∑

k=1

qi jk ln qi jk−

K
∑

i=1

KZ
∑

k=1

qi·k ln qi·k−

K
∑

j=1

KZ
∑

k=1

q· jk ln q· jk+
KZ
∑

k=1

q··k ln q··k. (6)
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Differentiation of the observed joint and marginal probabilities in (6) with respect to
nuvw gives the following expressions

∂qi jk

∂nuvw
= −

ni jk

N2
m
+
δiuδ jvδkw

Nm
, (7)

∂q· jk
∂nuvw

= −
1

N2
m

K
∑

i=1

ni jk +
δ jvδkw

Nm
, (8)

∂qi·k

∂nuvw
= −

1
N2

m

K
∑

j=1

ni jk +
δiuδkw

Nm
, (9)

∂q··k
∂nuvw

= −
1

N2
m

K
∑

i=1

K
∑

j=1

ni jk +
δkw

Nm
, (10)

whereδmn is the Kronecker delta defined asδmn = 1 whenm = n andδmn = 0 when
m, n. Substitution of (7-10) into (5) gives

V[ Îc(m)] =
K

∑

u=1

K
∑

v=1

KZ
∑

w=1

1
N2

m

(

− ln quvw+ ln qu·w + ln q·vw− ln q··w + Îc

)2
V[nuvw].

The observed frequencynuvw of the concatenated word ofXYZ is itself a binomial
random variable,nuvw ∼ B(Nm, quvw), considering the occurrence of the word as success
with probabilityquvw and as number of trials the numberNm of possible words of length
m in the symbol sequence. Thus the variance ofnuvw is V[nuvw] = Nmquvw(1−quvw) and
substituting it in the expression above we have the final expression of the variance ofÎc

V[ Îc(m)] =
K

∑

u=1

K
∑

v=1

KZ
∑

w=1

1
Nm

(

− ln quvw+ ln qu·w + ln q·vw− ln q··w + Îc

)2
quvw(1− quvw).

(11)
ThusV[ Îc(m)] is directly derived when the observed probabilitiesquvw are first com-
puted on the symbol sequence.

In [15], similar expressions for the mean and variance ofI (m) were derived to
define the normal approximation of the MI distribution. Similarly, we assume that the
distribution of CMI follows approximately the normal distribution (denoted hereafter
ND)

Îc(m) ∼ Nm(〈Îc(m)〉,V[ Îc(m)]), (12)

where〈Îc(m)〉 is given by (4) andV[ Îc(m)] by (11).
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2.1.2. Approximation with gamma distribution (GD1)
Goebel et al. [18] approximate the expression of distribution for CMI by means of

a second order Taylor series expansion. The second order Taylor approximation of MI
aboutp(x, y) ≡ p(x)p(y) (assuming independence) is

I (X,Y) =
1

2 ln 2

∑

x∈X

∑

y∈Y

(p(x, y) − p(x)p(y))2

p(x)p(y)
,

and the estimatêI (X,Y) is defined accordingly substitutingp(x, y) with the observed
probabilityqi j = ni j/N, wherei, j ∈ {1, . . . ,K}, and the same for the marginal proba-
bilities. The expression for MI is related to theχ2 statistic of the standard chi-square
test of independence, which is defined as

χ2 =

K
∑

i=1

K
∑

j=1

(ni j − (n· jni·)/N)2

(n· jni·)/N
,

and follows a chi-square distribution with (K − 1)(K − 1) degrees of freedom under
the assumption of independence ofX andY. The above equations are related byχ2 =

2N ln 2Î(X,Y), from which the approximate gamma distributionΓ
(

(K − 1)2/2, 1/(N ln 2)
)

of Î (X,Y) is established [18]. Further, it follows thatÎ (X,Y|Z) is approximately gamma
distributed (denoted hereafter GD1)

Îc(m) = Î (X,Y|Z) ∼ Γ

(

KZ

2
(K − 1)(K − 1),

1
N ln 2

)

. (13)

2.1.3. Approximation with gamma distribution and moments from normal distribution
(GD2)

It is known that a gamma distributionΓ(α, β) with shape parameterα being a pos-
itive integer and scale parameterβ, can be approximated by a normal distribution
N(αβ, αβ2) if α is sufficiently large [28, 29]. Reversing this result, using the mean
and variance of̂I (X,Y|Z) in (4) and (11), respectively, we can estimate the parameters
of gamma distribution and obtain approximately the gamma distribution for Î (X,Y|Z)
(denoted hereafter GD2)

Îc(m) = Î (X,Y|Z) ∼ Γ

(

Î2
c

V[ Îc]
,
V[ Îc]

Îc

)

. (14)

2.1.4. Parametric tests for the significance of CMI
Having determined the three parametric approximations forthe distribution of̂Ic(m),

we use them as null distributions for the null hypothesis H0: Ic(m) = 0. Given that it
always holdsIc(m) ≥ 0, all three parametric tests are one-sided. We compute thep-
value from the cumulative function of the null distributions ND, GD1 and GD2 of the
observed CMIÎc(m), and we reject H0 if the p-value is less than the nominal signifi-
cance levelα (we setα = 0.05 for all simulations below). We apply the significance
test for increasing ordersm until we obtain rejection of H0 for m and no rejection of
H0 for m+ 1, and then the estimate ofL is m. The parametric tests are denoted as ND,
GD1 and GD2 corresponding to the respective null distributions.

6



2.2. Randomization test for the significance of CMI(RD)

In a recent work [12], we developed a randomization significance test forIc(m) = 0
and formed the null distribution for H0: Ic(m) = 0, empirically. For the randomization
test, we first generateM randomized symbol sequences{x∗1t }

N
t=1, . . . , {x

∗M
t }

N
t=1 by ran-

dom permutation of the initial sequence{xt}
N
t=1. Then we computêIc(m) on the orig-

inal symbol sequence, denotedÎ0
c(m), and on theM randomized sequences, denoted

Î ∗1c (m), . . . , Î ∗Mc (m). Finally, we reject H0 if Î0
c(m) is at the right tail of the empirical

null distribution formed byÎ ∗1c (m), . . . , Î ∗Mc (m). To assess this we use rank ordering,
wherer0 is the rank ofÎ0

c(m) in the ordered list of theM + 1 values, assuming ascend-
ing order. Thep-value of the one-sided test is 1− (r0 − 0.326)/(M + 1+ 0.348) using
the correction in [30]. The randomization test is denoted asRD.

2.3. Parametric and randomization significance test for CMI

Here, we show the differences of the distributions ND, GD1 and GD2 in approxi-
mating CMI with an example of two Markov chains of orderL = 3 andL = 6, number
of symbolsK = 2 and symbol sequence lengthN = 1600 andN = 256000. The true
distribution of CMI,Îc(m), for orderm= L, is approximated by 1000 Monte Carlo real-
izations, as shown in Figure 1with the broken line displaying the histogram. The three
approximating distributions are drawn setting their parameters as defined in (12), (13)
and (14) to the corresponding average values from the 1000 realizations. As shown
in Figure 1, all three approximations match quite well the true distribution of CMI for
L = 3 (see Figure 1a), but forL = 6 ND and GD2 lie to the left while GD1 tends to
lie to the right of the true distribution (see Figure 1b). It seems that as the chain order
increases, the approximations ofND, GD1 and GD2 tend to deviate more from the true
distribution. The match tends to be regained by increasing the chain length. Indeed
when we increase the sequence length toN = 256000, all distributions translate closer
to zero and have smaller width, as expected, and the distributions of ND and GD2 ap-
proximate better the true distribution, whereas the distribution of GD1 is still at the left
of the true distribution (see Figure 1c). The latter indicates that the significance test
with GD1 is more conservative, and for this case the probability of rejection of H0 is
expected to be smaller than the nominal significance level.

The three parametric tests are then compared to the randomization test. For one
realization of the same Markov chains withL = 3 andL = 6 (N = 1600), the three
parametric null distributions and the null distribution formed by CMI values from 1000
surrogates are shown in Figure 2. ForL = 3 in Figure 2a, the H0 of Ic(L) = 0 is not
rejected for any of the one-sided tests with the statisticÎc because all four distributions
cover well the observed value ofÎc(L) (shown by a vertical dashed line in Figure 2).
On the contrary, forL = 6, Îc(L) lies towards the right tail of ND and GD2 distribution
tending to give false rejection, and on the left of the RD and GD1 distributions giving
correctly no rejection (see Figure 2b). Moreover, the null distribution of GD1 is further
to the right of the observed valueÎc(L) than the null distribution of RD, suggesting that
the test with GD1 may be more conservative than with RD for this setting.
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Figure 1: The true distribution of̂Ic(L) and the three approximations ND, GD1 and GD2, formed from 1000
Monte Carlo realizations of a Markov chain ofK = 2. (a)L = 3 andN = 1600, (b)L = 6 andN = 1600, and
(c) L = 6 andN = 256000.

3. Monte Carlo Simulations

We evaluate the three parametric tests (ND, GD1 and GD2) and the randomization
test (RD) using Monte Carlo simulations for varying Markov chain orderL, number of
symbolsK and symbol sequence lengthN. We also compare the RD and parametric
tests with four known criteria for the estimation ofL: the Akaike’s information criterion
(AIC) [3, 5], the Bayesian information criterion (BIC) [5],the criterion of Dalevi and
Dubashi which is based on the Peres and Shields estimator (PS) [6, 7] and the criterion
of Menéndez et al. (Sf) [31, 8]. For each parameter setting,we use 100 realizations,
andM = 1000 randomized sequences for each realization for the randomization test.
The Markov chain order is sought in the rangem= 1, . . . , L+1 by applying each of the
four significance tests ofIc(m) for increasing orderm, as well as the aforementioned
criteria. In the first simulation setup, Markov chains are derived by randomly selected
transition probability matrices of given orderL, while in the second simulation setup,
Markov chains are derived by transition matrices of given order L estimated on two
DNA sequences of genes and intergenic regions.

3.1. Randomly selected transition probabilities
For each selection ofL andK, a symbol sequence of lengthN is generated from a

transition probability matrix of sizeKL × K with randomly selected components from
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ÎC(x)

pd
f

(a)

 

 

Surrogate
ND
GD1
GD2

−0.02 0 0.02 0.04 0.06
0

20

40

60

80

100

120
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Figure 2: The three parametric approximations of the null distribution of Îc(L) and the distribution formed
by M = 1000 surrogates for one realization of lengthN = 1600,K = 2, and (a)L = 3, (b) L = 6. The
observed value of̂Ic(L) is shown by a vertical dashed line.

the uniform distribution [0, 1] under the restriction that the rows of the matrix sum to
one. In a pilot study we considered both the setting of selecting a different transition
probability matrix for each of the 100 realizations and the setting of using the same
transition probability matrix for all realizations with different initial conditions. The
results were qualitatively the same and we chose to proceed with the first setting.

As expected, the simulations suggest that for all methods the success rate in iden-
tifying the true orderL increases withN and decreases withL andK. As shown in
Figure 3 forK = 2, all criteria attain about the same success rate in detecting the cor-
rectL for L = 2, 3 . WhenN ≥ 1600, the success rate increases withN being close to
100% (see Figure 3e and f). We can also notice that the successratedecreases withL
for anyN and for all methods, but it decreases differently across the methods. For each
N and asL increases, the success rate of GD1, RD and PS decreases slower with L
than for the other criteria, with the success rate of PS tending to stay positive even for
L = 10, e.g. see Figure 3c forN = 400. It is worth noting that GD1 follows well with
RD for all N andL and at cases it even scores higher, e.g. forN = 200 (Figure 3b) GD1
and RD have a success rate at about 40% forL = 5, while for L = 6 the success rate
decreases slightly for GD1 but dramatically for RD (the success rate of GD1 drops to
zero forL = 7). In the same example, the success rate for PS decreases smoothly with
L. For largerN the three best criteria tend to align, and thus we can safely conclude that
these methods perform similarly and distinctly better thanthe other order estimation
criteria. While all criteria improve withN, Sf tends to score low even for smallL.

The estimation ofL is more data demanding as the number of symbols increases,
as shown in Figure 4 forK = 4. The success rate tends to increase withN, but for ND,
GD2, AIC and BIC this can be seen only for smallL = 2, 3 (Figure 4a and b), while
for largerL = 4, 5 (Figure 4c and d) even for the largest examined sequence length
N = 6400 the success rate is zero. The three best criteria forK = 2 perform also best
for K = 4 with Sf following close for smallL and scoring lower asL increases. Here,
GD1 and RD have very similar performance, with GD1 scoring more often higher, and
they both score highest in most cases, especially for largeL andN.
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3.2. Transition probabilities estimated on DNA

DNA consists basically of four nucleotides, the two purines, adenine (A) and gua-
nine (G), and the two pyrimidines, cytosine (C) and thymine (T), so a DNA sequence
can be considered as a symbol sequence on the symbols A,C,G,T. In our analysis we
use a large segment of the Chromosome 1 of the plant Arabidopsis thaliana1. We
use two sequences, one sequence derived by joining togetherthe genes, which contain
non-coding regions, called introns, in between the coding regions, called exons, and
another sequence joining together the intergenic regions which have solely non-coding
character. The sequences used here are segments of the long sequences used in [32].

In this simulation setup we form the Markov chains from transition probabilities
matrices of given orderL estimated on the two DNA sequences of genes and intergenic
regions, and we generate 100 symbol sequences from each of these Markov chains for
different initial conditions. The purpose here is to consider Markov chains of distinct
structure of the probability transition matrix for each order L that relate to a real world
Markov chain. The results for the success rate of correct estimation of the true order
L with all the criteria and forK = 2 (purine and pyrimidine) andK = 4 (all four
nucleotides), where we setL = 2, 3, 4, 5 andN varying from 100 to 6400, are shown
in Figure 5 for the genes and in Figure 6 for the intergenic regions. For both genes
and intergenic regions, all the criteria fail when the ordergets large (L > 3) and only
PS maintains a positive success rate but at the same low levelof 10% - 20% and rather
independently ofN. For smaller orders (L = 2, 3), all criteria tend to improve withN
but at low levels of success rate differing across the criteria (forL = 2 see Figure 5a
and b for genes andK = 2 andK = 4, respectively, and the same in Figure 6a and b
for intergenic regions). These results suggest that the task of estimating the trueL of
a Markov chain with the structure of transition probabilities as in DNA sequences is
more difficult than when the transition probabilities are selected atrandom. Concerning
the CMI-based tests, again ND and GD2 fail to estimate the true L for both genes
and intergenic regions, while GD1 follows tightly with RD, both being suboptimal but
scoring consistently well compared to all other criteria. For example for genes and
L = 2, whenK = 2 (Figure 5a) GD1 and RD score lower than PS and AIC for allN
(and higher than all others), but whenK = 4 (Figure 5b) GD1 and RD score higher
than AIC for allN and PS at largeN. AIC scores highest of all criteria forK = 2 but it
has zero success rate whenK = 4, and only forL = 2 the success rate increases above
zero with largeN (Figure 5b), indicating that the data requirement for AIC with the
increase ofK is disproportionately high compared to the other criteria.On the other
hand, PS estimates correctly the orderL at the same low rate regardless ofN for L > 3,
being however higher than for other criteria. This somehow peculiar performance of
PS is explained by the fact that forL > 3 PS estimates at random the orderL, so that
it hits the true order at a percentage of cases dependent on the range of the testedm
values, whereas the other criteria underestimate the order. GD1 and RD have thus the
most consistent behavior, increasing the probability (success rate) to identify the true
order withN at a level depending onL andK.

Comparing the results of the criteria for the two types of DNAsequences, they

1Data were obtained from the database: http://www.ncbi.nlm.nih.gov
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match pretty well for the correspondingK, L andN. Though the relative differences of
the criteria are the same, the level of success rate tends to be higher for the intergenic
regions, specifically forK = 2, indicating that the Markov chain of the same order
L obtained on the basis of intergenic regions is less complex,i.e. the order is better
detectable than for the genes. For example, forK = 2 andL = 3, it can be seen
in Figure 5c that GD1 and RD reach a success rate of 40% at the largest testedN =
6400 for genes, while for the intergenic regions the corresponding success rate is at
60% (Figure 6c). The overall results show that when the transition probabilities are
estimated on DNA sequences of genes and intergenic regions,all the criteria fail for
larger orders, having somehow higher success rates for intergenic regions.

4. Application on DNA sequences

Much of the statistical analysis of DNA sequences is focusedon the estimation
of properties of coding and non-coding regions as well as on the discrimination of
these regions. There has been evidence that there is a different structure in coding
and non-coding sequences and that the non-coding sequencestend to have long range
correlation, whereas the correlation in coding sequences exhibits exponential decay
[33, 34, 35]. Here we use intergenic and gene sequences. The latter is a mixture of
coding regions (exons) and non-coding regions (introns), and therefore we expect to
have also long range correlation due to the non-coding regions in it, but it should be
less than the correlation in the intergenic regions consisting only of non-coding parts.
Thus both DNA sequences cannot be considered as Markov chains, at least not of a
moderate order, and the estimation of the orderL should increase with the available
data size.

We estimate the orderL of a hypothesized Markov Chain underlying Chromosome
1 of plant Arabidopsis thalianaby the three parametric tests ND, GD1 and GD2, the
RD, as well as the criteria of AIC, BIC, PS and Sf. The computations are done for both
genes and intergenic regions of lengthN = 8000, 16000, 32000, 64000and 128000 and
for K = 2 (purines, pyrimidines). As shown in Figure 7, the order estimated by any
of the four criteria based on CMI, and for both genes and intergenic regions, increases
with the lengthN of the DNA sequence, indicating the presence of a Markov chain
of a very large order (larger than the maximum order that can be detected for thisN)
or a chain with long range correlations. The limits of detectable order forN = 8000
(Figure 7a) areL = 4 for intergenic regions, obtained by GD1, RD and AIC, andL = 6
for genes,obtained by AIC whereas all four CMI-based criteria estimateL = 1). The
largest estimations ofL increase forN = 16000 toL = 8 andL = 4 for intergenic
regions and genes, respectively (Figure 7b). The criterionof Sf gives about the same
pattern of increasing estimated order withN and larger estimate ofL for intergenic
regions than for genes. On the other hand, the estimatedL from the criteria AIC,
BIC and PS changes irregularly withN and is not always larger for the intergenic
regions, giving inconclusive results. The agreement ofL estimation by GD1 and RD
is remarkable, both giving exactly the same estimate for anyof the two DNA types
and for any but the largest lengthN = 128000. ForN = 128000 (Figure 7e), the
difference is small for genes with GD1 estimatingL = 11 and RDL = 10, and larger
for intergenic regions with GD1 givingL = 16 and RDL = 11. The other two CMI
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based criteria, ND and GD2, give estimates ofL close to these of GD1 and RD, and so
does Sf but tending to give somewhat smaller estimate ofL asN increases. The overall
results suggest that the symbol sequence of intergenic regions tend to have larger order
and thus being more consistent to the hypothesis of long range correlation. This is
confirmed by the four CMI based criteria and Sf, but RD and GD1 in addition turn out
to be able to estimate largeL, as justified also by the simulation results.

5. Conclusions

In this work we propose and assess parametric tests of significance of the condi-
tional mutual information (CMI) for the estimation of the order of Markov chain. The
null distribution of CMI is approximated by the normal distribution and two differ-
ent approximations of gamma distribution. Simulations showed that among the three
parametric tests the one based on gamma distribution (GD1) performed best for any
Markov chain orderL and number of symbolsK and even for short lengths of symbol
sequences. The practical aim of the study was to investigatewhether a parametric test
can reach the order estimation accuracy of the respective randomization test (RD), re-
cently implemented and found to be compatible and often better than the known order
estimation criteria. The simulation study confirmed that GD1 performs similarly to RD
and both compare favorably to other known criteria (AIC, BIC, the Peres and Shields
estimator and the criterion of Menéndez et al. [31, 8]).

Having established the equivalence of performance of GD1 and RD, the advantage
of GD1 is the computational efficiency, allowing the order estimation based on CMI
to be possible for very long symbol sequences, such as the DNAsequences. Obvi-
ously, RD applied with a numberM of randomized sequences (in this work we used
M = 1000) requires aboutM times more computation time than GD1, and thus appli-
cation of RD is prohibitive for very long symbol sequences. This was the case of DNA
sequences, and forN = 128000, RD was running on a PC Intel Core CPU 2, 83GHz
3, 5GB RAM for about 2 days.

Using the parametric and randomization tests, as well as theSf criterion on purine
and pyrimidine sequences of genes and intergenic regions from the Chromosome 1 of
plant Arabidopsis thaliana, we could establish an increase of the estimated order with
the length of the DNA sequence, indicating the presence of either a very large Markov
chain order not reached by the tested sequence lengths or long range correlations (this
is further explored in a focused study in [19]). Further, we could also distinguish
genes from intergenic regions as lower order was estimated in genes, which consists
of coding and non-coding parts, than in intergenic regions which contains non-coding
parts exclusively.
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Figure 3: Number of cases out of 100 realizations the true order L is estimated by the criteria ND, GD1,
GD2, RD, AIC, BIC, PS and Sf vs orderL, as shown in the legend. The symbol sequences have length (a)
N = 100, (b)N = 200, (c)N = 400, (d)N = 800, (e) N=1600 (f) N=3200, and they are generated by a
Markov chain ofK = 2 symbols with a randomly selected transition probability matrix.
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Figure 4: Number of cases out of 100 realizations the true order L is estimated by the criteria ND, GD1,
GD2, RD, AIC, BIC, PS and Sf vs sequence lengthN, as shown in the legend. The symbol sequences are
generated by Markov chains ofK = 4 symbols with a randomly selected transition probability matrix and
order (a)L = 2, (b) L = 3, (c) L = 4 and (d)L = 5.
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Figure 5: Number of cases out of 100 realizations the true order L is estimated by the criteria as shown
in the legend, vs sequence lengthN. The symbol sequences are generated by Markov chains of transition
probability matrices estimated on a DNA sequence of genes. The panels are for purines and pyrimidines
(K = 2) and L = 2, 3, 4, 5 in (a), (c), (e), (g), respectively, and for the four nucleotides (K = 4) and
L = 2, 3,4, 5 in panels (b), (d), (f), (h), respectively.
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Figure 6: (a) Same as for Figure 5, but for the DNA sequence of intergenic regions.
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Figure 7: The estimated orderL by ND, GD1, GD2, RD, AIC, BIC, PS and Sf of sequences of purine and
pyrimidine (K = 2) from genes and intergenic regions of Chromosome 1 of the plant Arabidopsis thaliana,
as indicated in the legend. The sequence lengths are (a)N = 8000, (b)N = 16000, (c) 32000, (d) 64000 and
(e) 128000.
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