

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence

Newcastle University ePrints - eprint.ncl.ac.uk

Ezhilchelvan P, Mitrani I.

Optimal provisioning of servers for hosting services of multiple types.

Simulation Modelling Practice and Theory 2017, 75, 17-28.

Copyright:

© 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license

DOI link to article:

https://doi.org/10.1016/j.simpat.2017.03.011

Date deposited:

26/09/2017

Embargo release date:

31 March 2018

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=237614
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.simpat.2017.03.011

Optimal provisioning of servers for hosting

services of multiple types

Paul Ezhilchelvan and Isi Mitrani
School of Computing Science, Newcastle University

e-mail: paul.ezhilchelvan@ncl.ac.uk, isi.mitrani@ncl.ac.uk

Corresponding Author: Paul Ezhilchelvan, School of Computing Science,

Newcastle University, Claremont Tower, Claremont Road,

Newcastle upon Tyne, NE1 7RU, UK

Abstract

Services of different types are provided to paying customers by instan-
tiating Virtual Machines on servers hired from a cloud. Different VMs can
share a server, subject to one or more resource constraints. Incoming jobs
whose resource requirements cannot be satisfied are lost. The objective is
to maximize the long-term average profit per unit time. A single-server
model is analyzed exactly and the results provide approximations for the
system with n servers. The latter is also solved exactly when the servers
are dedicated and when the VMs can migrate instantaneously. Numerical
examples and comparisons with simulations are presented.

Keywords: Service provisioning, Multiple job classes, Revenue optimization,
Job migration, Erlang-type models.

1 Introduction

This paper is concerned with the provision of services of different types, with
different patterns of demand, resource requirements and revenue streams. The
service provider hires servers from a Cloud, incurring certain costs. To run a job
of a given type, a Virtual Machine (VM) of that type is instantiated on one of
the servers. The resource availability on a server is bounded, so that whether a
VM can be allocated to it or not, depends both on the type of the new job and
on the numbers and types of the other jobs already running. When an incoming
job cannot be started on any of the servers, it is rejected and the revenue that
it would bring is lost.

The problem is to decide how many servers to hire so as to maximize the
average long-term profit (revenues minus costs) per unit time. To that end, we
examine first a model of a single server with either a single shared resource or
multiple shared resources. The exact solution of that model, which is known,

1

is then used to provide accurate estimates for the profit achieved by n servers,
provided that n is not very large.

Another model that is solved exactly concerns moveable VMs that can mi-
grate from server to server and be packed efficiently according to some simple
algorithm. It turns out that such packing does not produce significant improve-
ments in the achievable profit.

For large-scale problems, such as deciding how many servers to power on,
out of the thousands that are typically available in a service center, we propose
two simpler approximations. One is based on aggregating the different job types
into a single type, with appropriately chosen parameters. The other treats unit
resource requests as separate and independent of each other. Both approxima-
tions make acceptable predictions about the optimal number of servers, but the
one using aggregation is more accurate away from the optimal region.

We assume that the demand parameters are given, and the system reaches
steady state during a period where those parameters remain fixed. In practice,
the hiring policies would have to be supplemented by some monitoring and
parameter estimation technique that would detect when the traffic parameters
change. Such techniques exist (see below).

1.1 Related work

The resource sharing and optimization problems described here have not, to our
knowledge, been addressed before in the context of server sharing by multiple
job types. There has been quite a lot of work on server allocation with a single
job type. Perhaps the closest to the present study is the paper by Ezhilchelvan
and Mitrani [4], where it was found that dynamic allocation policies do not
bring significant benefits over static ones. The trade-off between performance
and energy consumption, again for a single job type, was examined by Mazzucco
et al. [11, 12], using models and empirical observations. Their focus, and also
that of Bod́ık et al. [2], is on estimating the traffic and reacting to changes in
the parameters.

A number of early works have considered the multi-class resource sharing
problem in the context of circuit-switched networks, see Kelly [10], Hampshire
et al [8] and Ross [16]. In the telephony field, the resources are the circuits
available on various links, and the job types are indexed by the set of links that
can be reserved for a call. Mapping those models to the cloud and VM area,
as was done in Tan et al [18], results in what we call here the ‘single server
model’ (section 2). The concept of a number of servers, each with bounded
resources, and a policy for allocating VMs to servers, has not been examined in
the presence of multiple job types.

The studies by Wood et al [23], Singh et al [17], Weijia et al [22], and Arzuaga
and Kaeli [1], assume a given set of jobs currently present in the system, together
with their resource requirements, and aim to allocate the corresponding VMs so
as to minimize the number of servers and satisfy certain performance constraints.
There are similar works concerned with power management (eg. Tang et al [19]

2

and Moore et al [14]). None of these papers take into account the processes of
job arrivals and services.

A preliminary version of the present paper, which contained neither the
large-n approximations nor their evaluation, was presented at MASCOTS 2016,
[5].

The single server models and their solutions are described in section 2. The
profit maximization problem is introduced and solved in section 3. An eval-
uation of a system where servers are dedicated to particular job types is also
presented there. Section 4 covers the model with moveable VMs and packing.
The large-scale approximation is introduced and evaluated in section 5. Some
conclusions and directions for future work are summarized in section 6.

2 Models of a single server

A server may be shared by VMs of K different types, numbered 1, 2, . . . ,K.
The service provided by a VM of type i during its lifetime is referred to as a
‘job of type i’. Jobs of type i arrive in an independent Poisson stream with rate
λi. Their service times may be general IID random variables with mean 1/µi
(i = 1, 2, . . . ,K).

Assume, to begin with, that the resource requirement of a VM is measured
by a single number. More precisely, a job of type i consumes bi units of resource.
In order that the jobs running in parallel do not interfere with each other unduly,
an upper bound B is imposed on the total amount of resource used by the jobs
in the server. An incoming job that would cause that bound to be exceeded is
rejected and is lost.

This model is of a type introduced and solved some decades ago in connection
with circuit-switching networks. There, a number of circuits are allocated to
calls of different types (e.g., see Ross [16]). The product-form solution was
shown to be insensitive to the service time distribution.

The state of the server is described by the integer vector j = (j1, j2, . . . , jK),
where ji is the number of jobs of type i in progress. Denote by S(K,B) the
set of admissible state vectors. The resource restriction implies that this set is
defined by

S(K,B) =

{
j : j ≥ 0 ,

K∑
i=1

jibi ≤ B

}
. (1)

The dependence of S(K,B) on the individual resource requirements bi is left
implicit in order to keep the notation simple.

Let π(j) be the steady-state probability that the server is in state j. These
probabilities are given by

π(j) =
1

G(K,B)

K∏
i=1

ρjii
ji!

; jεS(K,B) , (2)

3

where ρi = λi/µi is the offered load of type i. The normalizing constant G(K,B)
is chosen so that the sum of all probabilities is 1. That is,

G(K,B) =
∑

jεS(K,B)

K∏
i=1

ρjii
ji!

. (3)

Computing the normalization constant G(K,B) can be a non-trivial task. A
simple way to accomplish it is to use recursion. Let mi = bB/bic be the largest
possible number of type i jobs that can be admitted into the server. Consider
a particular job type, say type K, and note that if there are j jobs of type K
present, the amount of resource they use is jbK , leaving B − jbK for the other
job types. Hence, we can write

G(K,B) =

mK∑
j=0

ρjK
j!
G(K − 1, B − jbK) . (4)

The reduced normalization constants in the right-hand side of (4) are defined
by (3) with one fewer job type and appropriately reduced state space. The
recursion terminates if either K = 0, with G(0, B) = 1, or if S(K,B) contains
only the vector j = 0 (i.e., the only feasible state is the one where the server is
empty), again with G(K,B) = 1.

Another algorithm for computing G(K,B) was proposed by Kaufman and
Roberts [9, 15]. It is more difficult to implement but may be more efficient. The
size of the state space faced by these algorithms is the main barrier to tackling
problems with very large numbers of servers.

The performance measures of interest in this model are the probabilities, αi,
that an incoming job of type i is rejected (i = 1, 2, . . . ,K). To determine those
probabilities, note that a job of type i is accepted in all states j such that the
resource currently used does not exceed B − bi. The sum of the corresponding
state probabilities is given by,

1− αi =
G(K,B − bi)
G(K,B)

, i = 1, 2, . . . ,K . (5)

Thus, the performance measures can be computed by the same recursive proce-
dure that evaluates G(K,B).

2.1 Multiple resources

Suppose now that there are several critical resources, numbered 1, 2, . . . , L.
These may include CPU, memory, disks, communication bandwidth, etc. There
is a bound, Bk, on the total amount of resource k that may be allocated to VMs.
Each job of type i uses an amount bi,k of resource k. All other assumptions of
the model are as before.

4

Denoting by B = (B1, B2, . . . , BL) the vector of bounds, and by bi =
(bi,1, bi,2, . . . , bi,L) the vector of requirements for a job of type i, we can de-
fine the new state space as

S(K,B) =

{
j : j ≥ 0 ,

K∑
i=1

jibi ≤ B

}
, (6)

where the bounding inequalities must be satisfied element by element, for all
elements of the corresponding vectors.

Having made that change, the main results continue to hold. The steady-
state probabilities are of the form

π(j) =
1

G(K,B)

K∏
i=1

ρjii
ji!

, (7)

as can be verified again by checking that the local balance equations are satisfied.
The normalizing constant is given by

G(K,B) =
∑

jεS(K,B)

K∏
i=1

ρjii
ji!

. (8)

That constant can be computed by the recursive procedure

G(K,B) =

mK∑
j=0

ρjK
j!
G(K − 1,B− jbK) , (9)

where mK , the largest number of type K jobs that can be admitted, is now
equal to min(bB1/bK,1c, bB2/bK,2c,. . ., bBL/bK,Lc). The boundary conditions
are G(0,B) = 1 and G(K,B) = 1 if S(K,B) contains only the vector j = 0.

The probabilities, αi, that an incoming job of type i is rejected, are obtained
from

1− αi =
G(K,B− bi)

G(K,B)
, i = 1, 2, . . . ,K . (10)

In general, increasing the number of resources whose usage is bounded leads
to an increase in the number of constraining inequalities in the right-hand side
of (6). This, in turn, is likely to decrease the number of admissible states.
Consequently, the computational complexity of the procedure for determining
the normalization constant and the performance measures is likely to decrease,
rather than increase, when L increases.

3 Optimal number of servers

Suppose that each accepted job of type i brings in a revenue of ri. Each hired
server incurs a cost of c per unit time. How many servers should be hired, given

5

the characteristics of the demand (i.e., the arrival rates λi and the average
service times 1/µi, i = 1, 2, . . . ,K)?

Consider a system with n identical servers numbered 1, 2, . . ., n. One possible
mechanism for allocating an incoming job of type i is to assign it to the server
with the lowest index where the job can be accepted. If none of the servers has
room, then the job is rejected and is lost. This allocation policy will be referred
to as ‘First-Fit-on-Arrival’, or FFoA.

Assume for now that, once a VM has been allocated to a server, it cannot
be moved to another server. Later we shall consider moveable VMs.

Let βi,n be the steady-state probability that an incoming job of type i is
rejected. Denote the vector of those probabilities by β = (β1,n, β2,n, . . . , βK,n).
The long-run average profit that the n servers achieve per unit time is given by

R(n,β) =

K∑
i=1

λiri(1− βi,n)− cn . (11)

This function of n has been shown, in other contexts, to have a single max-
imum. In particular, in the special case of the single-class Erlang model, it has
been proved that the rejection probability is convex in n, implying that R(n,β)
is concave. If we accept this single maximum conjecture, then the optimal value
of n can be computed quite simply, by evaluating R(n,β) for n = 1, 2, . . ., and
stopping as soon as the profit ceases to increase. In fact, in practice one may
not need to carry out a full search but would proceed incrementally. If there are
n servers currently hired and the traffic monitor suggests that the offered loads
have increased, evaluate the expected profit for n + 1, n + 2, . . .; if the offered
loads have decreased, try n− 1, n− 2,

Note. Instead of setting out to solve a profit-maximization problem, we
could have formulated a Quality-of-Service one: find the minimum number of
servers such that the rejection probabilities for jobs of various types do not
exceed certain bounds. There is no fundamental difference between the two
problems, since they both rely for their solution on determining the relevant
rejection probabilities.

Thus, we are now faced with the problem of determining βi,n. The n-server
system state is described by n vectors js, where ji,s is the number of jobs of type
i at server s (s = 1, 2, . . . , n). An exact solution, which would require finding the
joint distribution of those n vectors, appears to be intractable. The closed-form
solution of the previous section no longer applies because the servers are not
independent of each other. We therefore propose approximate expressions for
βi,n that are sufficiently accurate for purposes of optimization.

For simplicity, we shall concentrate on the single resource case where the
capacity bound, and individual requirements, are expressed as single numbers.
The generalization to multiple resources is quite straightforward and proceeds
along the lines described in subsection 2.1.

Compare the present system of n servers, each with a resource capacity B,
with a hypothetical system consisting of a single server whose total resource
capacity is nB. It is subjected to the same offered loads, ρ = (ρ1, ρ2, . . . , ρK).

6

That single-server system is roughly equivalent to the n-server one, but it makes
a more efficient use of resource capacity and therefore tends to reject fewer jobs.
Hence, the rejection probability for type i, αi, in the single-server system, is
likely to be an under-estimate, βui,n, for the rejection probability for type i in
the n-server system. Introducing a notation for αi where the dependence on
offered loads and resource capacity is explicit, we write

βui,n = αi(ρ, nB) ; i = 1, 2, . . . ,K . (12)

Another estimate for βi,n is obtained by noting that an incoming job of type
i tries to join server s only when server s− 1 cannot accept it (s = 2, 3, . . . , n).
Therefore, if σi,s is the offered load of type i at server s, we may write

σi,1 = ρi; σi,s+1 = σi,sαi(σs, B); s = 1, 2, . . . , n , (13)

where σs is the vector (σ1,s, σ2,s, . . . , σK,s). These expressions are based on
approximating the arrival processes into servers 2, 3, . . . , n as Poisson streams.

Then, treating the n servers as independent of each other, we get a second
estimate, βvi,n, for the probability that an incoming job of type i is rejected by
all n servers:

βvi,n =

n∏
s=1

αi(σs, B) ; i = 1, 2, . . . ,K . (14)

This is also likely to be an underestimate because the conditional probability
of a rejection at server s+ 1, given that there was no room at server s, may be
expected to exceed the corresponding steady-state probability.

Faced with two possible underestimates, it is reasonable to take the larger
rejection probability for each job type:

βi,n = max(βui,n, β
v
i,n) ; i = 1, 2, . . . ,K . (15)

These values are substituted in the right-hand side of equation (11) in order
to estimate the profit achieved by the n-server system.

It should be pointed out that, although the tendency is for equations (12)
and (14) to produce underestimates, that does not necessarily happen in all
cases and for all job types. Some of the values of βi,n turn out occasionally
to be overestimates. However, it appears that the rejection probability vectors
produced by equation (15), and the resulting estimates of the achieved profit,
are remarkably accurate. They can be used quite reliably in determining the
optimal number of servers.

To illustrate and quantify the above results, consider an example system with
three job classes, 1, 2 and 3, or ‘small’, ‘medium’ and ‘large’. The individual
resource requirements of the three classes are b1 = 1, b2 = 3 and b3 = 5,
while the bound on resource usage per server is B = 8. Thus, a server can
accommodate without interference up to 1 large and 1 medium job, or 1 large
and 3 small jobs, or 2 medium and 2 small jobs, or 1 medium and 5 small jobs,
or 8 small jobs.

7

The above numbers are motivated by similarities with the T2 family of VM
instances offered by the Amazon EC2 (Elastic Computing Cloud) service (see
[24]). The resource that is being shared and bounded in this context is vCPU
(virtual CPU). That is, a total of 8 virtual CPUs are available on each server.
The rationale for choosing the specific arrival rates and average service times
is that, in general, smaller jobs are more common: they arrive more frequently
and are shorter. Larger jobs are associated with specialized applications: they
arrive less frequently and are longer.

Since our objective is to optimize the number of servers for any given pattern
of demand, we will later explore a number of different patterns.

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7

R

N

FFoA estimated

+

+

+

+

+

+

+

+
FFoA simulated

×

×

×
×

×

×

×

×

Figure 1: Estimated and simulated profit for different numbers of servers
K = 3, B = 8, b = (1, 3, 5), λ = (6, 2, 1),µ = (1, 1, 0.5), r = (1, 5, 10), c = 3

The parameters we have chosen for our first example are as follows. The
arrival rates for the different classes are λ1 = 6, λ2 = 2 and λ3 = 1. The
corresponding average residence times are 1/µ1 = 1, 1/µ2 = 1 and 1/µ3 = 2.
Thus the offered loads vector is ρ = (6, 2, 2).

Large jobs bring twice as much revenue as medium ones, which bring five
times as much as small ones: r1 = 1, r2 = 5 and r3 = 10. The cost of a server
per unit time is c = 3, which means that one large job on its own makes a
moderate profit (it occupies the server for 2 time units), one medium job makes
a smaller profit, whereas 3 small jobs just cover the cost.

Figure 1 shows the average long-term profit achieved per unit time, R, as a
function of the number of servers, N . One of the plots in the figure represents
the numerical implementation of our model estimates. The other plot was ob-

8

tained by simulating the arrival and departure processes, counting the number
of rejections of different types and using the ratios of rejected jobs to incoming
jobs as estimates of βi,n to be substituted into equation (11). Each point of the
second plot was the result of a simulation run in which about 100000 jobs of all
types went through the system. The runs were divided into 10 portions each,
for the purpose of computing the 99% confidence intervals.

The figure confirms that the profit curve has a single maximum. This was
to be expected. More surprising is the accuracy of the model estimates. The
simulation estimates can be accepted as a basis for comparison, given the nar-
rowness of their confidence intervals. Not only does the model predict correctly
the optimal number of servers, but the value of the predicted optimal profit is
well within the confidence interval of the simulated value.

This high accuracy of the model estimates is due to the ‘max’ operation in
the right-hand side of (15). If either βui,n (i = 1, 2, . . . ,K) on their own, or
βvi,n (i = 1, 2, . . . ,K) on their own, had been taken as estimates of the rejec-
tion probabilities, the distance between model and simulation would have been
greater.

It is important to examine the predictive ability of the model under a variety
of loading conditions. We have compared the computed and simulated optimal
profit in the three-class example, as the total arrival rate, λ, increases. The
ratios of class i arrival rates to the total are kept fixed, equal to the ones in
Figure 1: λ1/λ = 6/9, λ2/λ = 2/9, λ3/λ = 1/9. The other parameters also
keep their previous values.

The results of the comparison are displayed in Figure 2. Each maximum
profit point is obtained by evaluating the average long-term profit for N =
1, 2, . . ., using the model in one plot and simulation in the other, and stopping
as soon as the profit ceases to increase.

The model predictions are almost indistinguishable from those of the sim-
ulations. Only when λ = 25 and λ = 30 are the former just outside the 95%
confidence intervals of the latter.

The corresponding optimal numbers of servers, n∗, are shown in Table 1.

Table 1: Optimal numbers of servers
λ 5 10 15 20 25 30

Model n∗ 2 4 7 9 11 12
Simulated n∗ 2 4 6 8 10 12

There is a difference of one server on three occasions, but those differences
have very small effects on the achievable profits.

It is useful to compare the profits achieved by shared servers with those that
can be obtained by dedicating n1 servers to type 1, n2 servers to type 2, . . ., nK
servers to type K. The type i group of servers would then behave like an Erlang
loss system with nimi trunks, where mi is the maximum number of type i jobs
that can be admitted into one server.

9

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30

R

λ

model optimum

+

+

+

+

+

+
+

simulated optimum

×

×

×

×

×

××

Figure 2: Optimal profit for different total arrival rates
K = 3, B = 8, b = (1, 3, 5), λ = λ(6/9, 2/9, 1/9), r = (1, 5, 10), c = 3

In this set-up, the number of servers to hire can be optimized separately
for each class, ignoring the others. There is no approximation involved. In
Figure 3, we have compared the optimized configurations of the shared and the
dedicated servers, in the context of the above 3-class example. The optimal
profits achieved are plotted against the total arrival rate. Again, the individual
arrival rates of the three job types are increased in fixed proportions.

It should come as no surprise that dedicated servers are significantly less
profitable than shared ones. This is due to the fact that the available resources
are used less efficiently. For example, type 3 jobs have a resource requirement
of b3 = 5, which means that the servers dedicated to type 3 can accommodate
just one job each. When the servers are shared among the three types, a server
can accept one job of type 3 and one of type 2, or one of type 3 and three of
type 1.

It is intuitively clear that this is a general phenomenon. When there are
multiple job types, an optimized collection of shared servers is always better
than one of dedicated servers.

4 Moveable virtual machines

Consider now the possibility of migrating VMs from server to server. Assume
that such moves can be carried out instantaneously (e.g., see [7, 6]). That as-

10

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30

R

λ

Shared servers

+

+

+

+

+

+
+

Dedicated servers

×

×
×

×

×

×

×

Figure 3: Shared and dedicated servers: increasing total load
K = 3, B = 8, b = (1, 3, 5), λ = λ(6/9, 2/9, 1/9), r = (1, 5, 10), c = 3

sumption will allow us to derive an exact solution for the model with n servers
and K job classes. In reality migration is not instantaneous, but the delays
associated with it are often acceptable (see [21]). Also, the exact solution cor-
responding to instantaneous migrations provides a performance bound for the
model without migrations.

The advantage of migrating VMs is that, as jobs depart and release resources,
those remaining can be packed down, thus making better use of servers and
reducing the probability of rejection. How to do this optimally, i.e. how to
place a given set of jobs into the smallest possible number of servers, is an
instance of the Bin-Packing problem, which is known to be NP-hard. However,
there are simple heuristic allocations such as First-Fit-Decreasing (FFD), that
have been shown to be quite close to optimal (see [3]).

In the case of a single shared resource, the job types should be numbered
in ascending order of their requirements: b1 ≤ b2 . . . ,≤ bK . When the numbers
of jobs present in the system are (j1, j2, . . . , jK), the FFD packing algorithm
works as follows:

1. Allocate the jobs of type K first. If jK < mK , where mK = bB/bKc, then
all of them are placed in server 1; otherwise, if smK ≤ jK < (s+ 1)mK ,
then the first s servers receive mK jobs each and the s+ 1st gets the rest.

2. Reduce the available resource in each server by the amount reserved so
far; allocate the jobs of type K−1 as in step 1, subject to the new resource

11

bounds.

3. Repeat step 2 for job types K − 2,K − 3, . . . , 1.

The FFD algorithm is applied at every arrival and departure instant. In-
coming jobs that cannot be placed into any of the servers after repacking, are
rejected and are lost.

One of the consequences of packing is that, given the vector j =(j1,j2,. . .,jK)
specifying the total numbers of jobs of various types present in the system, the
numbers, ji,s, of type i jobs present in server s (i = 1, 2, . . . ,K, s = 1, 2, . . . , n)
are determined uniquely. Hence, the vector j describes the system state fully.

Denote by S(n,K,B) the set of admissible states for a system with n servers,
K job types and resource bound B per server. The evolution of the system state
is a Markov process with instantaneous transitions from state j to state j + ei
with rate λi and state j to state j − ei with rate jiµi. Note that these are the
same transitions, and the same rates, that governed the single-server process in
section 2. The difference now is in the size and composition of the state space.

Repeating the arguments in section 2, we conclude that the steady-state
probability, π(j), that the system is in state j, is given by expression of the
same form as (2):

π(j) =
1

G(n,K,B)

K∏
i=1

ρjii
ji!

; jεS(n,K,B) . (16)

The new normalization constant, G(n,K,B), depends, like the new state
space, on n as well as on K and B. The value of G(n,K,B) can again be
computed recursively, but the algorithm is a little more complicated and requires
a different notation.

Let S(n,K,B) be the set of admissible state vectors j when the amounts of
resource available at servers 1, 2, . . . , n are given by the vector B = (B1, B2,
. . ., Bn). Denote by G(n,K,B) the corresponding normalization constant:

G(n,K,B) =
∑

jεS(n,K,B)

K∏
i=1

ρjii
ji!

. (17)

Let mi(B) be the largest possible number of type i jobs that can be accepted
into the system when the resource availability is given by the vector B. If

j ≤ mi(B) jobs of type i are to be allocated, let d
(j)
i = (d

(j)
i,1 , d

(j)
i,2 , . . .,d

(j)
i,n) be

the amounts of resource that will be used in servers 1, 2, . . . , n under the FFD
packing algorithm. Then we can write a recurrence relation similar to (4):

G(n,K,B) =

mK(B)∑
j=0

ρjK
j!
G(n,K − 1,B− d

(j)
K) . (18)

The terminating conditions are G(n, 0,B) = 1 and G(n,K,B) = 1 if the
corresponding state space S(n,K,B) contains only the vector j = 0.

12

The desired normalization constant, G(n,K,B), is equal to G(n,K,B0),
where B0 = (B,B, . . . , B) (i.e., all servers are fully available).

The states in which an incoming job of type i would be accepted are those
in which there is at least one server where the currently available resource is at
least bi. Since lower-numbered servers are packed before higher-numbered ones,
if there are any such servers then server n is one of them. Consequently, the
states in which an incoming job of type i is accepted are precisely those where
the currently available resource in server n is at least bi. Therefore, the steady
state probability, 1−βi,n, that an incoming job of type i is accepted is given by

1− βi,n =
G(n,K,B0 − bien)

G(n,K,B0)
, i = 1, 2, . . . ,K , (19)

where en is the n-vector whose n’th element is 1 and all others are 0.
One can now use expression (11) to evaluate the long-term average profit,

R, achieved by the n servers per unit time.
When there is more than one resource to be shared, the job packing problem

becomes multidimensional. Several heuristic algorithms of varying complexity
exist (e.g., see [6]). For our purpose, it does not really matter how jobs are
packed, as long as the following properties are satisfied: (i) the algorithm is fast
enough so that it can be applied at every arrival and departure instant; (ii) the
state vector j uniquely determines the numbers ji,s of type i jobs at server s.
One can then write equations similar to (17) - (19) and use them to compute
the achievable profit.

Intuitively, the packing of jobs should lead to a more efficient use of servers,
lower rejection probabilities and higher profits. Hence, the exact solution of
the n- server system with packed jobs should provide an upper bound for the
achievable profit in the system without packing.

In fact, it turns out that this upper bound is also an excellent approxima-
tion. As an illustration, Figure 4 shows the average long-term profit R as a
function of n, for the FFoA policy without packing (estimated and simulated
values, plus 90% confidence intervals), and the FFD policy with packing (exact
solution). The parameter values are as shown in the figure caption. The re-
source requirements and bound correspond to the M3 family of VM instances
offered by the Amazon EC2 service (see [24]). There are now four job types
(adding an ‘extra-large’ type) and bigger servers with a vCPU resource bound
of 16.

The figure confirms that the packing of VMs leads to higher profits. How-
ever, the advantage gained is very marginal. The three plots in Figure 4 are
remarkably close to each other. In particular, they all indicate the same opti-
mal number of servers. It seems that allocating incoming jobs to the first server
that has room for them, and then leaving them in place, has a similar effect to
packing.

To emphasize the above observations, in Figure 5 we have plotted the op-
timal achievable profit under the FFoA policy without packing (estimated and
simulated, with 90% confidence intervals), and the FFD packing policy (exact),

13

10

15

20

25

30

1 2 3 4 5 6 7

R

n

FFoA estimated

+

+

+

+
+

+

+

+
FFD packing

×

×

×
×

×

×

×

×
FFoA simulated

∗

∗

∗
∗ ∗

∗

∗

∗

Figure 4: Packed and not packed VMs: increasing number of servers
K = 4, B = 16, b = (1, 2, 4, 8), λ = (6, 4, 2, 1), µ = (1, 1, 0.5, 0.5), r =

(1, 3, 6, 10), c = 3

for increasing total arrival rate. The individual arrival rates of the four job
types are kept in fixed proportions.

The three plots are so close as to be visually indistinguishable.
The corresponding optimal numbers of servers, n∗, are shown in Table 2.

Table 2: Optimal numbers of servers
λ 5 10 15 20 25 30 35

FFoA n∗ 2 3 5 6 7 9 10
FFD n∗ 2 3 5 6 7 8 10
Sim n∗ 2 3 5 6 7 9 10

The only disagreement between the two policies is a 1-server difference in
the predicted optima for λ = 30. The effect on the achievable profit is very
small.

In fact, this experiment (and others that we have carried out), strongly
suggests that one need not bother with packing. The best use for the results
in this section is to provide a simpler approximation of the achievable profit
(which is also a tight upper bound), for purposes of optimization.

14

0

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35

R

λ

FFoA estimated

+

+

+

+

+

+

++
FFD packing

×

×

×

×

×

×

×
×

FFoA simulated

∗

∗

∗

∗

∗

∗

∗
∗

Figure 5: Optimal profit: increasing demand
K = 4, B = 16, b = (1, 2, 4, 8), λ = λ(6/13, 4/13, 2/13, 1/13),

µ = (1, 1, 0.5, 0.5), r = (1, 3, 6, 10), c = 3

5 Large systems

The accurate solutions presented in the previous sections rely on the evaluation
of normalization constants, as in (8), (9) and (18). The computational complex-
ity of those evaluations increases quite sharply with the number of job types and
the maximum numbers of jobs of different types that can be admitted. More-
over, when the latter numbers become large, and the offered loads also increase,
various numerical problems such as overflows can manifest themselves. Con-
sequently, the existing multi-class models tend to become intractable beyond
about 50 servers.

With this in mind, we wish to propose two approximations that can be
applied to the optimization of arbitrarily large systems. The price paid for that
ability will be some loss of accuracy, but we shall see that the results are readily
acceptable.

The first idea is simple. The K job types are aggregated into a single type,
with appropriately chosen parameters. The arrival rate and the offered load for
the aggregated type are

λ =

K∑
i=1

λi ; ρ =

K∑
i=1

ρi .

These parameters are exact. The approximation consists in assuming that, in

15

the case of a single resource, the resource requirement of an aggregated job is
equal to the average requirement over the K job types:

b =
1

λ

K∑
i=1

λibi

(a similar averaging applies for a vector of resources). Hence, the maximum
number of aggregated jobs that can be admitted into an n-server system is
m = nbB/bc. The probability, β, that an incoming aggregate job will be rejected
is given by the Erlang-B function (eg, see [13])

β = B(m, ρ) =
ρm

m!

 m∑
j=0

ρj

j!

−1

. (20)

Taking the reciprocal in the right-hand side of (20) and separating the last
term in the summation yields

1

B(m, ρ)
=
m

ρ

1

B(m− 1, ρ)
+ 1 . (21)

This can be rearranged into the following recurrence relation.

B(m, ρ) =
ρ
mB(m− 1, ρ)

1 + ρ
mB(m− 1, ρ)

. (22)

Starting with B(0, ρ) = 1, (22) allows B(m, ρ) to be computed in a stable
manner for large values of m and ρ, particularly when (as is usually the case)
ρ < m.

Having found β, the probability of rejecting an incoming job of type i is
approximated as βi = biβ/b. This is an attempt to capture the fact that larger
jobs are more likely to be rejected than smaller ones. Note that averaging βi
over the K job types produces β.

The expected profit is now calculated according to (11).
This approximation will be referred to as ‘aggregation’.
The field of telephony provided another approach to approximating large-

scale loss systems. Imagine that each unit of resource is requested separately
and independently of the others. Since a type i job requests bi resource units,
the offered load, in terms of units of resource, is equal to

ρ =

K∑
i=1

λibi
µi

. (23)

Treating an n-server system as containing a total of D = nB units of re-
source, the probability, α, of accepting one such unit request is estimated using
the Erlang-B function

α = 1−B(D, ρ) . (24)

16

An incoming job of type i, asking for bi resource units, is accepted if all
of them are accepted, which, by the independence assumption, happens with
probability

αi = αbi . (25)

The probabilities αi are used in computing the average profit.
This approximation will be referred to as ‘unit resource’. The generalization

of the unit resource approximation to the case of multiple resource types is
not quite straightforward. It is known as the Erlang fixed-point approximation,
introduced by F. Kelly in [10]; see also Y. Tan et al [18]. It requires iterations
to determine the offered loads for resource units of different types.

To illustrate and compare the efficacy of the aggregation and unit resource
approximations, consider an example with 4 job types similar to the one in
Figure 4, but scaled up by a factor of 100. The arrival rates are now λ =
(600, 400, 200, 100), service rates µ = (1, 1, 0.5, 0.5), resource requirements b =
(1, 2, 4, 8), resource bound per server B = 16, revenues per job r = (1, 2, 4, 6)
and cost per server c = 5. The average resource requirement is b = 2.3, so a
server can accommodate up to 6 aggregated jobs. Since the total offered load
is ρ = 1600, one would need quite a lot of servers, more than 200, in order to
keep the rejection probability small.

400

600

800

1000

1200

1400

240 260 280 300 320 340

R

n

Aggregation

+

+
+

+

+

+

+
Unit resource

×

×

×

×
×

×

×
Simulation∗ ∗ ∗ ∗

∗
∗

∗

Figure 6: Large system: approximations and simulation
K = 4, B = 16, b = (1, 2, 4, 8), λ = (600, 400, 200, 100), µ = (1, 1, 0.5, 0.5),

r = (1, 2, 4, 6), c = 5

In Figure 6, the aggregation and the unit resource approximations are com-
pared to the simulation of the 4-type system. The profits are plotted against

17

the number of servers. Each simulated point represents a run during which a
total of a million jobs of all types go through the system. The runs are divided
into 10 equal sized portions for the purpose of computing the 95% confidence
intervals. The latter do not appear in the figure because, being on the order of
1% or less of the values estimated, they are too narrow to show. In view of this
accuracy, the simulation curve can be considered as the correct representation
of the system performance.

The most obvious feature of Figure 6 is that, for most of the n values range,
the aggregation approximation is significantly more accurate than the unit re-
source approximation. The best profits are obtained by allocating between 260
and 300 servers. If fewer servers are allocated, both the aggregation and the unit
resource underestimate the profit values, the latter to a greater extent than the
former. When the server allocation is too generous, all three results are almost
identical because the rejection probabilities are close to zero.

In the region around the optimum, aggregation overestimates the profits by
a maximum of about 7%. That approximation and the simulation suggest that
the optimal number of servers is 280. However, the simulated curve is very flat
in that region, and also the number of servers is incremented in steps of 20, so
that answer need not be very precise. The unit resource approximation leads
to an optimal number of 300 servers, which is also an acceptable estimate given
the flatness of the profit function.

700

800

900

1000

1100

1200

1300

1400

1500

1600

260 265 270 275 280 285 290 295 300

R

n

Aggregation

+
+ + + + + + + +

+
Unit resource

×

×

×

×

×

×
× × ×

×
Simulation

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

Figure 7: Large system: detail of optimal region
K = 4, B = 16, b = (1, 2, 4, 8), λ = (600, 400, 200, 100), µ = (1, 1, 0.5, 0.5),

r = (1, 2, 4, 6), c = 5

18

To get a better picture of the region around the optimum, Figure 7 ‘zooms
in’ by incrementing the servers in steps of 5. Again the aggregation and the
simulation agree on the optimal number of servers: both indicate 275. The unit
resource approximation suggests 295 servers, which yield almost the same profit.

In the next example, the system is scaled up by another order of magnitude.
The arrival rates are now λ = (6000, 4000, 2000, 1000), while the other parame-
ters are kept as before. We expect that more than 2000 servers will be needed in
order to achieve good profits. In Figure 8, the predictions of aggregation, unit
resource and simulation are plotted against the number of servers. The latter
are incremented in steps of 50.

6000

8000

10000

12000

14000

16000

2400 2500 2600 2700 2800 2900 3000 3100

R

n

Aggregation

+
+

+
+

+ + + + + + + + +

+
Unit resource

×
×

×
×

×
×

×

×

×
× × × ×

×
Simulation

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

Figure 8: Very large system: estimations and simulations
K = 4, B = 16, b = (1, 2, 4, 8), λ = (6000, 4000, 2000, 1000),

µ = (1, 1, 0.5, 0.5), r = (1, 2, 4, 6), c = 5

This figure has a similar character to the previous one. The aggregation
approximation is again more accurate than the unit resource for most of the
range of n values. In the optimal region, aggregation overestimates profits by
about 6% or less; unit resource underestimates them quite considerably. On
the other hand, aggregation predicts 2700 for the optimal number of servers,
while the simulation and unit resource agree on 2900. However, the flatness
of the profit curve in that region means that the difference between the profits
achieved by 2700 and 2900 servers is less than 4%. In fact, some of the nearby
simulated points lie within each other’s confidence intervals.

One may ask “why bother with approximations when the system to be op-
timized can be simulated”? The answer is of course that the times required

19

by the two approaches can differ by several orders of magnitude. For example,
each point of the two approximations in Figure 8 takes a fraction of a second to
compute, while the corresponding simulated point takes more than 20 minutes.
When a parameter change is detected (eg, a higher arrival rate), an approx-
imation can easily be reevaluated in-line, in order to produce a new optimal
configuration. That would not be feasible if one had to rely on long simulation
runs.

6 Conclusions

We have provided easily implementable expressions for computing the expected
profit in an n-server system where multiple job types share bounded resources
and where n is not very large. These expressions enable the evaluation of the
optimal number of servers.

The results are exact in the cases of a single server, a number of dedicated
servers, or a number of shared servers where VMs are packed at arrival and
departure instants. The only restrictive assumptions for the validity of these
results are that different job types arrive in independent Poisson streams, and
their service times are IID random variables.

Empirical and simulation results have shown that (a) the estimations used
to evaluate the profit of the FFoA policy without packing are accurate, and (b)
packing yields very minimal improvements in profits.

When the number of servers is large (as, for example, when deciding how
many servers to power on in a service center), we have examined two approx-
imations. The first is based on aggregation of job types and the second treats
each unit of resource as being requested independently of the others. Again, the
only restrictive assumptions are Poisson arrivals and IID service times. Both
approximations are numerically stable and make acceptable predictions for the
optimal number of servers, but the accuracy of the aggregation approximation
is better.

A remaining open problem is to find an efficient way of computing the exact
solution of the n-server model under the FFoA policy without packing. We
do not know whether a product-form solution exists or not. Nor do we know
whether that model is also insensitive with respect to higher moments of service
time distributions. However, it has to be said that this is more of theoretical
interest than practical, since the estimates and bounds that we have provided
are highly accurate.

On the other hand, there is a related topic on which we have not touched,
but which deserves attention: instead of rejecting jobs that cannot be accom-
modated on arrival, they might be queued according to their type. Different
priorities may be assigned to those queues. Such a set-up would lead to a multi-
class, multi- server priority queueing model with bounded shared resources.
There are no existing results in that area (not even for the case of a single
shared server), but it would be an interesting topic for future research.

20

References

[1] E. Arzuaga and D.R. Kaeli, “Quantifying Load Imbalance on Virtualized
Enterprise Servers”, Procs. First Joint WOSP/SIPEW Int. Conf. on Per-
formance Engineering (WOSP/SIPEW’10), pp. 235-242, 2010.

[2] P. Bod́ık, R. Griffith, C. Sutton, A. Fox, M. Jordan and D. Patterson,
“Statistical machine learning makes automatic control practical for internet
datacenters”, Conf. on Hot Topics in Cloud Computing (HotCloud’09),
Berkeley, CA, USA, 2009.

[3] E.G. Coffman, J. Csirik, and G. Woeginger, Approximate Solutions to Bin
Packing Problems, Oxford University Press, 2002.

[4] P. Ezhilchelvan and I. Mitrani, “Static and Dynamic Hosting of Cloud
Servers”, Computer Performance Engineering LNCS 9272, Eds. M. Bel-
tran, W. Knottenbelt and J. Bradley), Springer, 2015.

[5] P. Ezhilchelvan and I. Mitrani, “Optimal provision of multiple service
types”, IEEE Int. Symp. on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems (MASCOTS’2016), London, 2016.

[6] E. Feller, L. Rilling and C. Morin, “Energy-Aware Ant Colony Based Work-
load Placement in Clouds”, 12th IEEE/ACM Int. Conf. on Grid Computing
(GRID’2011), pp. 26-33, 2011.

[7] C. Ghribi, M. Hadji and D. Zeghlache, “Energy Efficient VM Scheduling for
Cloud Data Centers: Exact Allocation and Migration Algorithms”, 13th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, pp. 671-678, 2013.

[8] R.C. Hampshire, W.A. Massey, D. Mitra and Q. Wang, “Provisioning for
Bandwidth Sharing and Exchange”, in Telecommunications Network De-
sign and Management, vol. 23 of series Operations Research/Computer Sci-
ence Interfaces, Springer, pp. 207-225, 2003.

[9] J.S. Kaufman, “Blocking in a shared resource environment”, IEEE Trans.
Commun., 29, pp. 14741481, 1981.

[10] F. Kelly, “Blocking probabilities in large cirquit switched networks”, Ad-
vances in Applied Probability, 18, pp. 473-505, 1986.

[11] M. Mazzucco, D. Dyachuk, and M. Dikaiakos, “Profit-aware server allo-
cation for green internet services”, IEEE Int. Symp. on Modeling, Anal-
ysis and Simulation of Computer and Telecommunication Systems (MAS-
COTS), pp. 277-284, 2010.

[12] M. Mazzucco, M. Vasar, and M. Dumas, “Squeezing out the cloud via
profit-maximizing resource allocation policies”, IEEE Int. Symp. on Model-
ing, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 19-28, 2012.

21

[13] I. Mitrani, Probabilistic Modelling, Cambridge University Press, 1998.

[14] J. Moore, J. Chase, P. Ranganathan and R. Sharma, “Making Scheduling
”Cool”: Temperature-aware Workload Placement in Data Centers”, Procs.
USENIX Annual Technical Conference (ATEC’05), pp. 61-74, 2005.

[15] J.W. Roberts, “A service system with heterogeneous user requirement”,
in Performance of Data Communications Systems and Their Applications,
(Ed. G. Pujolle), North-Holland, pp. 423431, 1981.

[16] K.W. Ross, Multiservice Loss Models for Broadband Telecommunication
Networks, Springer-Verlag, 1995.

[17] A. Singh, M. Korupolu and D. Mohapatra, “Server-storage virtualization:
Integration and load balancing in data centers”, Procs. 2008 ACM/IEEE
Conference on Supercomputing (SC’08), pp. 53:1-53:12, 2008.

[18] Y. Tan, Y. Lu and C.H. Xia, “Provisioning for large scale loss network
systems with applications in cloud computing”, ACM SIGMETRICS Per-
formance Evaluation Review, 40(3), pp. 83-85, 2012.

[19] Q. Tang, S.K.S. Gupta, and G. Varsamopoulos, “Energy-Efficient Thermal-
Aware Task Scheduling for Homogeneous High-Performance Computing
Data Centers: A Cyber-Physical Approach”, IEEE Trans on Parallel and
Distributed Systems, 19, 11, pp. 1458-1472, 2008.

[20] R. Urgaonkar, U. C. Kozat, K. Igarashi and M. J. Neely, “Dynamic Re-
source Allocation and Power Management in Virtualized Data Centers”,
IEEE/IFIP NOMS 2010, Osaka, Japan, 2010.

[21] W. Voorsluys, J. Broberg, S. Venugopal and R. Buyya, “Cost of Virtual
Machine Live Migration in Clouds: A Performance Evaluation”, LNCS,
vol. 5931, pp. 254-265, 2009.

[22] S. Weijia, X. Zhen, C. Qi and L. Haipeng, “Adaptive Resource Provisioning
for the Cloud Using Online Bin Packing”, IEEE Transactions on Comput-
ers, 63, 11, pp. 2647-2660, 2014.

[23] T. Wood, P. Shenoy, A. Venkataramani and M. Yousif, “Black-box and
Gray-box Strategies for Virtual Machine Migration”, Procs. 4th USENIX
Conference on Networked Systems Design and Implementation (NSDI’07),
pp. 229-242, 2007.

[24] https://aws.amazon.com/ec2/instance-types/ , Amazon Web Services,
2016.

22

