
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Luis Bustamante, A., Molina López, J. M., García
Herrero, J. (2017). Player: an open source tool to
simulate complex maritime environments to evaluate
data fusion performance. Simulation modeling practice
and theory, 76, pp. 3-21.

DOI:https://doi.org/10.1016/j.simpat.2017.04.002

© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.simpat.2017.04.002
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Player: An Open Source Tool to Simulate Complex
Maritime Environments to Evaluate Data Fusion

Performance

Alvaro Luis Bustamante, José Manuel Molina López, Jesús Garćıa Herrero

Avda. de la Universidad Carlos III, 22. Colmenarejo 28270. Spain

Abstract

In this paper it is presented a new open source tool for evaluating data fusion

systems, mainly related to the maritime surveillance domain. This tool provides

specific utilities for designing and simulating synthetic maritime environments

to assists in the fusion development process, like designing vessels trajectories,

placing different types of sensors, simulating vessels dynamics, or simulating

sensors detections. This synthetic information can be used to feed a data fusion

system to evaluate its response in a reproducible way under different conditions.

This tool can be used to optimize the data fusion evaluation process, since

testing a fusion system is a quite complex task, as the fusion output depends on

the combination of multiple algorithms, configurations, measures, timing, and

so on. Then, having reproducible synthetic environments can be quite useful

when evaluating fusion results, system performance in dense scenarios, vessel

trajectories with different dynamics, sensor coverages, and so on. This tool

has been used with success for evaluating different fusion systems, and now it

is presented as an open source tool, so it can be easily adapted to different

environments, be used by other researchers, or extended by the community.

This paper presents how it is built, the underlying algorithms, and presents

some example use cases.

Keywords: Data Fusion, Maritime Surveillance, Simulation, Sensors,

Evaluation, Performance

Preprint submitted to Journal of Simulation Modeling Practice and Theory March 5, 2017

1. Introduction

Maritime Surveillance systems are commonly used for identifying and in-

tercepting threats in seaports, coastal areas, maritime boundaries, maritime

platforms, or important installations. Monitoring extensive environments, like

the maritime, requires a wide deploy of sensors detecting targets of interest.5

Common sensors in this domain are the Automatic Identification System (AIS),

radar, and Closed-circuit Television (CCTV) [1]. Although most modern sys-

tems can use UAVs (Unmanned Aerial Vehicles), and satellite imagery [2, 3] as

additional data sources. It is common to obtain such distributed information in

a common base station and use a Vessel Traffic Service (VTS) for evaluating pos-10

sible threats in real-time. VTS systems normally include data fusion systems

[4] to integrate sensor information in order to provide a more comprehensive

representation of the environment state.

In such complex environments, it is quite important to ensure the proper

operation of all the underlying components, specially the one related with the15

fusion system, as many of the services integrated in VTSs are normally built on

top of the data fusion. A fusion system is a quite complex software development

that includes multiple algorithms for data processing, association, filtering, com-

bination, etc., that may work flawlessly in real-time to feed VTS information

systems. So, before integrating a fusion system in a production environment it20

is required to test it extensively covering as many situations as possible.

However, testing a data fusion system can become a complex task, as it

is not possible to cover every possible case due to the problem nature, which

inherently contains infinite degrees of freedom. There are multiple variables that

will condition the execution, like algorithm parameters, sensor observations,25

sensors noise, vessel dynamics, etc. This way, it is required to evaluate the

most significant cases to ensure a proper operation under similar conditions,

like vessels crossing so close, vessels moving in parallel, vessels moving along

different sensors coverage keeping stable identifiers, vessels doing maneuvers at

high speed, etc. It is not practical to evaluate this kind of special situations30

2

using only information from a real-world deployment, as they will not happen

quite often, exactly as required, or the information is not isolated to debug it

easily.

Therefore, this paper describes a recently released open source tool to assist

in the process of designing and simulating maritime surveillance scenarios, where35

the user can easily define sensors, and vessels trajectories by just clicking over a

map representation. The description made by the user can be simulated in real-

time to generate multi-sensor multi-target detections as they were generated in

a real-environment. This simulation can be used to feed a fusion system in order

evaluate its behavior under the specified conditions.40

There are few alternatives, if any, specifically designed for the purpose of

this tool. In [5] it is described a tool to simulate static trajectories with way-

points, making animations, visual effects, and events that can be visualized in

the Google Earth tool with a generated KML (Keyhole Markup Language).

However, this tool does not generate detections in real-time, cannot be con-45

nected to a fusion system, and does not allow design environments in the tool,

as it is designed only for scenario representation purposes. There is a more com-

plete approach defined in [6], that describes a fusion architecture that serves as

a base for higher-level situation assessment algorithms. It includes a simulation

module, but it is tightly coupled in the tool, so it cannot be used with differ-50

ent fusion architectures. Furthermore, none of these tools are available as open

source.

There are other general-purpose alternatives that can be used to represent

environments and its state, like the Google Earth tool [7], NASA World Wind

[8], and in general, any Geographic Information System (GIS) [9]. Neverthe-55

less, this kind of tools lacks all the specific layers covered by the Player tool,

like the environment description, edition, simulation, animation, visualization,

connection to fusion system, etc. Therefore, the Player tool intends to pro-

vide a complete and comprehensive suite for designing and simulating maritime

surveillance scenarios for fusion system evaluation. This tool is released under60

a open source license, so any user can adapt it to their needs, or integrate in

3

commercial projects.

This paper is covering mainly the general Player tool architecture and the

models used for simulating both sensors and vessels, while providing also some

illustrative results for a better comprehension. The rest of the paper is organized65

as follows: Section 2 provides a background about data fusion systems and its

complexity, and how the tool is integrated in such architectures. Section 3, and

4, describes the models used both for vessel and sensors simulations. Section

5 describes the final modules developed inside the tool to assist the user while

designing synthetic environment. Finally, section 7 provides some results while70

using the tool to simulate different uses cases.

2. Background on Data Fusion in Maritime Surveillance

The core of maritime surveillance systems are Vessel Traffic Services (VTS),

aimed to provide efficient transits and safe navigation for vessels [10, 11, 12, 13,

14]. To accomplish this task, technical means should be designed to enhance75

situational awareness and overcome the limitations of traditional methods such

as direct sight and voice communications. There are diverse surveillance sources

in maritime areas, which must be integrated to provide real-time decision sup-

port to operators. Data from cooperative sources (AIS transponders equipped

in vessels) must be correlated with non-cooperative sensors, such as shore radar,80

high-frequency radars, or video (optical/infrared/satellites). This way, a VTS

operator can obtain a more representative picture of the environment, which

will support the decision making process in the surveillance task.

Then, a fusion system must process the different sources of information to

provide a single fused output for each entity detected in the environment, like85

vessels. The output typically consists of a set of non-redundant tracks, called

global tracks. Each global track represents a single entity in the environment

that is normally composed of information describing vessel location and its

cinematic: global track ID (unique for each vessel); last update timestamp;

geodesic coordinates; speed and course over ground, etc. This type of systems90

4

are normally modeled as a distributed system [15, 16], where a first layer contains

processors for each data source (like sensors), and these mono-sensor tracks are

then compared to decide if they can be correlated in the same entity. This

process can be decomposed in several steps which are executed periodically in

a fusion cycle [17, 18], which is represented in figure 1.95

measures	
source	1

TIME	
ALIGNMENT

PREPROCESS	– COMMON	REFERENCING

TRACK	
ASSOCIATION

TRACK	
COMBINATION

CENTRAL	TRACK	
MGMNT

GLOBAL	
TRACKS

PREPROCESS	– COMMON	REFERENCING

PREPROCESS	– COMMON	REFERENCING

SPATIAL	
GATING

Data	Fusion	System

measures	
source	2

measures	
source	n

Global	
Tracks

Figure 1: Distributed data fusion architecture.

However, there are many research needs on appropriate architectures and

algorithms for multi-sensor fusion in maritime surveillance [4, 19, 20, 10]. The

problem is challenging when dealing with large sensor networks and heteroge-

neous areas such as high-density zones crowded with diverse objects in motion.

An important phase of analysis and adjustment of the system is usually neces-100

sary to refine the models and raise robust processes to ensure the reliability of

the system in real conditions such as presence of inconsistent measures, sensors

malfunction, dynamic behaviors, parameter changes, etc [21]. Thus, the pro-

posed tool will assist to properly design and evaluate a data fusion system in

maritime surveillance environments, at it will allow simulating multiple sources105

of information with multiple observable entities.

5

Figure 2 presents a general overview that describes how the proposed tool

will interact with a fusion system, taking into account the fusion architecture,

as described in figure 1. The tool will assist on designing synthetic entities like

vessels, radars, AIS Stations, or cameras, to simulate them in real time. The110

result from the simulation, is then provided to the external fusion process which

will process all input sources, similar as it where receiving measurements from

real sensors. After the fusion cycle is completed, the fusion system will report

the combined global track entities, that can be injected in-real time to the tool,

to evaluate if generated entities correlates with the simulated ones. Hence, it115

is obtained a closed loop where the user can simulate entities and observe in

real-time the results thrown by the fusion system.

!"#$%"&

'"("%

)*+

,$&&$-&

+.#/-"0.12

+1/%3$ 4

+1/%3$ 5

+1/%3$ 2

6/&.127+8&0$#9-"8$%7:11-;7+3$2"%.17<$&.=2>7+.#/-"0.12>7"2(7?@"-/"0.12

6/&.12 '$&/-0
?@"-/"0.12

6/&.12 9%13$&&

:!9A*9

Figure 2: General Overview of the Simulation Tool with a Data Fusion System

3. Vessels Model

As described in the previous section, the Player tool allows designing and

simulating different entities of the maritime surveillance environment, like ves-120

sels, radars, AIS stations, or cameras. This section describes how the vessel

simulation is done inside the tool, which mainly consists on updating vessels

locations based on the simulation time, the designed trajectory, and the vessel

maneuvers.

The vessel trajectory is simulated in the Player tool according to the trajec-125

tory waypoints, taking into account the configured speed, and angular velocity.

6

It is interesting to mention that all the intermediary calculations to get the

simulation working are done in geodesic coordinates to avoid translating the

coordinates to a common reference plane and converting then back again to

geodesic. This kind of approach is done in modern data fusion systems covering130

large areas in order to avoid transformation errors.

The simulator module has been designed taking into account that the system

should be running in real-time to provide detections to the fusion system in

evaluation, so it performs a continuous simulation according to each time step

done inside the simulation. However, the simulation can be accelerated for135

designing the environments. In this way, all the simulation process is based

on a variable simulation step (ts) measured in seconds, that is used in the

simulator equations. So it is easy to modify the simulation step in real-time

to get a simulation running faster or slower. This is critical for designing long-

time scenarios that can take several hours to complete. The complexity of the140

proposed simulation is O(N), as each vessel is simulated independently, so the

simulation time depends linearly on the number of simulated entities.

At first, the simulation relies on computing the movement between two way-

points, accelerating or decelerating the vessel properly to reach the destination

waypoint at the specified speed following a constant bearing between two way-145

points. The formulas described in the following description, are used for the

constant bearing [22] simulation only, but the tool also supports navigating be-

tween points using great-circle paths [23]. The formulas are a little bit different

for the great-circle navigation mode, mainly those related with calculating the

travel distance (it will be usually shorter), the initial bearing for the vessel (as150

the bearing will change in every simulation step), and the destination point.

Each vessel can specify its own navigation mode in the simulation, so it is pos-

sible to set constant bearing for those vessels traveling short paths, or apply the

great-circle navigation for long distances. The modified simulation steps and

the equations are available in the tool source code, but not described here for a155

better paper reading.

So, the vessel trajectory, based on the simulation step ts, is summarized in

7

the algorithm 1. It basically consists on computing the new vessel location after

the simulation step ts, based on the current vessel location, the target waypoint

location, the current vessel speed, and the target vessel speed.160

Algorithm 1: Compute new Vessel location based on Target Waypoint,

Location, and Speed

1 function NewVesselLocation (vl, vw, vs, ws, tS);

Input : Current Vessel Location vl (geodetic coordinates in radians)

Input : Next Trajectory Location vw (geodetic coordinates in radians)

Input : Current Vessel Speed vs (m/s)

Input : Next Trajectory Speed ws (m/s)

Input : Simulation Step ts (seconds)

Output: New Vessel Location (geodetic coordinates in radians)

// distance between current location and next waypoint

2 wd = distance between vl and vw using equation 1

// bearing between current location and next waypoint

3 wα = bearing between vl and vw using equation 2

// required acceleration to reach the next waypoint at the

desired speed

4 a = (ws
2 − vs

2)/(2 · wd)

// compute traveled distance based on simulation step,

computed acceleration, and current speed

5 d = vs · (ts + (a · ts2)/2

// compute new vessel location based on vessel location vl,

distance d, and bearing (wα)

6 v′l = destination point based on vl, d, and wα using equation 3

7 return v′l

8

∆ψ = ln(tan(π/4 + ϕ2/2)/ tan(π/4 + ϕ1/2))

q = ∆ϕ/∆ψ (or cos(ϕ1) if ∆ψ = 0)

d =
√

(∆ϕ2 + q2 · ∆λ2 ·R

Where ψ is latitude (rad), λ is longitude (rad), and ∆λ is taking

shortest route (≤ π), and R is earth’s radius (meters).

(1)

∆ψ = ln(tan(π/4 + ϕ2/2)/ tan(π/4 + ϕ1/2))

θ = atan2(∆λ,∆ψ)

Where ψ is latitude (rad), λ is longitude (rad), and ∆λ is taking

shortest route (≤ π).

(2)

δ = d/R

∆ψ = ln(tan(π/4 + ϕ2/2)/ tan(π/4 + ϕ1/2))

q = ∆ϕ/∆ψ (or cos(ϕ1) if ∆ψ = 0)

∆λ = δ · sinh θ/q

ϕ2 = ϕ1 + δ · cos θ

λ2 = λ1 + ∆λ

Where ψ is latitude (rad), λ is longitude (rad), R is earth’s radius (meters),

and ∆λ is taking shortest route (≤ π).

(3)

The above description is only valid for calculating trajectories between two

straight waypoints. However, following a path composed by multiple waypoints

9

requires some additional steps to detect when it is required to switch to the next

waypoint destination, and also simulate the direction change. For simulating

the transition between waypoints it is considered a constant speed and angular165

velocity, as defined by the user while editing the trajectory. This is quite similar

to the actual Rate of Turn Indicator (ROTI) used by vessels to indicate the rate

a ship is turning. The maximum ROTI is often given by the vessel type, its

dimensions, and the maneouver stability, so it can be useful for defining turns

according to the vessel type being simulated.170

𝑊𝑝#

𝑊𝑝$

𝑊𝑝%

𝑃#

𝑃$

𝐶#

𝑇𝑝#

𝑇𝑝$

𝑟

𝑟

𝜃#

𝜃$

N

N

Figure 3: Turn points calculation using a geometric approach directly in geodesic coordinates

taking into account the configured speed and angular velocity.

Therefore, each simulated vessel turning over a intermediary waypoint of

the trajectory will describe a semi-circumference with a radius according to

the configured speed, and angular velocity. The complexity here resides on

10

finding the points in the trajectory where the maneuver will start and end to

appropriately describe the turn. This can be reduced to finding the intersection175

points between a circumference and two tangent lines. In this case, this is done

over the geodetic coordinate system by using a geometric approach as described

in algorithm 2, and illustrated in figure 3. This will result in two geodesic points

Tp1, and Tp2, which are the points where the vessel should start and stop the

turn maneuver. These points are marked in red in figure 3.180

δ12 = 2 · arcsin(

√
sin2(∆ϕ/2) + cosϕ1 · cosϕ2 · sin2(∆λ/2))

θa = arccos(sinϕ2 − sinϕ1 · cos δ12/ sin δ12 · cosϕ1)

θb = arccos(sinϕ1 − sinϕ2 · cos δ12/ sin δ12 · cosϕ2)

if sin(λ2 − λ1) > 0

θ12 = θa

θ21 = 2π − θb

else

θ12 = 2π − θa

θ21 = θb

α1 = (θ13 − θ12 + π)%2π − π

α2 = (θ21 − θ23 + π)%2π − π

α3 = arccos(− cosα1 · cosα2 + sinα1 · sinα2 · cos δ12)

δ13 = atan2(sin δ12 · sinα1 · sinα2, cosα2 + cosα1 · cosα3)

ϕ3 = arcsin(sinϕ1 · cos δ13 + cosϕ1 · sin δ13 · cos θ13)

∆λ13 = atan2(sin θ13 · sin δ13 · cosϕ1, cos δ13 − sinϕ1 · sinϕ3)

λ3 = (λ1 + ∆λ13 + π)%2π − π

Where ϕ is latitude (rad), λ is longitude (rad), and θ is bearing (rad).

% represents the floating point module operation.

(4)

11

Algorithm 2: Compute turn points for a turn between three waypoints

of the vessel trajectory

1 function TurnPoints (Wp1,Wp2,Wp3, ws, wω);

Input : Waypoint Location Wp1 (geodetic coordinates in radians)

Input : Waypoint Location Wp2 (geodetic coordinates in radians)

Input : Waypoint Location Wp3 (geodetic coordinates in radians)

Input : Wp2 Waypoint Speed ws (m/s)

Input : Wp2 Waypoint Angular Speed wω (rad/s)

Output: Turn points in trajectory between waypoints Tp1, and Tp2

// calculate turn radius according ws and wω

2 r = ws/wω

// Compute angles between waypoints

3 θ1 = angle between Wp1, and Wp2 using equation 2

4 θ2 = angle between Wp3 and Wp2 using equation 2

// compute P1 and P2, as illustrated in figure 3, clockwise

turn in this example (analogue for counterclockwise)

5 P1 = destination point based on Wp1, r, and θ1 + π/2 using equation 3

6 P2 = destination point based on Wp2, r, and θ2 − π/2 using equation 3

// compute intersection between parallel lines to find turn

center

7 C1 = intersection between P1θ1, and P2θ2 using equation 4

8 Tp1 = intersection between Wp1θ1, and C1θ1 − π/2 using equation 4

9 Tp2 = intersection between Wp3θ2, and C1θ2 + π/2 using equation 4

10 return Tp1, Tp2

12

There is a sample trajectory defined with the tool in figure 4. It can be

observed a vessel that defines a trajectory composed by 5 waypoints. In the

three intermediate waypoints there are circumferences that represents the rate

of turn for the configured speed, which are calculated according to the above

description. So, the simulator will take the whole trajectory and their waypoints185

to calculate all the turn points according to the speed and angular velocity of

each one, like those shown as Tp1 and Tp2 in equation 3. This way, every

intermediate waypoint will be associated with a pair of start and end turn points,

which will be used for computing the vessel acceleration between waypoints.

Once the vessel reaches a start turn point Tp1, it will follow a semicircular path190

with the calculated turn radius until it reaches Tp2, that defines the turn end.

In this moment, the vessel will move to the next waypoint or turn start by

following a straight line.

Figure 4: Sample trajectory edited in the simulator. For debug purposes, it is displayed the

calculated circumference defining the turn trajectory, as well ass the computed start and end

points.

13

4. Sensors Model

The Player tool also allows designing and simulating different sensors of the195

maritime surveillance environment, like radars, AIS stations, or cameras. This

section describes how the different sensors are simulated inside the tool, which

mainly consists on providing detections of the simulate vessels, depending on

the current simulation step, vessel location, sensor period, etc. The following

sections will describe the underlying models for radars, AIS stations, and cam-200

eras.

4.1. Radar Sensors

The radar simulation works by doing azimuthal changes as defined by the

simulation step ts, and the antenna rotation period. After each simulated an-

tenna change, it is necessary to check whether the antenna orientation passed205

over a vessel in the radar coverage. This way, it is possible to provide accurate

radar detection instants even for simulated vessels moving both clockwise or

counterclockwise. This simulation is done as described in the following steps,

which are also illustrated in figure 5.

1. Detect vessels in range by applying the distance between two geodesic210

points as described in equation 1.

2. Calculate the bearing from radar center to each target in range (tθ) using

the formula described in 2.

3. Taking initial radar azimuth θ1, the radar angular velocity ωr, and the

simulation step ts, calculate the target radar azimuth θ2.215

4. Report the position of every target with a bearing (tθ) between θ1 and θ2.

In figure 5, the only track reported for the simulation step ts is t1.

4.2. AIS Stations

AIS messages are encoded according to a standard recommendation [24] that

defines around 27 different messages. These messages can contain different infor-220

mation according to the message type. For example, position report messages

14

𝜃"

𝜃#

𝑡%

𝑡#
𝑡&

𝑡'

𝑡"

N	0º

Figure 5: Radar detection simulation based on antenna rotation and bearing to the surround-

ing tracks in range.

contain dynamic information that can be changing constantly, like the vessel

position, speed over ground, course, heading, rate of turn, and so on. This kind

of messages are updated quite often to provide an accurate picture of the vessels

moving in the sea.225

In the other side, there are some messages with static and voyage related

data, that contains information like vessel name, type of ship, vessel dimension,

type of position fixing device, port destination, estimated time of arrival, etc.

All those messages also includes the Maritime Mobile Service Identity (MMSI),

that is an unique identifier for each vessel. Depending on the vessel speed230

and maneuver, the messages related with dynamic information are reported at

different rates as specified in the AIS recommendation [24] summarized in table

1. In this way, a faster vessel will be reporting more frequently than the one

that is anchored or moored.

So, in the Player tool, the configurable AIS stations are passive entities235

15

Table 1: Class A shipborne mobile equipment reporting intervals

Parameter Description

Ship at anchor or moored and not

moving faster than 3 knots

3 min

Ship at anchor or moored and mov-

ing faster than 3 knots

10 s.

Ship 0-14 knots 10 s

Ship 0-14 knots and changing course 3 1/3 s

Ship 14-23 knots 6 s

Ship 14-23 knots and changing

course

2 s

Ship > 23 knots 2 s

Ship> 23 knots and changing course 2 s

that are receiving messages from the surrounding vessels. Those vessels which

incorporates an AIS transponder, will acquire the vessel location, speed, course,

and MMSI to generate a dynamic message at a frequency as described in the

AIS recommendation [24]. This message is then sent to all the AIS stations

covering the vessel location.240

4.3. Pan-Tilt-Zoom Cameras

As the same way the radars or AIS stations can provide information about

detected targets, in the Player tool, the PTZ camera is also simulated to pro-

vide targets detections. So it is supposed that the simulated PTZ camera is

using some kind of computer vision algorithm to discern the vessels present245

in the environment, and convert the 2D location to a real-world 3D position

based on the camera location and calibration. This is done inside the simulator

by calculating the projected surface FOV based on camera location, altitude,

orientation, and sensor parameters.

The projected FOV is calculated in real-time based on sensor parameters, like250

sensor width (sw), height (sh), and focal length (fl) (this is variable by changing

16

𝑑" 𝑑#

𝜌

𝐹& 𝐹'

𝐹" 𝐹#

𝑑"

𝑑# 𝑉)*+

𝐻)*+

ℎ.

𝜃

Figure 6: Illustration of FOV calculation based on pan (θ), tilt (ρ), and horizontal and vertical

field of view HFOV , VFOV .

the zoom), that allows to determine the current horizontal FOV (HFOV), and

vertical FOV (VFOV). With this information, and the camera altitule (hc),

current pan (θ), and tilt (ρ) angles, it is possible to calculate the FOV projection

over the surface as described in the following steps. This procedure is also255

illustrated in figure 6.

1. Taking the current focal length (fl), and sensor size (sw, sh), calculate

the current horizontal and vertical FOV (HFOV , VFOV), as HFOV =

2 · arctan(sw/(2 · fl)), and VFOV = 2 · arctan(sh/(2 · fl)), as described in

[25].260

2. Given the VFOV , hc, and ρ, calculate the approximated maximum and

minimum vision distance in the surface, as d1 = hc · tan(ρ−VFOV /2), and

d2 = hc · tan(ρ+ VFOV /2).

3. Calculate the WGS84 coordinates for the projected FOV (F1, F2, F3, and

F4) using the formula described in 3, by using the camera location as265

origin, d1, and d2 as distances, and current pan angle (θ ± HFOV /2) as

bearings.

17

5. Implementation

Figure 7: Player tool Overview. This screenshot represents the main tool window, where

the user can define entities like radar, AIS, cameras, vessels, and manage the simulation

process, and the connection with the fusion systems via TCP/IP. The underlying Geographic

Information System (GIS) is based on Google Maps with a custom API layer for display and

update the entities in real-time.

The published open source Tool is currently available at Github1, which

includes both sources and binaries. The tool is available for public access and270

also there is a YouTube Channel2 of the GIAA research group, which includes

some illustrative examples for a proper evaluation.

The project has been developed by using the latest JavaFX 2, which provides

a portable way of creating interfaces. So the tool can be run in any operating

1https://github.com/alvarolb/player-tool
2https://www.youtube.com/user/GIAAUC3M

18

system like Windows, Mac OS, and Linux starting with Java 1.7, which is crucial275

to ensure the tool integration in any fusion development environment. In general

terms, the interface is built over a WebView widget that embeds Google Maps

as a GIS for displaying geographical entities. Google Maps is actually used

in several research projects as Geographic Information System (GIS), like [26],

as it provides a comprehensive Application Programming Interface (API) to280

display and update practically any geographic shape over the map. In this way,

the Player tool interacts with the Google Maps API to display user simulated

entities like sensors, vessels, trajectories, polygons, etc., over the map. The

tool core is then responsible of computing all the geodesic coordinates as result

of simulating vessels maneuvers, or sensors detections, to issue the required285

commands to the Google Maps API to update the environment state in real-

time.

The general architecture of the tool follows the architecture outlined in figure

2, and the resulting main screen of the application is shown in figure 7. The

following subsections will describe in more detail the different entities that can290

be configured in the Player tool, as part of the simulation subsystems presented

in the architecture.

5.1. Vessels

One of the main features of the Player tool, is that the user can easily define

several vessel entities that can describe trajectories or maneuvers over the sim-295

ulated environment. This feature is quite convenient to simulate and evaluate

the fusion response for entities that are approaching each other, or passing over

Regions of Interest (ROI), describing strange or erratic movements, trying to

navigate over complex paths near the littoral, and so on. There are multiple sit-

uations than can be of interest when developing a maritime surveillance system,300

and the fusion system must be prepared for almost any of them. Therefore,

simulating this kind of situations is essential to ensure a proper operation.

Therefore, the user can place multiple virtual vessels in the environment

with a starting position, and a set of additional parameters that can define

19

Figure 8: Configurable parameters for Simulated Vessels

the vessel dimensions or their equipped sensors. For each defined vessel in the305

environment it is possible to define a trajectory by clicking locations in the map

to generate a set of waypoints. Aside of the waypoint location, it is possible

to define the waypoint altitude (for further simulation of aerial environments),

the speed, and the angular velocity to complete the turn to the next waypoint.

There is an optional configurable delay for each waypoint if the target speed310

20

is 0, so it is possible to simulate vessels stopping in a waypoint, and waiting a

certain amount of time before traveling to the next waypoint. This is specially

useful for the starting point, so it is easy to synchronize different trajectories by

changing the initial timeout.

So, the Player tool is able to simulate vessel trajectories according to the315

requirements to satisfy, like target density, trajectories, behaviors, maneuvers,

and so on. For each vessel, it is possible to configure different parameters that

are described in figure 8. Notice how it is also possible to configure the MMSI for

the Automatic Identification System (AIS), so it is possible to simulate vessels

sharing the same MSSI, which happens quite often in real environments.320

5.2. Radar

Figure 9: Example representation of multiple sensors deployed in the maritime environment.

Each sensor is covering different zones, but also providing overlapping areas for testing the

fusion system.

Simulating vessels is quite useful for describing interesting situations that

21

need to take attention over a data fusion implementation. However, vessels

cannot be detected unless there are sensors deployed in the environment. In

this way, for the maritime surveillance environment, the Player tool incorporates325

different kind of sensors that can be deployed in a similar way the vessels can

be configured.

One of the most used sensor in maritime surveillance is the radar, that is

usually placed over the coast covering different points of interest, like seaway

channels, maritime ports, or any other critical areas. This kind of sensors scans330

the environment sending radio waves and looking for objects that reflects the

energy. Due to the sensor nature, the radar scans the environment periodically

according to a scan period, and other parameters like the pulse width. A radar

also has a variable resolution both in azimuth and distance according to the

distance to the target being monitored.335

Simulating a whole radar sensor is completely out of the scope for this tool.

A realistic radar simulation may provide a synthetic video feed of the scanned

environment. However, in our simulated environment based on 2D projected

maps, it is not possible to have a complete information about terrain orography,

that is necessary for effectively simulate the terrain shielding. Also, creating a340

realistic simulation will include adding environmental conditions like rain or sea

that generates clutter, shadows, and so on. Instead, this tool generates an out-

put that is quite similar to the information provided by a radar extractor. The

radar extractor analyzes the radar video feed to analyze plots, and track targets,

which is done by using low-level data association and filtering algorithms.345

In such a way, the expected output for the radar sensors being simulated

with this tool, is a high-level detection made by each deployed sensor, according

to the maximum radar range, and the azimuth location of the vessel according

to the antenna rotation and radar position. It is also possible to simulate the

detection precision described as an Area of Probability (AoP) according to the350

configured radar precision and the target detection range. But this tool is not

actually simulating other factors like false alarms, azimuth resolution, noise,

or occlusions between both static and dynamic entities. In this way, there is

22

Figure 10: Configurable parameters for the Radar Sensor

margin for improvement in these topics, but they can be implemented in the

future in the open source repository.355

So, the user can place multiple radar sensors, like those shown in figure 9,

that can be configured with different radar ranges, rotation periods, or resolu-

tions. Then, once the simulation process starts, the simulated radars will start

scanning the environment and providing detections for those tracks that are in

their coverage. The configurable parameters for each radar sensor are described360

in figure 10.

5.3. AIS

The Automatic Identification System (AIS) is a maritime safety and vessel

traffic system imposed by the International Maritime Organization (IMO). The

onboard AIS system broadcasts position reports and short messages with infor-365

23

Figure 11: Configurable parameters for the AIS Sensor

mation about the ship and the voyage, using frequencies in the maritime VHF

band. All messages are received by AIS stations that are normally deployed

near to the coast.

The AIS stations are defined in the Player tool basically by their location

in WGS84 coordinates, and a maximum range, as described in figure 11. So370

there are not additional parameters for this sensing system. In the figure 9 it is

present an AIS station with two radar sensors.

5.4. Pant-Tilt-Zoom Cameras

A Pant-Tilt-Zoom (PTZ) camera is a sensor sensor widely used in surveil-

lance systems. Such sensor allows the operator to change the Field Of View375

(FOV) to some region of interest to be monitored. These sensors are normally

used in the maritime domain for monitoring specific procedures like vessel dock-

ing, vessel towing, or identifying possible threats. The PTZ cameras deployed

in such kind of environments are specifically designed for these tasks, and pro-

vides a great vision range. Moreover, these sensors are also used in the research380

domain to provide vessels information by using computer vision techniques [27].

24

Figure 12: Example of simulated Pant-Tilt-Zoom cameras deployed in a maritime port. The

polygons represents the calculated FOV according to camera pant, tilt, zoom and camera

characteristics.

Such a feature opens the possibility to use this sensor as some kind of coopera-

tive sensor that could provide additional information from targets of interest.

To simulate the camera sensor, it is necessary to configure the sensor size,

and minimum and maximum focal length. Thus, it is possible to calculate the385

approximate projected FOV of the camera attending to the sensor parameters,

current pan, tilt, and zoom. The result is a set of coordinates that can be

represented as a closed polygon, like those available in figure 12. From this

information it is relatively easy to calculate if a given point is inside the polygon

or not, and then evaluate if the target is visible from the camera. This way, the390

cameras will work as an additional sensor in the environment, that will be able

to provide target detections according to its current FOV. The reported targets

will contain a local target identity, and its current location. The reporting

frequency can be adjusted according to the camera Frames Per Second (FPS)

25

Figure 13: Configurable parameters for the Camera Sensor

that is a configurable parameter for each camera. These parameters are shown395

in 13.

5.5. Additional features

Aside from the simulation features described in detail, this tool also incorpo-

rate several additional features that can be useful when designing or evaluating

scenarios. These features are mainly related with displaying elements over the400

26

Figure 14: Sample representation of different entities available in the tool. In this example

there are polygons, polylines, and heat maps.

map or calculating distances. Describing all those elements in detail is out of

the scope of this paper, but it is worth to mention this kind of capabilities for

a proper tool evaluation. The main additional features can be summarized in

the following points, and some of them are illustrated in figure 14.

• Distance measurement: Measure distances between points, simulated tracks,405

tracks and sensors, and so on. Distances can be calculated as bearing-lines

or using the great-circle path.

• Angle calculator: Sometimes it is quite useful to calculate angles over the

map, so it is possible to define 3 geodesic points to calculate the angle

between two lines.410

• Polygon representation: It is possible to easily define polygons for describ-

ing areas or zones of interest just by clicking over the map. The tool also

supports displaying polygon with holes.

• Polylines: This kind of geographic element is mainly used for describing

27

a vessel trajectory, but they can be also created apart of the vessel by415

clicking over the map.

• Heat Maps: A heat map is useful for displaying over the map the most

transited areas. Such a way, it is possible to add heat map points in

real-time to update the environment state.

• Real-time visualization: The Player tool defines a whole TCP/IP API for420

displaying, updating, and removing entities in real-time. For example, it

is possible to display the output from the fusion system in real-time, and

overlap the output with the generated simulation.

• Scenario multiplier: This capability allows building scenarios with a high

number of detections. It takes a basic scenario and a multiplication area,425

and performs the generation of replicas of basic scenario in random lo-

cations within the multiplication area. The goal is providing high-load

scenarios to test the fusion system in challenging conditions.

6. Results

This section provides some illustrative examples while using the tool for430

evaluating data fusion systems on maritime environments.

6.1. Crossing Vessels

In this example, it is shown a practical use case designed with the Player

tool for evaluating a specific use case of a fusion engine. This particular one is

related with two vessels approaching each other at an specific crossing distance.435

This type of scenario is useful for evaluating specific algorithms used in fusion

systems, since there are two different entities so close that can interact between

them. Simulating this use case is extremely useful as it is possible to easily ad-

just the crossing distance, crossing angles, relative crossing speed, course, etc.

That kind of valuable situations and the flexibility obtained is quite difficult to440

28

obtain from real environments, as it suppose to have real vessels doing differ-

ent maneuvers, real AIS stations and Radars recording the information, then

filtering, and so on.

Figure 15: Example of designing scenarios for crossing vessel

In figure 15 it is presented an example scenario for evaluating such particular

casuistic. It is also possible to see some of the features used in the simulator,445

like the distance between vessels that is updated in real-time, or the area of

probability for each target detected by the radar sensor deployed in the scenario

(in yellow). It is also available a video in YouTube3 for a proper evaluation.

6.2. Cameras

Most of the modern VTS systems uses video surveillance systems for com-450

plement the information gathered by coastal sensors like radars or AIS stations.

This kind of cameras are long-range cameras that can be used to zoom to some

specific targets for view elements like IMO numbers, ship flags, cargo contain-

ers, and so on. With the Player tool it is possible to simulate those kind of

3https://www.youtube.com/watch?v=ytqfizjD-vU

29

Figure 16: PTZ Cameras simulation for monitoring vessels

long-range cameras also as another source of information. However, this feature455

can be also useful for the design and evaluation of autonomous monitoring algo-

rithms automatically controlling PTZ cameras. These algorithms may work as

autonomous entities to monitor the most relevant vessels according to different

criteria, like distances to an specific area, crossing distances, velocity, rate of

turn, and so on. As the simulation is happening in real time, it is possible to460

design algorithms receiving and evaluating the current simulated environment,

to generate an output to modify simulated PTZ cameras state. This is possible

as the Player tool provides an interface for managing the state of a PTZ camera

in real time. Figure 16 illustrates the use of a PTZ camera to follow a simulated

track.465

This use case was exploited in [28] with a preliminary version of the Player

tool to evaluate a multi-agent system with autonomous coordination to monitor

different vessels of the environment. There is a video example of this integration

in YouTube4, and the 16

4https://www.youtube.com/watch?v=BrGGdKWwTRI

30

6.3. High Density Scenarios470

Evaluating a data fusion engine is more than testing the low level algorithms

or scenario particularities. In a real setup it is also quite important to evaluate

the scalability of the system in order to assess its capabilities to ensure a proper

operation QoS in high-load stress conditions. This kind of evaluation is practi-

cally impossible by using a real setup, as it would involve thousands of vessels475

sailing in the sensors coverage. So, the Payer tools offers some facilities to also

help in the evaluation of high density scenarios. Starting with a base scenario

with some sensors, and vessels, it is possible to replicate the setup by different

orders of magnitude, so it is easier to test the fusion engine with hundred or

thousand elements. These entities can be replicated by rotating or moving the480

trajectories from its origin inside a predefined area, by using the features for

creating polygons as described in section 5.5. Hence, a fusion engine could have

thousands of simulated trajectories with complex maneuvers and dynamics.

Figure 17: Example of high density simulated environments for evaluating fusion engine scal-

ability.

31

Figure 17 represents a sample scenario where two different trajectories Y ,

and Z where designed for crossing at 50 meters of distance. After this sample485

trajectory is defined, then it can be later replicated along the whole scenario to

test a data fusion under high loads. Figure 18 represents a simulated scenario

with the mentioned crossing vessels that has been multiplied a thousand times.

The new replicated entities are spread around a square area, without entering

in the coast. This picture has been taken from a real Matlab Fusion engine that490

was integrated with the Player tool.

Figure 18: Example of high density simulated environments for evaluating fusion engine scal-

ability.

6.4. Track Continuity

One of the most useful features of a data fusion system is providing a unique

identifier for each vessel in the environment. It helps the operators in charge of

32

Figure 19: Example of simulating track continuity between different sensing areas.

the VTS, as it provides traceability for all detected entities, simplifying man-495

agement processes. A fusion engine with this feature has to take into account

that in this kind of environments there are different sensors covering different

areas, and that the targets can move very long distances entering and exiting

different sensor coverages. Therefore, it is required to evaluate fusion engines

with vessels traveling along the whole scenario and sensors. There are multiple500

possible configurations in this use case, as a sensor covering other sensor cov-

erage, sensors with partially overlapped fields of views, sensors not sharing any

region, and so on. Evaluating such particular situations with a real setup is also

quite complex, as it mainly depends on the hardware characteristics, the sensor

locations, and the vessels traveling among different sensors. So, the Player tool505

results quite useful for this use case, as it is quite easy to define a sensor loca-

tion, its range, its period, and also define vessels describing trajectories moving

across the coverages of different sensors.

Figure 19 represents this specific use case, where there are deployed four

different radar sensors along the coast with different coverage, some of them510

33

with overlapping fields of view. Also there is one vessel describing a trajectory

that pass along all the sensors.

7. Conclusions

This paper provides an overview of the main features of the open source

Player tool, and mainly describes the general architecture, the main editable515

entities, the simulation models, and some practical use cases. This tool provides

a basis for designing and simulating maritime surveillance entities that can be

used to feed a data fusion system in real-time to evaluate its performance.

This is quite useful for testing corner cases or specific situations that are not

usually observable in the real-world. This tool provides an interface with a great520

usability, as the user can define entities like sensors, vessels, and trajectories

directly over a map interface, to simulate its behavior just by clicking a button.

This tool has been extensively used and tested with several real data fusion

projects to simulate and evaluate the performance of developed architectures.

To cite a few related projects, in the work presented in [29], it was mainly525

used to validate a real fusion system developed to operate with EW (Electronic

Warfare) and ISR (Intelligence, surveillance and reconnaissance) sensors on-

board of patrol aircraft. In cite [28] was used for simulating and evaluating a

collaborative multi-agent system controlling a set of PTZ cameras to monitor

vessels of interest in a maritime surveillance environment. In [19] was used for530

defining and simulating multiple fusion scenarios, taking special attention the

use of the tool for defining contextual zones and configurations. After testing the

tool in different fusion-related domains, its release to the open source community

can contribute to better develop multiple related projects.

Acknowledgment535

This work was partially funded by projects MINECO TEC2014-57022-C2-

2-R and TEC2012-37832-C02-01.

34

[1] N. Park, S. Cho, B.-D. Kim, B. Lee, D. Won, Security enhancement of

user authentication scheme using ivef in vessel traffic service system, in:

Computer Science and its Applications, Springer, 2012, pp. 699–705.540

[2] G.-J. Duan, P.-F. Zhang, Research on application of uav for maritime su-

pervision, Journal of Shipping and Ocean Engineering 4 (2014) 322–326.

[3] B. J. Daniel, A. P. Schaum, E. C. Allman, R. A. Leathers, T. V. Downes,

Automatic ship detection from commercial multispectral satellite imagery,

in: SPIE Defense, Security, and Sensing, International Society for Optics545

and Photonics, 2013, pp. 874312–874312.

[4] J. Garćıa, J. L. Guerrero Madrid, Á. Luis Bustamante, J. M. Molina, Ro-

bust sensor fusion in real maritime surveillance scenarios, 2010 10th Inter-

national Conference on Information Fusion (FUSION).

[5] M. Vardjan, J. Porekar, Maritime surveillance scenario simulator, Interna-550

tional Journal of Modeling and Optimization 2 (4) (2012) 449.

[6] Y. Fischer, A. Bauer, Object-oriented sensor data fusion for wide maritime

surveillance, in: 2010 International Waterside Security Conference (WSS),

IEEE, 2010, pp. 1–6.

[7] N. Chadil, A. Russameesawang, P. Keeratiwintakorn, Real-time track-555

ing management system using gps, gprs and google earth, in: Electrical

Engineering/Electronics, Computer, Telecommunications and Information

Technology, Vol. 1, IEEE, 2008, pp. 393–396.

[8] M. Brovelli, P. Hogan, M. Minghini, G. Zamboni, The power of virtual

globes for valorising cultural heritage and enabling sustainable tourism:560

Nasa world wind applications, International Archives of the Photogram-

metry, Remote Sensing and Spatial Information Sciences (2013) 115–120.

[9] S. Fotheringham, P. Rogerson, Spatial analysis and GIS, CRC Press, 2013.

35

[10] P. Braca, S. Maresca, R. Grasso, K. Bryan, J. Horstmann, Maritime surveil-

lance with multiple over-the-horizon hfsw radars: An overview of recent ex-565

perimentation, IEEE Aerospace and Electronic Systems Magazine 30 (12)

(2015) 4–18.

[11] G. Battistello, M. Ulmke, F. Papi, M. Podt, Y. Boers, Assessment of vessel

route information use in bayesian non-linear filtering, in: 2012 15th In-

ternational Conference on Information Fusion (FUSION), IEEE, 2012, pp.570

447–454.

[12] M. Vespe, M. Sciotti, G. Battistello, Multi-sensor autonomous tracking for

maritime surveillance, in: 2008 International Conference on Radar, IEEE,

2008, pp. 525–530.

[13] A. Benavoli, L. Chisci, A. Farina, L. Timmoneri, G. Zappa, Knowledge-575

based system for multi-target tracking in a littoral environment, IEEE

Transactions on Aerospace and Electronic Systems 42 (3).

[14] M. Guerriero, P. Willett, S. Coraluppi, C. Carthel, Radar/ais data fusion

and sar tasking for maritime surveillance, in: 2008 11th International Con-

ference on Information Fusion (FUSION), IEEE, 2008, pp. 1–5.580

[15] C.-Y. Chong, Tracking and data fusion: A handbook of algorithms, IEEE

Control Systems 32 (5) (2012) 114–116.

[16] X. Tian, Y. Bar-Shalom, Track-to-Track Fusion Architectures-A Review

in Advances in Estimation, Navigation, and Spacecraft Control, Springer,

2015.585

[17] D. L. Hall, J. Llinas, An introduction to multisensor data fusion, Proceed-

ings of the IEEE 85 (1) (1997) 6–23.

[18] J. Garćıa, Á. Luis, J. M. Molina, Quality-of-service metrics for evaluating

sensor fusion systems without ground truth, in: 2016 19th International

Conference on Information Fusion (FUSION), IEEE, 2016, pp. 2251–2258.590

36

[19] E. Marti, B. Gonzalez, A. Luis, J. Garcia, J. M. Molina, I. López Garćıa,

Geographic context configuration in fusion algorithms for maritime surveil-

lance, in: 2014 17th International Conference on Information Fusion (FU-

SION), IEEE, 2014, pp. 1–8.

[20] B. Khaleghi, A. Khamis, F. O. Karray, S. N. Razavi, Multisensor data fu-595

sion: A review of the state-of-the-art, 20013 16th International Conference

on Information Fusion (FUSION) 14 (1) (2013) 28–44.

[21] H. Fargetton, J.-G. Siedler, Control of multi sensor system based on

anomaly mapping and expert system, Sensor Data Fusion: Trends, So-

lutions, Applications, IEEE.600

[22] E. Parsons, W. Morris, Edward wright and his work, Imago Mundi 3 (1)

(1939) 61–71.

[23] W.-K. Tseng, H.-S. Lee, Navigation on a great ellipse, Journal of Marine

Science and Technology 18 (3) (2010) 369–375.

[24] ITU, 1371-4,technical characteristics for an automatic identification sys-605

tem using time-division multiple access in the vhf maritime mobile band,,

Electronic Publication, Geneva.

[25] E. McCollough, Photographic topography, Industry: A Monthly Magazine

Devoted to Science, Engineering and Mechanic Arts (54) (1893) 65.

[26] M. S. Wilson, C. T. Miller, Using google maps web-application to create610

virtual plant maps for use as an online study tool in plant identification

courses, HortTechnology 25 (2) (2015) 253–256.

[27] D. Bloisi, L. Iocchi, M. Fiorini, G. Graziano, Automatic maritime surveil-

lance with visual target detection, in: International Defense and Homeland

Security Simulation Workshop, 2011, pp. 141–145.615

[28] A. L. Bustamante, J. M. Molina, M. A. Patricio, Information fusion as input

source for improving multi-agent system autonomous decision-making in

37

maritime surveillance scenarios, in: Information Fusion (FUSION), 2014

17th International Conference on, IEEE, 2014, pp. 1–8.

[29] E. Marti, A. Luis, J. Garćıa, S. Oñate, C. Sanchez, S. González, Fusion of620

sensor data and intelligence in fits, in: 2013 16th International Conference

on Information Fusion (FUSION), IEEE, 2013, pp. 342–349.

38

	Introduction
	Background on Data Fusion in Maritime Surveillance
	Vessels Model
	Sensors Model
	Radar Sensors
	AIS Stations
	Pan-Tilt-Zoom Cameras

	Implementation
	Vessels
	Radar
	AIS
	Pant-Tilt-Zoom Cameras
	Additional features

	Results
	Crossing Vessels
	Cameras
	High Density Scenarios
	Track Continuity

	Conclusions

