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Abstract

Volunteer Computing is a type of distributed computing in which ordinary people donate their
idle computer time to science projects like SETI@home, Climateprediction.net and many others. In
a similar way, Desktop Grid Computing is a form of distributed computing in which an organization
uses its existing computers to handle its own long-running computational tasks. BOINC is the
main middleware that provides a software platform for volunteer computing and desktop grid
computing, and it became generalized as a platform for distributed applications in areas as diverse
as mathematics, medicine, molecular biology, climatology, environmental science, and astrophysics.
In this paper we present a complete simulator of BOINC infrastructures, called ComBoS. Although
there are other BOINC simulators, none of them allow us to simulate the complete infrastructure of
BOINC. Our goal was to create a complete simulator that, unlike the existing ones, could simulate
realistic scenarios taking into account the whole BOINC infrastructure, that other simulators do
not consider: projects, servers, network, redundant computing, scheduling, and volunteer nodes.
The outputs of the simulations allow us to analyze a wide range of statistical results, such as the
throughput of each project, the number of jobs executed by the clients, the total credit granted and
the average occupation of the BOINC servers. The paper describes the design of ComBoS and the
results of the validation performed. This validation compares the results obtained in ComBoS with
the real ones of three different BOINC projects (Einstein@home, SETI@home and LHC@home).
Besides, we analyze the performance of the simulator in terms of memory usage and execution
time. The paper also shows that our simulator can guide the design of BOINC projects, describing
some case studies using ComBoS that could help designers verify the feasibility of BOINC projects.
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1. Introduction

Volunteer Computing (VC) is a type of distributed computing in which ordinary people donate
processing and storage resources to one or more scientific projects. Most of the existing VC systems
have the same basic structure: a client program runs on the volunteer’s computer, periodically
contacting project-operated servers over the Internet, to request jobs and report the results of
completed jobs. VC is important for several reasons [1]:

e Because of the huge number of computers in the world, VC can supply more computing
power to science than any other type of computing. In addition, this advantage will increase
over time, because the number of computers is in continuous growth.

e Volunteer Computing power can not be bought; it must be earned. A research project that
has limited funding but large public appeal can get remarkable computing power. In contrast,
traditional supercomputers are extremely expensive, and are available only for applications
or teams that can afford them.
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e Volunteer Computing promotes public interest in science, and provides the public with a
voice in determining the directions of scientific research.

In a similar way, Desktop Grid Computing (DG) is a form of distributed computing in which
an organization uses its existing computers to handle its own long-running computational task.
This differs from VC in several ways: in DG, the computing resources can be trusted; there is no
need for screensaver graphics, in fact it may be desirable to have the computation be completely
invisible and out of the control of the PC user; and client deployment is typically automated. Both,
VC and DG are disciplines of distributed computing that consider the whole Internet as a possible
computing platform.

BOINC (Berkeley Open Infrastructure for Network Computing) [2] is an open-source software
platform for Volunteer Computing and Desktop Grid Computing. It provides the most widely
used middleware system for volunteer computing and desktop grids. Although the growth of
desktop computers is stalled and currently the world is on laptops and moving to mobile fast,
according to BOINCstats [3], currently there are 57 BOINC projects, with more than 13 million
hosts participating in these projects. The number of active hosts is around 1 million, offering
190 PetaFLOPS of computation. One example of this is the Einstein@home project, in which
users regularly contribute about 1,080 TeraFLOPS of computational power, which would rank
Einstein@home among the top 100 on the TOP500 [4] list which is constituted by the 500 fastest
supercomputers of the world. BOINC has evolved with the new mobile platforms, and currently it
provides a version for Android devices [5]. In this kind of platforms BOINC only computes when
the device is plugged into a power source (AC or USB) and the battery is charged 90% or more,
so it won’t significantly reduce the battery life or the recharge time. Moreover, BOINC transfers
data only when the devices are connected to a WiFi network.

In this paper we present ComBoS! (Complete BOINC Simulator), a complete and open-source
simulator for volunteer computing and desktop grids, based on the whole BOINC infrastructure.
ComBoS simulates real VC and DG scenarios. These scenarios are defined by a large set of
parameters specified in an XML file, including the number of projects, the characteristics of each
project and the network environment. The outputs of the simulations allow us to analyze a wide
range of statistical results, such as the throughput of each project, the number of jobs executed by
the clients, the total credit granted and the average occupation of the BOINC servers. ComBoS
has been implemented in C programming language, with the help of the tools provided by the MSG
API of SimGrid [6]. Thanks to this, we have managed to perform massive simulations (~500,000
hosts) in just a few hours. Although there are other BOINC simulators, any of them allow to
simulate the complete infrastructure of BOINC. Our goal was to create a complete simulator that
could simulate realistic scenarios taking into account the whole BOINC infrastructure, that other
simulators do not consider: projects, servers, network, redundant computing, scheduling, and
volunteer nodes.

The rest of the paper is organized as follows: Section 2 discusses related work; Section 3 presents
and describes the simulator that we have developed; in Section 4 we validate ComBoS by comparing
its statistical results with the real ones of three different BOINC projects; Section 5 analyzes the
performance of the simulator; Section 6 presents some case studies; and finally, Section 7 concludes
the paper and presents some future work.

2. Background and Related Work

2.1. BOINC

The computing resources that power Volunteer Computing (VC) and Desktop Grids (DG) are
shared with the owners of the client machines. Because the resources are volunteered, utmost care
is taken to ensure that the VC and DG tasks do not obstruct the activities of each machine’s owner;
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a VC or DG task is suspended or terminated whenever the machine is in use by another person. As
a result, VC or DG resources are volatile in the sense that any number of factors can prevent the
task of a VC or DG application from being completed. These factors include mouse or keyboard
activity, the execution of other user applications, machine reboots, or hardware failures. Moreover,
VC an DG resources are heterogeneous, in the sense that they differ in operating systems, CPU
speeds, network bandwidth and memory and disk sizes. Consequently, the design of systems and
applications that utilize this system is challenging.

BOINC [7] is a middleware system for volunteer computing that makes it easy for scientists to
create and operate public-resource computing projects. It supports diverse applications, including
those with large storage or communication requirements. PC owners can participate in multiple
BOINC projects, and can specify how their resources are allocated among these projects. BOINC
is being used by several projects, including SETI@home, Climateprediction.net, LHC@home, Pre-
dictor@home, and Einstein@home. Volunteers participate by running a BOINC client program
on their computers. They can “attach” each computer to any set of projects, and can control the
fraction of the resource that is devoted to each project.

Some projects require efficient data replication: Einstein@home [8] uses large (40 MB) input
files, and any given input file may be sent to a large number of hosts (in contrast with projects
like SETI@home [9, 10, 11], where each input file is different).

The BOINC architecture [12] allows data servers to be located anywhere; they are simply web
servers, and do not access the BOINC database. Current BOINC-based projects that use large files
(Einstein@home [13] and Climateprediction.net [14]) use replicated and distributed data servers,
located at partner institutions. The upload/download traffic is spread across the commodity
Internet connections of those institutions.

BOINC-based projects are autonomous. Each project operates a server consisting of several
components:

e Web interfaces for account and team management, message boards, and other features.
e A task server that creates tasks, dispatches them to clients, and processes returned tasks.

e A data server from which BOINC clients download input files and executables, and to which
output files are uploaded.

e BOINC clients that download input files and executables, and upload output files.

These components share data stored on disks, including relational databases and a file storage
(see Figure 1). Data servers handle file uploads using a certificate-based mechanism to ensure
that only legitimate files, with prescribed size limits, can be uploaded. File downloads are handled
by plain HTTP. BOINC provides a form of redundant computing in which each computation
is performed on multiple clients [15], the results are compared, and are accepted only when a
‘consensus’ is reached. In some cases new results must be created and sent.
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Figure 1: A BOINC server consists of multiple components, sharing several forms of storage.



Files (associated with application versions, workunits, or results) have project-wide unique
names and are immutable. Files can be replicated: the description of a file includes a list of URLSs
from which it may be downloaded or uploaded. Files can have associated attributes indicating,
for example, that they should remain resident in a host after their initial use, that they must be
validated with a digital signature, or that they must be compressed before network transfer.

The client downloads and uploads files and runs applications; it maximizes concurrency, using
multiple CPUs when possible and overlapping communication and computation. BOINC’s com-
putational system also provides a distributed storage facility (of computational inputs or results,
or of data not related to distributed computation) as a by-product. This storage facility is quite
different from peer-to-peer storage systems such as Gnutella, PAST [16] and Oceanstore [17]. In
these systems, files can be created by any peer, and there is no central database of file locations.
This leads to a set of technical problems (e.g. naming and file location) that are not present in the
BOINC facility.

The BOINC architecture is based on a strict master/worker model (see Figure 2), with a
central server responsible for dividing applications into thousands of small independent tasks and
then distributing the tasks to the worker nodes as they request the workunits. To simplify network
communication and bypass any NAT (Network Address Translation) problems that might arise
from bidirectional communication, the centralized server never initiates communication with worker
nodes: all communication is initiated by the worker when more work is needed or results are ready
for submission.
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Figure 2: Strict master/worker model in BOINC.

2.2. BOINC Simulators

Desktop Grid Computing and Volunteer Computing are forms of distributing computing that
seek to exploit existing resources [18]. However, there are several differences between them. On
the one hand, in volunteer computing resources are owned and managed by ordinary people, users
are anonymous, and project performance is not predictable. On the other hand, desktop grid
computing resources belong to information technology professionals, users may or may not be
anonymous, computing resources can be trusted, and performance is partially predictable.

There are not too many volunteer computing simulators, although most of them are focused
on BOINC. As ComBoS, there are other BOINC simulators based on the SimGrid toolkit [6]. An
example of this is SImBOINC, which simulates the BOINC client scheduler. SimBOINC [19] uses
almost exactly the BOINC client’s CPU scheduler source code. This is why SimBOINC simulations
are almost perfect. SINBOINC code is public. Nevertheless, even though the results are optimal,



Table 1: Comparison of BOINC simulators.

Features ComBoS SimBOINC  SimBA EmBOINC
Network input - traces traces
Number of client hosts N 1 40,000 100,000
Hosts availability input (statistical distribution) or traces simulation  traces traces
Hosts power input (statistical distribution) or traces input traces traces
Hosts scheduler simulation simulation - -

Hosts reliability input + simulation - traces traces
Hosts execution simulation simulation  traces traces
Hosts organization individual hosts + clusters - individual hosts individual hosts
Disk access input - - -

Number of tasks N - 200,000 350,000
Workunit validation input + simulation - simulation emulation
Workunit details input traces input traces
Project details input traces - -

Number of task servers N N 1 1

Number of data servers N - - -

Server scheduler simulation - simulation emulation

this simulator is quite extensive (> 20,000 lines of source code) and not overly efficient in terms
of time. Furthermore, like other simulators, SiImBOINC is focused on the client side, leaving
aside the other parts of the system. In 2010, a simulator with similar results to SImBOINC’s was
created [20], but it is more efficient (about three or four times faster) and also has a source code
of about 800 lines.

In contrast to the aforementioned simulators, SimBA [21] (Simulator of BOINC Applications)
is a simulator that reproduces the creation, characterization and termination of workers by using
trace files obtained from real BOINC projects. It simulates the BOINC server scheduler and its
interaction with a large number of simulated hosts. Some weaknesses are that it is not highly
scalable (< 50,000 hosts, while some projects have more than 100,000 active hosts at the moment),
each project must be simulated individually, and there is no client scheduler.

Finally, although it is an emulator rather than a simulator, we feel the need to mention Em-
BOINC. EmBOINC [22] uses a population of volunteered clients and emulates the server compo-
nent. EmBOINC does not have a client scheduler either. Table 1 compares the main features of
the programs presented in this section (SimBOINC, SimBA and EmBOINC) and ComBoS.

Our intention was to create a simulator that, unlike the existing ones, could simulate realistic
scenarios taking into account the whole BOINC infrastructure. The result of our work is Com-
BoS, a simulator that executes complex simulations based on BOINC environments, creating the
simulation platform from a complete XML input file and generating a set of statistical results,
such as the throughput of each project, the number of jobs executed by the clients or the average
occupation of the BOINC servers. We can manage multiple projects and hundreds of thousands
of hosts in the same simulation. In the next section we describe our simulator in detail.

This simulator has been written in C programming language using SimGrid. SimGrid [6] is a
simulation-based framework for evaluating cluster, grid and P2P algorithms and heuristics. The
SimGrid simulation core [20] implements and provides interfaces to a number of simulation models
that vary in sophistication, and can be used to simulate different types of resources, such as network
resources and computational resources.

3. Simulator Description

ComBoS is a complete simulator of BOINC infrastructures that simulates the behavior of all
componentes involved: projects, servers, network, redundant computing, and volunteer nodes. In
this section we describe all the simulator components and present a significant use case. To create
a simulation, ComBoS requires to specify all the parameters needed in a XML file, such as the
simulation time in hours. All other parameters required by the XML file are detailed below.



3.1. Simulator Components

To understand the architecture of the simulator in the simplest way possible, we have divided all
components of the simulator into two groups: the server side and the client side. The specification
of the networks that connect both groups is detailed in the client side. In the server side, jobs are
created and distributed to the clients. A BOINC job has two parts [23]:

o A workunit describing the computation to be performed.

e One or more results, each of which describes an instance of a computation, either unstarted,
in progress, or completed. The BOINC client software refers to results as tasks. In this paper,
we use both terms interchangeably.
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Figure 3: ComBoS architecture.

3.1.1. Server side
Servers are responsible for managing projects. The architecture of the server side is shown in
Figure 3. The server side of a project consist of two parts [15]:

e A project back end that supplies applications and workunits, and that handles the computa-
tional results. It includes: a work generator, that creates workunits and the corresponding
input files; a wvalidator, that examines sets of results and selects canonical results; an assim-
ilator, that handles workunits that are completed; and a file deleter, that deletes input and
output files that are no longer needed.



Table 2: Project parameters.

Parameter

Description

name
nscheduling servers
ndata_ servers
Server_pw

disk_bw

ifgl percentage

ifed percentage
input_file size
output_file size
replication

task fpops

delay bound
min_quorum

target nresults
max_error_ results
max_total results
max_success_results

success_percentage
canonical _percentage

Project name.

Number of scheduling servers of the project.

Number of data servers. If zero, scheduling servers also operate as data servers.

CPU power of each server, in FLOPS.

Hard disk drive performance for each server, in bytes/s.

Percentage of input files that must be generated locally on the client.

Percentage of times a client must download new input files (due to locality scheduling).
Average amount of data that clients should download per workunit, in bytes.

Average amount of data that clients should upload per workunit, in bytes.

Number of replicas of each file in the system.

Average task duration, in number of floating point operations needed to compute each task.
The time by which the result must be completed by the clients.

Minimum number of successful results required for the validator. If a strict majority agree,
a consensus has been reached and the workunit is considered correct (there is a canonical result).
Number of results to create initially per workunit.

If the number of client error results exceed this, the workunit is declared to have an error.

If the number of results for this workunit exceeds this, the workunit is declared to be in error.
If the number of success results for this workunit exceeds this, and a consensus has not been
reached, the workunit is declared to be in error.

Percentage of success results (when completed).

Percentage of success results that make up a consensus.

e A BOINC server complexr that manages data distribution and collection. It includes: one or
more scheduling servers (sometimes called task servers), that communicate with participant
hosts; and data servers, that distribute input files and collect output files. For small projects,
if there are no data servers, scheduling servers also operate as data servers.

ComBoS allows for the definition of multiple projects. For each project, users must define the
parameters described in Table 2.

3.1.2. Client side
In ComBoS, the client side is formed by groups of Volunteer Nodes (VN). VN are used by the
participants who join a BOINC-based project. Each VN group in ComBoS can be attached to
any set of projects, and the client performs CPU scheduling among all runnable jobs. A VN is
responsible for asking a project for more work, and scheduling the jobs of the different projects.
The BOINC client implements two related scheduling policies [24]:

e CPU scheduling: of the currently runnable jobs, which to run. Of the preempted jobs, which
to keep in memory.

e Work fetch: when to ask a project for more work, which project to ask, and how much work
to ask for.

Algorithm 1 Client main thread

1: function cLIENT MAIN( )

while time < max time do
increase wall _cpu_time to the running project
UPDATE _ DEBT
UPDATE _ DEADLINE _ MISSED
CPU_ SCHEDULING
sicNAL Work fetch thread
WAIT scheduling _interval

end while

10: Return

11: end function

LRI WN




Algorithm 2 Work fetch thread

1: function WoRK_FETCH( )
: project = null

3 while time < max_time do

4 for each project p in projects do

5: if p meets the requirements then
6: project = p

T end if

8 end for

9: if project and not deadlines missed then
10: ASK__FOR_WORK(project)

11: end if

12: WAIT work _ fetch _period

13: end while

14: siGNAL Client main thread

15: Return

16: end function

The scheduling is based on a round-robin between projects, weighted according to their resource
share. This scheduling is described in detail in [24]. In addition, we have relied on the client
scheduler code implemented in [20]. In ComBoS, each client is implemented with at least three
different threads: the client main thread (Algorithm 1), which updates the client parameters every
scheduling interval; the work fetch thread (Algorithm 2), which selects the project to ask for
work; and the execution threads, one per attached project, that execute the tasks. Meanwhile,
our simulator is complemented with the most important features of the real scheduler (deadline
scheduling, long term debt, fair sharing and exponential back-off).

Table 3: VN group parameters.

Parameter Description

nclients Number of VN of the group.
connection interval The typical time between periods of network activity.
scheduling _interval =~ The “time slice” of the BOINC client CPU scheduler (the default is one hour).

gbw Bandwidth between each VN and the network backbone.

glatency Latency between each VN and the network backbone.

traces file File with the VN power and availability traces (optional).

pv_ distri VN power fit distribution: Weibull, Gamma, Lognormal, Normal, Hyperexponential, Exponential (in case
there is not a traces file).

max_ power Maximum power a VN might have using a random distribution.

min_power Minimum power a VN might have using a random distribution.

av_ distri VN availability fit distribution: Weibull, Gamma, Lognormal, Normal, Hyperexponential, Exponential (in
case there is not a traces file).

nv_ distri VN non-availability fit distribution: Weibull, Gamma, Lognormal, Normal, Hyperexponential, Exponential
(in case there is not a traces file).

att_ projs Number of projects attached for each VN.

For each project:

priority Priority of the project, used by the client scheduler.

Isbw Network bandwidth between the VN group and the scheduling servers of the project.
Islatency Network latency between the VN group and the scheduling servers of the project.
1dbw Network bandwidth between the VN group and the data servers of the project.
Idlatency Network latency between the VN group and the data servers of the project.

Apart from that, ComBoS allows for the definition of multiple VN groups. The power and
the availability of each host of the group is obtained from a traces file. Alternatively, the power
and the availability can be modelled with input statistical distributions. For each group, users
must define the parameters described in Table 3. To simulate VN groups using SimGrid, we have
used the cluster entity. Like real clusters, each cluster contains many hosts interconnected by a
dedicated network. SimGrid does not allow us to fix the power and availability of individual hosts
within a cluster, so we have implemented the necessary functionality in order to solve the problem.
As indicated in Table 3 (VN group parameters), users can define the power and availability of
the VN hosts via either a traces file or distribution functions. For example, in the case of the
SETI@home project, we have analyzed the 3,900,000 hosts that participate in this project. The



CPU performance of the hosts can be modeled according to an exponential function, as shown
Figure 4, which has a mean of 5.871 GigaFLOPS per host.
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Figure 4: CPU performance modeling for SETI@home VN.

3.2. Use Case

Figure 5 shows an example of a potential simulation that can be carried out by ComBoS. The
figure shows a simplified environment with two BOINC projects and 350,000 clients. The first
project is represented by two scheduling servers (S0 and S1) and two data servers (DS0O and DS1).
The second project consists of a single scheduling server (S2) and three data servers (DS2, DS3
and DS4). Clients are grouped in three sets. The first group (GO0) consists of 100,000 hosts and
has a route to the first project. The second group (G1), has 200,000 hosts and a route to both
projects. The third group (G2) consists of 50,000 computers and has route to the second project.
The rest of the figure shows the links among the elements of the environment (from LO to L7). In
each of the links, latency and bandwidth are indicated.
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Figure 5: Simulation environment example.

To create a simulation, ComBoS requires to specify all the parameters described in Tables 2
and 3 in a XML file. Our software first processes the XML file, creating the necessary deployment



and platform files for subsequent simulations. The platform file contemplates all the necessary
elements in the simulation: hosts, clusters, links, etc. The deployment file indicates the processes
that should be created during the simulation. In ComBoS, all this is transparent to the user. The
user only has to specify all the parameters of the simulation in the XML file, run the generator
script and finally run the execution script.

The execution results are composed by multiple statistical results: the execution time, the
memory usage of the simulator, the load of the scheduling and data servers, the total number of
work requests received in the scheduling servers, the job statistics (number of jobs created, sent,
received, analyzed, success, fail, too late, etc), the credit granted to the clients, the number of
FLOPS, and the VN average power and the percentage of time the VN were available during the
simulation.

4. Validation of the Simulator

In this section we validate the results provided by ComBoS, comparing them to the results of
SimBOINC and to the statistical results of the official BOINC webpage.

All measurements shown in this section and in sections 5 and 6 were made on a computer with
32 GB of RAM and 8 Intel Core i7 processors running at 2.67 Ghz each. The server runs the Linux
3.13.0-85-generic kernel. It runs the 3.10 version of the SimGrid toolkit. In spite of the computer
has eight cores, each simulation was performed individually in a single core. We have used the
same host availability and unavailability parameters as those used in Section 4.2. Each simulation
result presented in this section and sections 5 and 6 is based on the average of 20 runs. For a 95%
confidence interval, the error is less than & 2% for all values.

4.1. Validation of the Client Scheduler

To validate the client scheduler of ComBoS, we have compared the results of different executions
of the simulator with the equivalent SimBOINC simulations. Of course, as we only want to validate
the client scheduler (individually), we have simulated scenarios with no delay caused by network
or servers. We compare our simulator with SimBOINC, because is the only one that takes into
account the client scheduling.

All scenarios considered are based on a single client host with three associated projects (Ein-
stein@home, SETI@home and LHC@home). Through the different tests we have varied the prior-
ities of the projects and the time of each simulation. When using hosts with the same power, our
goal is to compare the number of tasks executed in each simulator.

As explained in Section 2 (Background and Related Work), SimBOINC simulates the BOINC
client scheduler and its simulations are highly accurate, because it uses almost exactly the BOINC
client’s CPU scheduler source code. Tables 4, 5 and 6 show different test cases:

Table 4: Executed tasks (three projects running on a single host), 1.4 - 10° FLOPS host power.

SimBOINC ComBoS
Time in hours  Einstein@home(25%) SETIQhome(25%) LHC@home(50%) EinsteinQhome(25%) SETIQhome(25%) LHC@Qhome(50%)
100 1 21 33 1 22 28
500 7 108 166 7 112 163
1,000 14 220 331 13 223 333
5,000 70 1,103 1,652 70 1,106 1,659
10,000 139 2,214 3,319 139 2,221 3,331

e Table 4 presents the number of tasks executed by a client host of 1.4 - 10° FLOPS on
simulations of 100, 500, 1,000, 5,000 and 10,000 hours. The priorities of the three projects
are the same, so that each project uses the same runtime (33% CPU). The results of ComBoS
and SImBOINC are almost identical.
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Table 5: Executed tasks (three projects running on a single host), 5.5 - 10° FLOPS host power.

SimBOINC ComBoS
Time in hours  Einstein@home(25%) SETIQhome(25%) LHCQhome(50%) Einstein@home(25%) SETIQhome(25%) LHCQhome(50%)
100 4 67 181 4 64 182
500 21 332 975 21 333 975
1,000 42 662 1,955 40 662 1,981
5,000 208 3,297 9,831 206 3,297 9,889
10,000 416 6,581 19,637 413 6,593 19,784

Table 6: Executed tasks (single project running on a single host), 5.5 - 109 FLOPS host power.

Einstein@home(100%) SETIQhome(100%) LHC@home(100%)
Time in hours SimBOINC ComBoS SimBOINC ComBoS SimBOINC ComBoS
100 16 16 263 263 395 394
500 82 82 1,318 1,319 1,978 1,972
1,000 164 164 2,637 2,639 3,956 3,945
5,000 824 824 13,177 13,195 19,780 19,728
10,000 1,649 1,649 26,315 26,390 39,473 39,457

e Table 5 proposes a case similar to the previous test. In this case, the host has a power of 5.5
- 10° FLOPS and the priorities of the projects differ. The tasks of the LHC@home project
consume 50% of CPU usage, while the tasks of the Einstein@home and SETI@home projects
consume 25% of the CPU usage each. As in the previous case, the number of tasks executed
in ComBoS is practically the same as in the case of SImBOINC.

e Table 6 includes three different test cases. In each test case, a host of FLOPS 5.5 - 10°
runs a unique project (100% of the CPU time). In the first case, the host performs tasks of
Einstein@home project and the results are exactly the same in both simulators. In the case
of SETI@home and LHC@home projects the results vary minimally.

If we consider only the client scheduler, ComBoS results match those of SImBOINC, demon-
strating the proper functioning of the simulator in this regard.

4.2. Validation of Whole Simulator

To validate the complete simulator, we have relied on data from the BOINCstats website [3],
which provides official statistical results of BOINC projects. In this section, we analyze the behavior
of ComBoS considering the simulation results of the SETI@Qhome, Einstein@home and LHC@home
projects.

We have used the CPU power traces of the client hosts that make up the VN of each project
[25, 26, 27]. We have not used any other traces. In order to model the availability and unavailability
of the hosts, we used the results obtained in [28]. This research analyzed about 230,000 hosts’
availability traces obtained from the SETI@home project. According to this paper, 21% of the hosts
exhibit truly random availability intervals, and it also measured the goodness of fit of the resulting
distributions using standard probability-probability (PP) plots. For availability, the authors saw
that in most cases the Weibull distribution is a good fit. For unavailability, the distribution
that offers the best fit is the log-normal. The parameters used for the Weibull distribution are
shape = 0.393 and scale = 2.964. For the log-normal, the parameters obtained and used in
ComBoS are a distribution with mean y = —0.586 and standard deviation o = 2.844. All these
parameters were obtained from [28] too.

Table 7 compares the actual results of the SETI@home, Einstein@home and LHC@home
projects with those obtained with ComBoS in terms of GigaFLOPS and credits. The error ob-
tained is 2.2% for credit/day and 0.03% for GigaFLOPS compared to the SETI@home project;
1.6% for credit/day and for GigaFLOPS compared to the Einstein@home project; and 7.9% for
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Table 7: Validation of the whole simulator.

BOINCstats ComBoS
Project Total hosts  Active hosts GigaFLOPS Credit/day GigaFLOPS  Credit/day
SETI@Qhome 3,970,427 175,220 864,711 171,785,234 865,001 168,057,478
Einstein@home 1,496,566 68,338 1,044,515 208,902,921 1,028,172 205,634,486
LHC@home 356,942 15,814 7,521 1,504,214 7,392 1,393,931

credit/day and 1.7% for GigaFLOPS compared to the LHC@home project. We consider that these
results allow us to validate the whole simulator.

5. Performance Study

In this section we analyze the performance of the simulator in terms of memory usage and
execution time. We do not compare ComBoS with the current BOINC simulators described in
Section 2 in terms of performance because our simulator is the only one that can manage simulations
that take into account the whole BOINC infrastructure.
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Number of client hosts Number of client hosts
(a) Memory usage of the simulator. (b) Execution time of the simulator.

Figure 6: Performance study.

Figure 6a shows the memory usage of the simulator and Figure 6b shows the execution time
by increasing the number of client hosts in each simulation. Note that the tests have been carried
out up to 1 million hosts, the same number of active hosts of all BOINC projects together. Figure
6a shows a linear (O(n)) memory footprint. Figure 6b shows the execution time of the simulator
for four different simulation times: 1 day, 2 days, 3 days and 4 days. Both metrics demonstrate
that the simulator is highly scalable. This has been possible due to the high performance [29] of
the SimGrid toolkit. Notice that we have managed to run simulations with 1 million hosts, the
same number of active machines of all BOINC projects combined.

6. Case Studies

In this section we will present different case studies using ComBoS. Our goal is to show the
performance that would result when Volunteer Computing and Desktop Grid platforms are used
to process big amounts of data. We are especially interested in analyzing possible bottlenecks
and limits that an architecture like BOINC presents. We will show a few practical examples of
the simulator usage, with the subsequent analysis of the execution results. In this Section, we
do not compare ComBoS with the current BOINC simulators described in Section 2 because our
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simulator is the only one that can manage simulations that take into account the whole BOINC
infrastructure.

The scenario used in the evaluation consists of a single project (one scheduling server, and
different data servers) and three groups of Volunteer Nodes. The networks that connect each
group of VN with the servers are fixed in all simulations. In each test case, we specify the number
of VN per group, the number of data servers, the size of the input files, and the duration of the
tasks. All other parameters are fixed in all simulations, and the size of the output files has not
been taken into account. Every execution in this section has simulated 100 hours. We have used
the same host availability and unavailability parameters as those used in Section 4.2. In order to
consider the randomness of our simulator, and to gather confidence into the meaningfulness of the
results, each simulation result presented in this section is based on the average of 20 runs. For a
95% confidence interval, the error is less than £ 2% for all values.

6.1. Data Servers Load

Most volunteer computing participants use home computers, so the network traffic goes over
the commodity Internet. BOINC scheduler request and reply messages are just about 10 KB, so
this network traffic is exclusive about file upload and download (input and output files), which
may be a performance issue [12]. VN download input files from data servers. In this case study
we analyzed the load of the data servers of a single project through the download of input files.
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Figure 7: Data servers load with 30,000 VN (10,000 VN per group).

In our case study (Figure 7), we consider 30,000 VN (10,000 VN per group). In this experiment,
our aim was to analyze the data servers’ average load (CPU load) using different number of data
servers in each simulation (from 1 to 64). We collected results from five input file sizes: 4 KB,
256 KB, 1 MB, 16 MB and 64 MB. The average number of floating-point operations required to
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complete the computation of each task (fpops) in figure 7a are 3.6 - 1012 (1 hour for a 1 GigaFLOP
machine), 7.2 - 102 in figure 7b (2 hours for a 1 GigaFLOP machine), 1.4 - 10*® in figure 7c (4
hours for a 1 GigaFLOP machine), and 2.9 - 10'3 in figure 7d (8 hours for a 1 GigaFLOP machine).
The work tends to be distributed among all servers and the load of the scheduling servers has not
been remarkable in any simulation.

Using these results, we can estimate the average load of data servers in real scenarios. The
larger the size of each input file and the lower the task duration, the greater the data servers’ load
becomes. Thus, in some simulations data servers become the bottleneck of the system. This type
of simulations could help designers verify the feasibility of BOINC projects and know the number
of data servers needed. In this way, ComBoS can guide the design of BOINC projects.

6.2. Combined Results

In the previous experiment we studied the scalability of the simulated environment by varying
the duration of the tasks, the size of the input files, and the number of data servers. Now, we want
to analyze the performance of the same infrastructure by increasing the number of VN, and setting
the number of data servers to 4 and the input file size to 1 MB. The results of these simulations are
shown in Figure 8. We have not included the network load results because there was no congestion
in it.
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Figure 8: Combined results.
The results obtained show that we can estimate the system’s throughput (Figure 8a, constant
for the same number of floating point operations executed) and the number of validated results

(Figure 8b, inversely proportional to the task duration). In addition, as in the previous experiment,
we can find out the load of the data servers (Figure 8c). As shown in Figure 8c, for 3.6 - 10'2
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fpops per task, data servers get saturated when there are about 200,000 VN, causing a severe
deceleration in throughput (Figure 8a) and validated results (Figure 8b).

7. Conclusions and Future Work

In this paper we have described the design of ComBoS, a complete simulator of BOINC infras-
tructures that, unlike other BOINC simulators, can simulate realistic scenarios taking into account
the whole BOINC infrastructure: projects, servers, network, redundant computing, and volunteer
nodes. The main objective of this simulator is to guide the design of BOINC projects. ComBoS has
been implemented using SimGrid, a simulation-based framework for evaluating cluster, grid and
P2P algorithms and heuristics. The paper describes the design of ComBoS, taking into account
the server side and the client side. We have validated our simulator with the results obtained in
three famous BOINC projects (Einstein@home, SETI@home and LHC@home), in terms of credits
and GigaFLOPS obtained. We have shown the performance of the simulator in terms of memory
usage and execution time, and we have demonstrated that ComBoS is highly scalable. Finally,
we have demonstrated that ComBoS can guide the design of BOINC projects, using the simulator
with different data intensive workloads and platforms in order to analyze possible bottlenecks and
limits that an architecture like BOINC presents. As future work, we want to use the simulator in
order to design new models and architectures for volunteer computing platforms.
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