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Abstract. Simulations are often used to evaluate the performance of various
scheduling and migration techniques in the context of large computing sys-
tems such as clouds and datacenters. To ensure that simulations match the
real platform as close as possible, plausible assumptions and accurate statisti-
cal models are used in designing simulations; and that could also offer accurate
results. However, it is not always possible that similar numerical results would
also be achievable in a real cloud test-bed. The reason is that a simulator only
abstracts a model and, hence, a system; but does not always reflect the real
world scenarios. Therefore, the solution of any research problem using numeri-
cal simulation (experimentation) is not just to find a result, but also to ensure
the quality and accuracy of the estimated results. CloudSim is largely used in
the cloud research community to evaluate the performance of various resource
allocation and migration policies. However, resources such as CPU, memory
and application heterogeneities are not modelled yet. Moreover, its accuracy
is rarely addressed. In this paper, we: (i) describe an extension to CloudSim
that offers support for resource (CPU) and application heterogeneities; and
(ii) demonstrate several techniques that could be used to measure the accu-
racy of results obtained in simulations, particularly, in the extended CloudSim.
Based on our evaluation, we suggest that the accuracy and precision of the
extended version of the CloudSim simulator may be as high as ∼98.63% for
certain energy and performance efficient resource allocation and consolidation
with migration policies in heterogeneous datacenters.

Keywords: Simulations, performance modelling, accuracy, heterogeneous dat-
acenters, resource management

1 Introduction

Quantifying the performance of various resource provisioning and consolidation poli-
cies, in a real cloud platform, for various workload models under transient conditions
is challenging due to three reasons: (i) clouds show fluctuating demands, variable sys-
tem sizes and heterogeneous hardware resources; (ii) cloud users have contending and
heterogeneous quality of service (QoS) requirements; and (iii) cloud workloads have
variable performance needs [1]. Furthermore, the use of real Infrastructure as a Service
(IaaS) clouds to benchmark the workload performance under these variable conditions
is constrained by real test-bed availability. Consequently, it is difficult to reproduce
accurate results that could be trusted. In addition, it would be time-consuming and,
hence, costly to re-configure benchmarking parameters across a large-scale IaaS cloud
for multiple runs. Hence, it is not reasonable to conduct benchmarking experiments
in a repeatable and scalable large-scale IaaS cloud.
A more feasible alternative is the use of simulations. Simulation tools make it possible
to evaluate the research hypothesis (here benchmarking the workload) in a controlled
platform which helps to reproduce the results easily. Simulations might also offer
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benefits by allowing to: (i) test services in a repeatable platform; and (ii) tune sys-
tem bottlenecks before deploying on to real clouds. Furthermore, to develop and test
adaptive application provisioning techniques, simulations must enable the evaluation
of heterogeneous workloads and resources such as CPU, memory and networks. Note
that CPU or platform heterogeneity is often seen as the major performance property
of major cloud providers such as AWS EC2 and Microsoft Azure [2]. Moreover, sig-
nificant efforts would be needed to choose plausible, reasonable, realistic assumptions
and models to represent a real system/cloud. Note that due to the abstraction of the
real system, it is not essential that the simulator must be as precise as a real world
cloud platform in producing results. Therefore, it is very important to evaluate the
precision and accuracy of the simulated results.
Resource management techniques in the context of cloud computing are largely eval-
uated using simulations. There are a number of cloud simulators suggested in the
literature. These include but are not limited to DISSECT-CF [3], CloudSim [1], Green-
Cloud [4] and DCSim [5]. Despite the popularity and number of citations, CloudSim
neither offers support for modelling resource heterogeneity, neither validated and veri-
fied yet, although there are several models inside CloudSim which have been validated
in the real world. For example, the linear power model and migration performance
model are validated as accurate (∼10% performance degradation) [6]. However, the
linear power model assumes that energy consumption exclusively depends on the level
of CPU utilization only, and, therefore, ignores other components of the system such
as network and memory. These components also consume significant amount of energy
as demonstrated in [7]. Furthermore, CloudSim does not consider numerous impor-
tant parameters in its VM migration model such as resource over-commitment and the
dirtying rate of memory pages [8]. Similarly, there is no model to capture the overhead
involved in the virtualisation, consolidation and migration technologies1. Das et al. [9]
have extended CloudSim with these models and have validated it through comparing
with real world experiments with an approximate error of ±2%. Most importantly, the
current version of CloudSim cannot model resource and application heterogeneities,
that certainly affect resource allocation and migration decisions.
In this paper, we: (i) model resource (CPU – platform) heterogeneity in CloudSim
through offering extensions; and (ii) discuss the verification and validation of the ex-
tended CloudSim and its various statistical and mathematical models. In respect of
(i), we consider, only, CPU or platform heterogeneity for various workloads (applica-
tions) which may cause variations in workload runtimes (performance), energy, and,
therefore, costs. We are also aware that, besides platform (CPU architecture) hetero-
geneity which is often seen as a core performance property of public clouds [2], [10],
other resources such as memory, networking have impacts on workload runtimes;
however, they are not within the scope of this paper. We describe the modification
being made to standard CloudSim in order to run the experiments presented in [11].
However, simulations may not always represent a real experimental set-up due to
model abstraction, therefore, we demonstrate several statistical techniques to verify
and validate the results produced in simulators, particularly, CloudSim [1]. Moreover,
this paper extends our previously published results [12], [13] – as we measure their
precision and accuracy. Several statistical techniques have been identified, and, im-
plemented that could help the cloud research community to evaluate the accuracy of
their simulated results with respect to a real cloud test-bed. We believe that, with the
notable exception of [9], the accuracy and precision of the cloud simulator “CloudSim”
is rarely addressed in the literature. Following are the major contributions of the work
presented in this paper:

1 http://www.cloudbus.org/cloudsim/
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– several modifications and extensions such as VM migration energy consumption
and performance, in terms of mathematical models, are presented to the well-
known cloud simulator “CloudSim”;

– an approach to model resource (CPU – platform or architecture) and workload
(application) heterogeneities in CloudSim is presented;

– we, then, verify and validate these mathematical models using several statistical
techniques; and

– we measure the accuracy of our previous published results [12], [13], which were
produced in CloudSim, using real workload traces from Google production cluster
[14].

The rest of the paper is structured as follows. In Sec. 2, we provide a background of
our previous work as published in [12], [13], the obtained results and their accuracy.
Furthermore, we model platform and application heterogeneities through offering ex-
tensions into the CloudSim simulator. We demonstrate the precision of CloudSim
and, particularly, the obtained results in Sec. 3 and Sec. 4 using several statistical
approaches. In Sec. 5, we validate our results using datasets from two real cloud plat-
forms. Final comments and thoughts on the assessment are further elaborated in Sec.
6. An overview of the related work is presented in Sec. 7. Finally, Sec. 8 concludes
the paper along with future research directions.

2 Background

This paper, basically, validates and verifies the results of our suggested scheduling
and consolidation technique in [12], [13]. We proposed a VM allocation (FillUp) and
a consolidation with migration technique (Cmcr) that migrate only long-running
VMs to more energy efficient hosts – those that can recover their migration cost and,
hence, continue to run for longer after migration to save energy. The readers are
advised to read [11] for experimental set-up and results discussion. Following are the
major findings demonstrated in [12]:

1. efficient VM allocation techniques might be at least 1.72% more energy efficient
and economical when compared to consolidation with migration techniques.

2. it is approximately 3.52% more energy, hence more cost, efficient to migrate rel-
atively long-running VMs. Long running VMs are those which run for two hours
or longer.

The major reason to select a simulator instead of a real test-bed is that extensive
and repeatable evaluation of a large system would require one to be readily available
for such a purpose, as well as production of suitable code for this purpose. Sharkh
et al. [15] state that CloudSim [1] is one of the most widely used simulation toolkits
in cloud computing. Furthermore, CloudSim allows users to state and govern various
resource allocation and provisioning policies, virtualisation, consolidation and energy-
aware resource management techniques. A detailed discussion of the CloudSim and
other alternatives is presented in [11].
However, CloudSim does not provide a function to add or remove VMs while the
simulation is running, which is necessary to the implementation of a real datacenter
that runs interactive services. Normally, all the simulation entities are instantiated at
the beginning and terminated at the end of the simulation. The main distribution of
CloudSim expects the user to specify the submission times and service demands of
all tasks (VMs) in advance, which is not possible for interactive services. Moreover,
resources such as CPU, memory, disk, networks and workload (application) hetero-
geneities have not been modelled in CloudSim that could essentially affect resource
allocation and migration decisions and, therefore, energy consumption, workload per-
formance and users monetary costs. Therefore, to perform realistic simulations, along
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with statistical models several modifications are needed in CloudSim, which are ex-
plained later in Sec. 2.1.
Furthermore, it is also important that a satisfactory amount of suitable data is avail-
able to build a simulation model and validate it accurately. The data should be from
a reliable source. Usually, the lack or non-existence of suitable data could cause at-
tempts, to verify and validate a model, failure. Therefore, we use real data from Google
cluster [14] and PlanetLab2 (CoMon project)3 to validate our proposed models. The
PlanetLab dataset is briefly explained in Sec. 5.2 and further discussion can be found
in [16]. A brief description of the Google’s dataset is presented in Sec. 2.2; for detail
discussion see [14].

2.1 Extended CloudSim

CloudSim, its layered architecture, and the features provided, are briefly explained
in [1]. Fig. 1 shows the block diagram of CloudSim and its different components, offer-
ing a view of different capabilities for which CloudSim can be used such as scheduling,
VM placement and consolidation techniques.

Fig. 1: CloudSim high level block diagram that shows a list of CloudSim features such
as virtualisation, resource allocation and migration of VMs – users request VMs for
their application (workload) and can see the desired output [1]

We found several limitations that need to be addressed before implementing our
scheduling and migration techniques. For example, the available version of CloudSim
does not support dynamic creation of VMs at runtime. To make it possible, we extend
the DatacenterBroker class, with additional capabilities to read the Google data and
monitor the submission time of each task to create VMs at runtime. If a task cannot
be allocated to a VM, the DatacenterBroker puts the task in its waiting queue (W )
to handle it later when enough resources are available. The DatacenterBroker also
implements Alg. 1 to select a suitable VM type for each task and charge the user
according to Google custom machine4 prices. We also extend the PowerDatacenter

2 https://www.planet-lab.org/

3 http://comon.cs.princeton.edu/

4 https://cloud.google.com/custom-machine-types/
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Fig. 2: Extended CloudSim class diagram [The classes shown in red, green or blue inside google and googlecluster packages are extensions to CloudSim
default classes. In util package, we extend the WorkloadModel with GoogleWorkload to read the Google cluster data [14], the green classes in
google package are the proposed allocation and migration policies while the green class in models package is the migration energy consumption model
– the VmLevelHostPowerModel is implemented inside the PowerModel class – the blue GooglePowerVm class extends the PowerVm class to
account for VMs past runtime and the blue GooglePowerHost class extends the PowerHost class to account for host reconfiguration costs]
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class to implement our proposed migration policies. An existing problem in this class
i.e. several VMs were suddenly disappeared when they were in migration process was
resolved. In essence, there was no check on the VM status during its migration and
some VMs finish execution during the migration process.
Another issue was the heap memory, particularly, when dealing with large-scale sim-
ulations that run for longer periods. As discussed, CloudSim deals with each entity as
an object, and it is important to clear the corresponding memory states and references
when some objects are destroyed or not referenced. We noted that the Java garbage
collector was also unable to free space, as the objects were referenced even when they
have been destroyed. To resolve this issue, we used two techniques: (i) modified the
DatacenterBroker to explicitly destroy VM objects when they finish their execution;
and (ii) force the Java garbage collector to periodically clear the memory.
A slight modification to ensure that an idle host consumes idle power was made to the
PowerHost class. To implement realistic simulations (which resemble closely to a real
test-bed), we extend the Host class for host reconfiguration costs. These costs matter
when switching on/off the resources (hosts) using dynamic capacity planning (DCP).
To create a history of VM past runtime, the Vm class is extended. The extended Pow-
erVmList then ensures that VMs selected for migration are in descending order of
their past runtime (Rpast). All VM allocation policies were implemented by extending
the VmAllocationPolicy class. However, there is no model implemented for the energy
consumption of VM migration in CloudSim. We added a MigrationPowerModel class
to CloudSim, which can be extended to any power model of the migration process.
Initially, the migration power model demonstrated in [17] was added to perform our
simulations. We also added a new class to CloudSim, i.e. VmLevelHostPowerModel,
to estimate the energy consumption of VMs on a virtualised host. We extend this
class with the VM power model as explained in [12] and which is also demonstrated
on a real cloud test-bed in [18], [19].
CloudSim does not model the resource heterogeneity and performance variations due
to CPU models and/or workload contention. However, the performance degradation
due to migration is already taken into account [20]. To model resource heterogeneity
and performance variations, we use several performance benchmarks from Amazon
EC2, relate them to Google workload and feed them into CloudSim. We extend the
host class with performance parameters (such as mean, standard deviation) to model
variations in workload runtimes – as described in Sec. 2.3.
Fig. 2 shows the UML (Unified Modelling Language) class diagram of several extended
classes of CloudSim. The classes in google package extend the CloudSim functionality
for VM allocation and migration. Similarly, the classes defined in googlecluster pack-
age read Google data and create VMs according to their arrival rate (time). Readers
who are unaware of the basics of CloudSim, should read [1] first to appreciate how
these classes relate to each other and what they are supposed to do.

2.2 Google Cluster Dataset

The extended WorkloadFileReader class reads every task and requests the broker to
create a VM using Alg. 1. We assume each Google cluster task is a VM, and extract
its characteristics (required resources, duration etc.) from the trace [14]. The required
resources (CPU, memory), submission (request) time and runtime of every task are
known prior to VM creation. It is also possible that a user’s task has a deadline, and
it might be useful to know before launching a VM whether the VM would be able to
finish its execution within time (deadline) or not. In that case, every task request also
goes through Alg. 1, and a suitable, cheap (low price) instance type (VM) is selected
from the available pool of instance (VM) classes.
The Google cluster dataset is briefly explained in [14]. We wrote a Python script in
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Algorithm 1: Instance type selection algorithm [13]

Input: Instance request (R), available instance types (Instances)
Output: Return a suitable and cheap instance (Instancesuitable)

1 Instancesuitable ← InstancesmaxCores [assume the larger instance as suitable];
2 price ← Price.InstancesmaxCores [on-demand price per hour ];
3 minPrice ← Price.InstancesminCores [on-demand price per hour ];
4 for VM in Instances do
5 if VM can finish R within time (is suitable) then
6 if VMprice < price then
7 Instancesuitable ← VM ;
8 price ← Price.Instancesuitable [on-demand price per hour ];

9 end if

10 end if
11 if Price.Instancesuitable = minPrice then
12 break for loop;
13 end if

14 end for
15 return Instancesuitable

order to read task durations and start times from the dataset (available at GitHub)5.
Using task runtime details from Google data, we wrote the dataset as a text file (.txt)
which contains the fields as shown in Table 1. Note that the CPU needed for a VM is
converted into the notion of MIPS (Millions of Instruction Per Second) i.e. instruc-
tion count to create consistency with CloudSim. For a particular application, MIPS
is calculated as the instruction count divided by its runtime multiplied by 106 [10]. If
we assume a CPU frequency of 1 GHz as equivalent of executing 103 millions instruc-
tions per second (MIPS) – because 1 GHz = 103×106 Hz = 103 millions Hz and 1 Hz
corresponds to one clock cycle which is essential to complete a single instruction; then
a particular task running on this CPU for a specific amount of time can be described
as [time (seconds)× 103] number of MIs (million instructions). For example, an hour
long task/workload on this particular CPU can be described as 3, 600 × 103 million
instructions where 3,600 refers to the number of seconds in one hour. In other words,
a workload which consists of 3, 600×103 million instructions (MIs) would take exactly
1 hour on a 1.0 GHz CPU, 0.5 hour on a 2.0 GHz CPU, and so on, to complete its
execution.
Note that the above assumption is the implementational simplification of the CloudSim
instruction execution methodology, which essentially means that every CPU instruc-
tion requires exactly one clock cycle to execute [1]. However, this is not realistic with
respect to modern pipelined CPUs; because: (i) a particular instruction may take
several clock cycles to execute [CPI – cycles per instruction is greater than one]; and
(ii) multiple instructions might be executed in a single clock cycle [IPC – instruc-
tions per cycle is greater than one or CPI is lesser than one]. To simplify concerns,
we assume that each instruction requires exactly one clock cycle to complete its ex-
ecution. Moreover, the classical RISC (reduced instruction set computer) five stage
pipeline also has CPI = 1 i.e. the best attainable value with a single-execution-unit
processor6; which executes exactly one instruction in one clock cycle. In general, good
performance metrics relate to application performance and not machine characteris-
tics such as clock cycles, as demonstrated in [10]. We believe that due to these reasons
it is reasonable to assume CPI = 1; however, in our future work, we would account for

5 https://github.com/google/cluster-data

6 https://en.wikipedia.org/wiki/Classic RISC pipeline
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these plausible assumptions. The WorkloadFileReader class reads the file and sends
an event for VM creation at runtime (start time). When a VM is created, the broker
class sets its termination time (finish time) and sends a VmDestroy event when the
time is reached. Note that reading large files containing millions of entries can create
problems with the JVM memory (heap) as discussed in Sec. 2.1. We also use another
dataset from the PlanetLab (data related to CoMon project) [21] to validate our pro-
posed algorithms in [12]. The PlanetLab data consists of CPU utilization values for
more than a thousand of VMs with an interval of five minutes as explained later in
Sec. 5.2.

Field name Type Description

Start time (int) start time of the VM in seconds
CPU (int) total number of MIPS that the VM needs to execute

Memory (int) memory needed for the VM in MB
Network (int) network resources needed for the VM in MB

Finish time (int) finish time of the VM in seconds

Table 1: Fields in the dataset [CPU requirements are in MIPS to make it consistent
with CloudSim – for example if a VM, which has 1 GHz CPU, runs for one hour then
it needs 60×60×103 = 3, 600×103 million instructions (MIs) [1] – a workload of 103

million instructions would take 1 seconds to complete its execution on 1 GHz CPU
while 0.5 seconds on a 2 GHz CPU]

2.3 Modelling Resource and Application Heterogeneities

In this section we describe how performance of VMs (running different kinds of appli-
cation) varies due to different CPU models (architectures) that accommodate these
VMs. O’Loughlin et al. [22] performed several experiments on Amazon EC2 cloud
and suggested that similar VMs perform differently on similar hosts; and the per-
formance variations for a CPU model/architecture can be modelled as multi-modal
log-normal distribution – where multi-modality relates to the number of CPU archi-
tectures based on the total number of visible peaks. For example, Fig. 3 demonstrates
the performance of AWS m1.small instance type on different CPU models (architec-
tures). Such kind of heterogeneities would certainly affect the workload performance
and, therefore, infrastructure energy efficiency. Unfortunately, CloudSim does not of-
fer any model to represent this.
In order to model platform and application heterogeneities within the Google dataset,
we can assume the priority of each task as the type of application. For example, all
tasks of priority 0 belong to a particular application, say Priority0; and there are
12 priorities in total. As the trace providers point out that each task priority affects
billing [14], thus we believe that it will accurately reflect the workload type. How-
ever, heterogeneity of the CPU resources is not available in the dataset. Therefore,
the runtimes of tasks that belong to a particular workload can be assumed as the
performance variations and the number of peaks as the CPU models. As explained
in [12], we use Monte Carlo simulations of the benchmarks, as demonstrated in [22],
to generate a larger dataset in order to relate it to the Google dataset and extract
the hosts and applications heterogeneities and performance parameters in terms of
minimum (min), maximum (max), mean (µ) and standard deviation (σ). To do this,
we put both datasets i.e. real benchmarks and Google data on the same scale, as



Zakarya M., Gillam L. 9

Fig. 3: Performance variations for Povray and Bzip2 benchmark workloads on
m1.small instances [E5430 performs ’best’ for Bzip2 but ’worst’ for Povray] [22]

shown in Fig. 4 and Fig. 5. Through visual inspection, we identify similar histograms
in the multi-modal distributions. Moreover, we choose the performance parameters,
through mapping, in such a way that the differences between them are the least. From
an experimental point of view, when a particular application is being migrated from
one host to another host, the impact of host heterogeneity is added as an increase
or a decrease in application’s runtime. Further details on these parameters and the
mapping mechanism to model resource and application heterogeneities can be found
in [11], [23].

Fig. 4: Priority 0 workload and execution time in (seconds) for host types A, B &
C [log-normal distribution of runtimes – right, Google data vs. real performance
benchmarks – middle, identify platforms – left] – Priority0 workload is similar to
Povray benchmarks on E5430, E5-2650 and E5645; where, E5430 performs better
than E5645 [11]

We extend the PowerHost class of the CloudSim simulator to account for platform
heterogeneities. The extended class offer a way to either: (i) increase or decrease the
workload runtimes (using the z-score normalisation technique); and (ii) reduce the
number of MIPS (execution) in the range of variations. CPUs of the same model with
different speeds would be expected to need to execute the same number of instruc-
tions in order to complete a given workload. Conversion from CPU speed to MIPS,
as described in Sec. 2.2, retains the relative speed differential for the CPU model.
However, variations between CPU models do have to be accounted for, and this is
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Fig. 5: Priority 2 workload and execution time in (seconds) for host types A, B & C
[log-normal distribution of runtimes – right, Google data vs. real performance bench-
marks – middle, identify platforms – left] – Priority2 workload is similar to Namd
benchmarks on E5-2651, E5-2650, E5645, E5430 and E5507; where, E5430 performs
worse than E5645 [11]

readily achievable by associating to workload runtimes and determining the MIPS
rate that leads to this. Moreover, the GoogleWorkloadFileReader class uses priority
of each task to put it with the right workload type. With the above modification to
CloudSim, we evaluated the proposed resource allocation and migration algorithms
for more than a million tasks (VMs) that belongs to various applications and 12,583
heterogeneous hosts – that concluded the two major findings, as, initially, described
in Sec. 2.

The results were obtained on several plausible and realistic assumptions in a sim-
ulated environment using the well-known cloud simulator “CloudSim”. However, it is
not always possible that same or similar results and savings are also achievable in a
real cloud platform or test-bed. The reason is that a simulator only abstracts a model
but does not always reflect the real world scenarios. Therefore, the solution of any
research problem through numerical simulation (experimentation) is not only to find
a result, but also to guarantee the quality, precision and accuracy of the results [24].
There are several questions that come to mind regarding the results produced in a
numerical simulator. For example:

1. can we assume that the obtained results are accurate regarding the system be-
haviour?

2. how can we enumerate the similarity and, therefore, dissimilarity between simu-
lation and reality?

To answer the above two questions, it is essential to establish verification and valida-
tion7 criteria that “allow objective quantification of the difference between the results
and the reality” [24]. Thacker et al. [25] describe that numerical simulations never
completely match “real” experimental results due to the model abstraction. There-
fore, the best option available is to make sure that the numerical solutions would
be a good approximation of the reality. One approach that is widely used for this
purpose is verification and validation, which collects evidence of a model’s accuracy
for a particular scenario. Nevertheless, this approach cannot prove that a particular
model is accurate for all possible scenarios, but, rather, it can provide evidence that
a model is sufficiently accurate.

7 https://www.mitre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/other-se-lifecycle-building-
blocks-articles/verification-and-validation-of-simulation-models
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3 The Verification and Validation Approach

Usually, two different approaches are most commonly used to judge how good/bad a
model is with respect to the real system: (i) verification; and (ii) validation. Verifi-
cation ascertains that the model implements correct assumptions. Validation makes
sure that the assumptions are reasonable with respect to the real system. The au-
thors, of the manuscript in footnote [8], have described different methods including
anti-bugging, simplified models, and tracing, that can be used to verify simulation
models. Furthermore, Jauregui et al. [24] have discussed different kinds of validation
that can be performed using: (i) other numerical solutions; (ii) analytical solutions;
(iii) experimental results; (iv) intermediate results; and (v) convergence. Once a kind
of validation is chosen, the next problem is to compare the obtained results with
the pattern (established models) quantitatively. In numerous research fields including
computer science, modest visual/photographic inspection is, largely, used as a method
of validation. However, this method forces the necessity to examine reliable statistical
techniques (or computational methods) to equate the differences (statistical signifi-
cance) among the numerical and real results; and measure their accuracy and quality.
Several other validation methods like: (a) correlation; and (b) reliability factor are
also discussed in [24].
All verifications and validations are undertaken through a comparison of a refer-
ence/pattern model (i.e. the ground truth) with the simulated model under obser-
vation. The most common technique is the use of comparative analysis, performed
in three different ways: (i) comparing simple cases of a simulation model to known
results of analytical models (simplified); (ii) comparing the simulation model to other
simulation models that have been already verified and validated; and/or (iii) exper-
imental results (theoretical analysis). This paper provides an analysis of CloudSim
(as the approaches in [12] are evaluated through this simulator) to make sure that
it produces correct results. In respect to (i), the paper starts with associating real-
life measurements (small-scale) to results obtained from simulations using plausible
assumptions [Sec. 4.1]. During the comparisons, the precision and accuracy of the
numerical results and, therefore, simulation is analysed. In respect to (ii), the paper
focuses on a comparative performance and accuracy study of CloudSim with an exist-
ing simulator DISSECT-CF [3] [Sec. 4.2]. In respect to (iii), we repeatedly conduct the
simulations using the same experimental set-up but with differences in: (a) VM arrival
and termination rate, (b) submission time, and (c) workload datasets [Sec. 5.1]. Next
we use different statistical approaches to approximate our results to a real test-bed.
Note that both Sec. 4.1 and Sec. 4.2 fall under the category of model verification,
while Sec. 5.1 depicts the approach towards model validation.

4 Model Verification

Verification is intended to assure that the model does what it is designed to do. There
are several other cloud simulators that have been already verified (as discussed in Sec.
6) [5], [3]; however, CloudSim is not. Therefore, we use two kinds of approaches to
make sure that the simulated system behaviour inside CloudSim is like a real system
and is expected to produce accurate and precise results: (a) simplified model – com-
paring the simulated model to analytical models [Sec. 4.1]; and (b) simulated models
– comparing the simulated model with other simulated but verified and validated
models [Sec. 4.2].

8 http://www.inf.ed.ac.uk/teaching/courses/ms/notes/note14.pdf



12 Modelling Heterogeneities in Cloud Simulations and Quantifying their Accuracy

4.1 Simulation Models vs Analytical Models

The easiest (perhaps less efficient) way to verify our results is to compare them with
analytical results which are obtained through a real cloud platform or test-bed. How-
ever, there is no guarantee that a similar approach is always available, so this might
not be easy to do. Furthermore, this technique can be used, only, in simple scenarios,
since finding analytical solutions for large-scale real problems could be either im-
possible or, at least, difficult, and most probably, this could be the reason for using
numerical simulations instead of a real test-bed [1].
Fortunately, a part of our migration approach, the VM level host efficiency model
is already taken into account by several researchers. For example, Alzamil et al. [18]
proposed a similar model and produced their results at Leeds cloud test-bed at Univer-
sity of Leeds, UK9. Recently, the authors extended their own model in [18] to address
heterogeneous workloads [19]. Since we use the VM level host efficiency model as a
baseline for our VM placement and migration policies [12]. Therefore, if we compare
our baseline to the results demonstrated in [18] and [19], we can come up with an
approach to approximate our results and their accuracy to a real platform.

Real Test-bed A homogeneous cluster consisting of just four hosts is used in the
real experiments in [18], [19]. Each host consists of a four core X3430 Intel Xeon CPU,
running at the default clock speed of 2.40GHz, and 8GB of RAM. These hosts are
connected via Gigabit Ethernet. Each host is attached to a watt meter in order to
measure the energy consumed. These hosts are also used in the Leeds test-bed, which
comprises a cluster of Dell commodity servers as described in [18]. If we know the
minimum (Pidle) and maximum (Pmax) power consumption of the real hosts in the
Leeds test-best, we can use a linear power model (to measure energy usage) which is
already validated [refer Sec. 4.2]. Unfortunately, except for CPU, memory and disk,
we do not know other details of the hosts. Therefore, for simulating the energy usage
behaviour, we use the benchmark values from SPECpower10. We further assume that
the VM workload is stochastic (random change) and is always utilizing the requested
resources as described in [1].
The first experiment in [18] demonstrates that over-provisioning the number of vCPU’s
(from one to four) on a single VM does not have an impact on the host’s overall energy
consumption. There are two reasons: (i) if the VM has one CPU, then dividing that
CPU into one or four vCPUs would still consume the same maximum energy [18]; and
(ii) if the VM has assigned more than one CPU, but the VM is not utilizing the over-
provisioned resources. In respect to (ii), if the VM is utilizing the over-provisioned
resources then the energy usage and the VM runtime would vary. Despite this dy-
namic behaviour (real), the current version of CloudSim implements a static behaviour
in over-provisioning situations; that would affect infrastructure energy efficiency. To
move away from this static behaviour in CloudSim, simulation developers should
offer a way (or statistical model) to dynamically change the host’s processing capa-
bilities (i.e. speed or the MIPS ratio) depending on the level of over-provisioning they
observe in real platforms. However, this requires significant efforts due to lack or non-
availability of resource over-provisioning datasets. Similar to resource heterogeneity
model [as described in Sec. 2.3], we can estimate various parameters through observ-
ing real platforms and, then, embed those in the PowerHost class of the CloudSim
simulator.
In the second experiment, the authors demonstrated that increasing the number of
VMs in a single host has an impact on the host’s overall energy consumption that can
be represented by a linear relationship. The host level energy consumption and the

9 https://institutes.engineering.leeds.ac.uk/computing/research/distsys/facilities.shtml

10 https://www.spec.org/power ssj2008/results/res2010q2/power ssj2008-20100420-00252.html
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Fig. 6: Modelling host level energy consumption (4 VMs) – the experiments are per-
formed in four stages (60 second intervals), scaling-up the VM from one vCPU to four
vCPUs [18]

linear growth in energy usage w.r.t the number of VMs is shown in Fig. 6 [18], [19]
and is given by Eq. 1:

y = 10.127x+ 72.587 (idle power) [R2 = 0.9996] (1)

where x is the number of VMs running on host and y is the host power consumption.
Using virtualised host energy consumption model in [12], the VM level energy usage
for all four VMs is similar to host’s overall energy consumption as shown in Fig. 6
and Fig. 7 [18]. We use a similar virtualised host energy model to the baseline for our
proposed VM allocation and migration policies. Therefore, if the simulated results of
this model have similarities to those results demonstrated in [18], then the model may
be considered verified.

Simulated Model We created (simulated) a model of the above real test-bed. The
host level energy consumption and the linear relationship between energy usage and
number of VMs, are shown in Fig. 8. The exact idle power consumption of hosts (real
test-bed) is unknown to us. According to the SPECpower benchmarks that we use
in our experiments, the idle power of each host is 62 Watts per hour (Wh). If we
consider the y intercept in the linear equation as the host idle power (62 Wh), then
the slope (m1 = 10.267) of simulated results is very near to the slope (m2 = 10.127)
of the linear equation in real experiments [Eq. 2]. These slopes represent a similar
rate of change in energy consumption w.r.t the number of VMs on a single host. Un-
fortunately, we are not aware of the workload type inside the real test-bed. Therefore,
we assume a stochastic workload (random behaviour in utilizing the VMs) in our
simplified (simulated) model. The stochastic utilization model is already available in
CloudSim class file “UtilizationModelStochastic()”. We ran the experiment ten times
and then compared the average values to the real test-bed results.

y = 10.267x+ 62.0 (idle power) [R2 = 0.9149] (2)
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Fig. 7: VM level energy consumption (4 VMs) – the experiments are performed in four
stages (60 second intervals), scaling-up the VM from one vCPU to four vCPUs; the
dips in the graph (left side) represent the transition of terminating the current stage
and starting the next stage [18]

In Eq. 2, x is the number of VMs running on host and y is the host overall power
consumption. As Fig. 8 shows, the simulated results (host level energy consumption
w.r.t number of VMs) match the real-life measurements most closely (the relative
error (RE) in terms of the difference in both slopes of the linear equations (m1, m2)
is less than 1.37%). This is computed as:

RE = ±
[
100−

(m1

m2
× 100

)]
(3)

Therefore, compared to the real test-bed experiments, our simulations of the simplified
model and results can be assumed ∼ 98.63% (100 - 1.37) accurate. With this number
we suggest that our approaches can save approximately 3.66±0.05% more energy
than no migration approach [11]. Note that ±0.05 is the RE which is approximately
1.37% of 3.66 – computed as 1.37

100 × 3.66. However, with this it is understood that a
model which works for simple scenarios is not assured to work for complex scenarios;
however, a model which does not work for simple scenarios will absolutely not work
for complex ones.

4.2 Simulation Models vs Validated Simulation Models

We did not find any study that have validated the simulator under consideration i.e.
CloudSim [1] and its models as a whole. However, Tighe et al. [5] developed and val-
idated a cloud simulator “DCSim” that can be used for comparison with CloudSim
(in terms of their models). Similarly, Kecskemeti et al. [3] presented “DISSECT-CF
(DIScrete event baSed Energy Consumption simulaTor for Clouds and Federations)
and analysed by firstly validating it against the behaviour of a small-scale infrastruc-
ture cloud at the University of Innsbruck, Austria. According to their evaluations,
the system’s simulated behaviour almost matches real-life experiments with negli-
gible error (with respect to application runtime, larger-scale network transfers and
energy consumption)”. These simulators are briefly described in [11]. In this section
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Fig. 8: Host level energy consumption for 1 host running 1 to 4 VMs [the workload
inside VMs implements a stochastic utilization model]

we verify several models that we used in CloudSim by comparing them to similar
models in the validated simulator “DISSECT-CF”. These models include: (i) host’s
energy consumption (linear relationship with CPU utilization and benchmarks); (ii)
migration performance degradation; (iii) migration energy usage; (iv) migration time
and (v) resource (CPU or platform) heterogeneity.

Linear Power Model The energy model (linear relationship with CPU usage %, as
given by Eq. 4) has been validated in [3], with relative error of 0.21% with a sample
standard deviation of 0.4%. The resulting power readings of a real host and simulated
model using DISSECT-CF simulator are presented in [3].

P = Pidle + (Pmax − Pidle)× u (4)

where Pidle and Pmax denote the power consumption of host when it is idle (0%
utilised) and 100% utilised, respectively; and u is the utilisation level of the host. Fur-
ther details of the experimental set-up and parameters are discussed in [3]. Note that
for accurate energy readings, one must be aware of the CPU’s energy characteristics
as they might not follow a linear trend and thus the offered linear consumption model
should be exchanged with a custom model of which we have full control (SPECpower
benchmarks). The creation of custom models is described in [8]. A few example mod-
els are also available in Vincenzo’s fork of the simulator11. Teng et. al [26] also found
a linear relationship between a DVFS enabled CPU and its power consumption as
given in Eq. 5:

Pt = C1.f
3 × ut + Pidle (5)

where f is the CPU frequency and C1 is the scale coefficient. The energy consumption
et is defined as an integral of the power consumption function over a period (t) as
given in Eq. 6:

et =

∫ tf

ts

Pt dt (6)

11 https://github.com/vincenzo-uibk/dissect-cf/
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where ts is the time when the server starts and tf is the time when the server finishes
its assigned workload (job). The total energy consumption E of a datacenter with m
active servers is measured as in Eq. 7.

E =

m∑
i=1

et (7)

Similar to DCSim and DISSECT-CF, CloudSim also provides support for modelling
the SPECpower12 real benchmarks (power consumption) for a number of hosts. We
also use the SPECpower6 benchmarks for hosts energy consumption in our experi-
ments, which does not need to be validated.

Migration Performance Model The migration model that we used in our ex-
periments i.e. each migration costs 10% loss in performance (degradation), has been
validated for web application (workload) on a cluster of 6 hosts running 5 VMs as
demonstrated in [27]. Beloglazov et al. [20] also used a similar model to demonstrate
performance degradation due to migrations in datacenters.

Migration Power Model The refined energy model that we used for estimation of
migration cost has been validated on a real Xen virtualised platform in [28], where it
is demonstrated to be 90% accurate. The results are shown in [28], which describes
that the refined model error is as low as 10%.
Huang et al. [29] demonstrated that during a migration, the energy consumption of
the target host is almost stable (low increase). However, the energy consumption of
the source host goes down with increase in CPU utilization of the migrated VM.
Another energy consumption model for live migration is presented in [30]. This model
increases the accuracy of the model presented in [29] by ∼3.9% (11.8% vs. 15.7%
error) for the source host and by ∼7.9% (5% vs 12.9% error) for the target host.
The authors [30] have suggested an accuracy improvement of ∼24% over the model
in [29]. With these contradictory results, it is reasonable to assume the VM size (data
copied) as a major factor to estimate the energy consumption of a VM migration, as
suggested in [12].

Migration Time The length of a live migration depends on the total amount of
memory used by the VM and available network bandwidth [16]. The model in Eq. 8
which is used to estimate the time needed to complete a migration is mathematically
valid: (i) if the size (memory and disk) of the migrated VM is known; and (ii) if the VM
is idle. Beloglazov et al. [16] describe that “this model is justified (provided evidence
for) and mathematically valid since the images and data of VMs are stored on a
shared storage accessible over the network, which is required to enable live migration;
therefore, copying the VM’s storage is not required”.

Migrationtime =
VMmemory

Networkbandwidth
(8)

Liu et al. [28] also demonstrated a slightly different model of Eq. 8 and have validated
it in a real cloud platform. The model is suggested to be over 90% accurate. However,
in our simulations we assume that a given VM workload is homogeneous and does
not change, therefore, we believe that the selected approach (Eq. 8) is mathematically
valid and accurate.

12 https://www.spec.org/power ssj2008/



Zakarya M., Gillam L. 17

Resource Heterogeneity Model To evaluate the trade-off between energy and
performance (hence cost), we considered the heterogeneity of resources (hosts), with
respect to CPU/platform, in our simulations using CloudSim. To date, CloudSim
(and even DCsim and DISSECT-CF simulators) does not have any model to repre-
sent performance and heterogeneity of CPU resources. Therefore, we made several
assumptions through relating the Google data with real performance benchmarks as
demonstrated in [22], [31] [as described in Sec. 2.3]. Using the relationship between
Google data and real performance benchmarks, we were able to identify various perfor-
mance parameters (such as minimum - min, maximum - max, mean - µ and standard
deviation - σ that denote variations in runtime) of hosts for different kinds of work-
load that we take into account.
Albeit, there would be other efficient ways of mapping; but, we use simple statisti-
cal method. First we put both datasets (i.e. real benchmarks and Google data) on
the same scale, then identify the number of peaks using visual inspection. Moreover,
through comparing the means, minimums and maximums of each single distribution,
in both datasets, this could offer a way of identifying various platforms for various
applications. We believe that this mapping (Google data – real benchmarks [14], [22])
is undertaken accurately and it also describes the hosts’ heterogeneity well. However,
as described earlier, we simply assume the CPU or platform heterogeneity as it is of-
ten considered as a core performance property of major cloud service providers such
as EC2 and Azure [2]; but we are aware that other aspects such as memory, disk
and networks have also impact on workload performance. Further discussion on the
mapping is given in [12]. Note that a generalized mathematical model is still needed
that can be used inside simulators to represent real heterogeneities for cloud resources
and workloads.
Based on the above discussion of individual models (that we use in CloudSim) and
their correctness, it is reasonable to assume that each sub-model produces valid results
and the integration of models (CloudSim) is verified to be accurate. Due to depen-
dencies among the models, it is also possible that the simulation can still produce
invalid results even if all its sub-models are validated as described in [13]. However, in
Cloudsim the above models are independent and it is reasonable to assume that this
will not happen.

5 Model Validation

In model validation, there are three aspects of a model that should be taken into ac-
count: (i) assumptions; (ii) inputs and distributions; and (iii) outputs and conclusions.
Furthermore, there are three approaches for validation that can be applied to these
different aspects of a particular model as appropriate. These approaches are: (a) real
system measurements; (b) expert intuition; and (c) theoretical results/analysis. Out of
these three, “comparison with a real system is the most efficient and reliable method
of validating a simulation model” [24]. However, this is often infeasible because: (i)
the real system does not exist; or (ii) the measurements might be either impossible, or
too difficult and expensive to carry out. Therefore, we adopt the validation approach
using theoretical results and their analysis - (c). This is the most popular technique
due to the fact that numerical measurements show consistency of the simulated model
with the reality. Nevertheless, it is mandatory to introduce a measuring instrument
whenever we perform a measurement and consequently this directly or indirectly af-
fects the system being measured/observed. Therefore, it is very important to have the
highest similarity between simulation configurations and measurements [24].
There are several methods such as correlation, that can be used to find similarities and

13 https://www.mitre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/other-se-lifecycle-building-
blocks-articles/verification-and-validation-of-simulation-models
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dissimilarities among different datasets (measurements) [24]. The correlation among
two or more variables is perfect if the output value of the correlation factor is closer
to either 1 or -1 and gets worse if the output value approaches to 0. The sign (±)
designates the nature of the correlation: (+1) shows a perfect positive linear rela-
tionship. A (+1) represents that the relationship between two or more variables has
exactly the same behaviour: when one of them decreases, the other decreases as well.
Similarly, a (-1) indicates that there is a perfect negative relationship (linear), one
will decrease as the other increases and vice versa. To compare the obtained results,
a better and more efficient statistical approach than correlation is Feature Selective
Validation (FSV) which is most widely used in the literature because of its versatility
and simplicity [24].
In Sec. 5.1, we discuss the accuracy of the results presented in [12] using datasets from
Google. In Sec. 5.2, we use datasets from another real cloud (PlanetLab) to evaluate
the validity and accuracy of our approaches.

5.1 Validation using Experimental Results (Google dataset)

In this section, we evaluate the proposed migration techniques on 29 different traces
from Google’s cluster dataset (each trace corresponds to a single day workload) [14]
and discuss the similarities among the obtained results to get the validity of the
proposed techniques. Unfortunately, we do not have any measurements (ground truth)
from a real test-bed that we can use them to compare with our results. Therefore,
the only option to validate our findings from all 29 datasets is to statistically prove
that for each day’s workload, there is a significant difference (statistical) between
the results generated by the proposed allocation and migration policies and other
scheduling techniques.

Significance Differences As described in [11], [13], for all 29 datasets, the pro-
posed VM allocation policy (FillUp) combined with Cmcr (consolidation technique)
achieved higher energy efficiency compared to state-of-the-art allocation and migra-
tion policies. For all 29 datasets, the VM allocation policies (RR, R, BRS, MPD, FF,
FillUp) combined with different migration approaches (no migration [NO], migrate
all [ALL], Cmcr) that achieved higher energy efficiency are marked (bold face) in
Table 2. For all datasets, the results demonstrate that the FillUp approach com-
bined with Cmcr technique achieves higher energy efficiency than other approaches.
Similarly, Cmcr always achieves higher energy efficiency than NO and ALL which
indicates that our migration approach could be more energy and hence cost efficient
to datacenter service providers. Note that the Cmcr approach minimizes the energy
consumption by migrating VMs running for longer [as explained in [12], [13]]. In order
to determine that there is a statistical difference (significant) between the results pro-
duced from our approaches and others, we use two statistical tests: (i) the standard
error; and (ii) analysis of variance.

Standard Error If the sampling distribution is normally distributed, the sample
average, its standard error (SE), and the quantiles (0.975) of the normal distribution
can be used to calculate Confidence Intervals (CI) for the average. The statistics for
our experiments are shown in Table 3. The SE is estimated by the standard deviation
(σ) of the sample divided by the square root of the sample size (n) [Eq. 9]. Note that
we use standard errors to study the significance of the differences between the means.

SE =
σ√
n

(9)
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Day RR R BRS MPD FF FillUp
NO ALL Cmcr NO ALL Cmcr NO ALL Cmcr NO ALL Cmcr NO ALL Cmcr NO ALL Cmcr

1 29.06 21.05 21.05 27.99 20.87 20.87 15.72 15.34 15.19 20.69 19.32 19.32 15.94 15.8 15.7 13.6 13.31 13.3
2 30.19 22.41 22.41 29.13 22.21 22.21 16.68 15.7 15.68 22.18 19.98 19.82 16.85 16.57 16.37 14.36 13.93 13.93
3 46.78 31.4 31.4 44.76 31.2 31.2 25.82 24.94 24.82 36.56 30.49 30.49 26.05 25.59 25.27 22.29 25.59 21.52
4 38.26 25.03 25.03 34.25 24.81 24.81 19.99 18.98 18.9 28.55 23.23 23.23 19.82 19.64 19.33 16.94 16.54 16.51
5 27.35 18.3 18.3 26.36 18.0 18.0 12.85 12.3 12.07 17.9 15.53 15.53 12.89 12.82 12.54 10.71 10.39 10.37
6 34.5 21.16 21.16 32.7 21.28 21.28 17.0 15.39 15.35 21.36 20.29 19.54 16.91 16.05 15.77 14.16 13.61 13.58
7 20.28 13.33 13.33 18.2 13.08 13.08 82.45 82.17 8.12 11.78 11.53 11.51 8.28 8.44 8.34 7.01 6.97 6.97
8 43.28 23.96 23.96 37.83 24.33 24.33 18.39 17.63 17.43 26.99 23.62 22.59 18.1 17.91 17.61 15.31 15.12 15.11
9 120.4 102.7 102.7 119.2 102.5 102.5 92.15 90.89 90.28 109.3 101.4 101.3 92.1 92.99 92.39 82.7 82.05 81.85
10 62.2 52.8 52.8 61.52 52.72 52.72 43.86 42.88 42.79 53.26 48.26 48.26 43.87 44.11 43.67 38.74 38.3 38.2
11 38.8 25.58 24.69 38.62 26.1 26.1 17.88 16.47 16.47 25.14 23.98 23.14 17.8 17.7 17.51 14.79 14.41 14.4
12 16.97 9.44 9.44 16.57 9.74 9.74 7.94 6.99 6.81 7.94 11.09 10.8 7.91 7.18 7.1 6.51 6.02 6.02
13 21.95 13.37 13.37 20.8 13.31 13.31 9.77 9.06 9.06 12.61 12.13 12.04 9.96 9.48 9.43 8.29 7.96 7.96
14 12.47 8.0 8.0 11.47 7.94 7.94 4.62 4.66 4.55 7.15 7.09 7.09 4.64 4.75 4.6 3.89 3.85 3.85
15 21.12 14.41 14.41 20.01 14.39 14.39 9.67 9.59 9.51 14.28 13.71 13.71 9.63 9.92 9.55 8.19 8.04 8.03
16 26.37 19.17 19.17 25.66 19.09 19.09 14.43 13.93 13.77 19.22 17.47 17.47 10.98 14.92 14.33 12.87 12.66 12.56
17 18.85 12.99 12.99 17.48 12.91 12.91 7.99 7.94 7.82 10.85 10.4 10.4 8.01 8.09 7.94 6.76 6.68 6.68
18 90.29 58.04 58.04 85.47 57.55 57.55 50.98 46.63 46.63 87.31 63.16 62.73 50.52 51.16 47.48 45.42 44.3 44.04
19 70.43 37.49 37.49 69.2 38.2 38.2 35.3 30.92 30.77 46.49 37.0 37.0 34.59 31.22 31.0 28.48 26.72 26.68
20 46.17 25.21 25.21 45.35 25.29 25.29 22.51 19.98 19.14 30.24 26.95 26.95 21.87 20.27 19.58 17.66 16.38 16.38
21 44.27 21.93 21.93 43.57 22.2 22.2 21.08 17.43 17.15 23.18 22.91 22.91 20.68 17.62 17.49 16.43 15.19 15.18
22 49.17 29.2 29.2 47.12 28.62 28.62 24.05 21.5 21.5 37.49 30.2 29.1 23.76 22.39 22.19 20.11 19.4 19.38
23 63.34 40.57 40.57 61.09 40.81 40.81 37.06 33.52 33.25 48.68 40.28 39.67 36.69 34.41 34.21 31.67 30 29.94
24 64.75 35.78 35.78 47.81 35.81 35.81 30.46 28.96 28.71 41.44 35.34 35.34 30.46 29.86 29.35 26.29 25.6 25.56
25 34.84 24.1 24.1 32.99 23.78 23.78 18.33 18.04 17.97 27.81 22.07 22.07 18.35 18.54 18.36 15.81 15.79 15.69
26 48.39 34.04 34.04 44.42 34.91 34.91 25.29 25.67 25.55 40.61 34.37 34.28 25.39 25.9 25.52 22.29 22.43 22.34
27 43.18 27.31 27.31 42.05 27.23 27.23 23.2 21.2 21.16 31.38 26.96 26.66 22.92 21.78 21.49 19.38 18.76 18.74
28 40.99 30.66 30.66 40.31 30.42 30.42 23.98 23.41 22.89 34.55 28.01 28.01 23.91 24.32 23.64 20.71 20.54 20.47
29 25.75 21.66 21.66 24.73 21.52 21.52 16.45 16.7 16.44 21.19 19.71 19.71 16.51 16.9 16.53 14.31 14.28 14.24

Table 2: Results in terms of total energy consumption (103 kWh), for all 29 datasets
using different allocation and migration policies [minimum values shown in boldface
are better – Cmcr migrates relatively long-running VMs which run for 2 hours or
longer [as discussed in [12], [13]]]

[ FillUp+Cmcr is more energy efficient than all other approaches to allocation and
migration – for all 29 datasets FillUp performs better than efficient approaches such
as BRS, FF and MPD ]

The problem with this technique arises when the [mean ± SE] of several groups
overlaps. Such situations either shows the inaccuracy of the results, failure of the
proposed model, or may be due to small differences. These differences might still be
significant and can be identified by other statistical methods like t test, hypothesis
test etc.

Analysis of Variance Another approach is hypothesis testing statistics which al-
lows us to use statistical data analysis to make statistical inferences about whether or
not the data we gathered support a particular hypothesis14. In other words, is there
any significant difference between the results? To ascertain if the results in Table 2 are
statistically significant is determined by calculating the probability of error (p value)
by the t ratio. The difference between two datasets is statistically significant if it can
not be explained by chance alone. The difference between two datasets is judged to be
statistically significant when p ≤ 0.05. At p = 0.05, the differences between the two
datasets have only a 5% probability of occurring by chance [32]. We choose repeated
measure Anova (Analysis of Variance) to show that there are significant differences
between the results (using different allocation policies combined with different migra-
tion approaches) because: (i) the data is quantitative; (ii) each column represents a
group or sample, so we have three samples for each independent experiment; and (iii)
the purpose of the test is to compare the data. As our dependent variable (energy
consumption) is dependent on two variables (independent) i.e. allocation policy and
migration technique, so we use two-way Anova test. The Anova test only tells us
that there are statistically significant differences among the groups, however, it does
not really compare the groups with each other. Therefore, we use the t-test (post-hoc)
repeatedly to show the significant differences among the groups [32].
The null hypothesis that we assume is that the mean (average value of the dependent

14 http://www.statisticallysignificantconsulting.com
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Scheduling Migration Average Energy Standard Deviation Standard Error
approach approach (MWh) (σ) (Energy) (SE) * 1.96

NO 42.4276 22.9767 ±8.3627
RR ALL 28.3134 18.074 ±6.5738

Cmcr 28.2828 18.0794 ±6.5802

NO 40.2297 22.3156 ±8.122
R ALL 28.3041 18.0516 ±6.5701

Cmcr 28.3041 18.0516 ±6.5701

NO 25.7207 19.7506 ±7.1885
BRS ALL 24.4421 19.4593 ±7.0825

Cmcr 21.7166 16.251 ±5.9148

NO 31.5907 21.9187 ±7.9776
MPD ALL 27.4648 18.3633 ±6.6836

Cmcr 27.2645 18.3397 ±6.675

NO 22.9445 16.8353 ±6.1274
FF ALL 22.6321 16.8539 ±6.1342

Cmcr 22.2169 16.5872 ±6.0371

NO 19.851 15.1087 ±5.499
FillUp ALL 19.4766 14.9682 ±5.4479

Cmcr 19.2924 14.8819 ±5.4165

Table 3: Standard error with 95% confidence interval for different scheduling and
migration algorithms [29 traces from Google’s cluster – energy consumption, mini-
mum values are better which are shown in boldface] – this suggests that the FillUp
combined with Cmcr is more energy efficient than the other policies

[ the allocation policies have stronger impact on energy consumption than the migra-
tion policies - FillUp can save ∼53% more energy than RR when no migrations are
considered – Cmcr can save ∼3% energy when combined with FillUp ]

variable - energy consumption) is the same for all groups - combination of scheduling
and migration policies. The alternative, or research hypothesis, is that the average
is not the same for all groups. The Anova test shows that the differences among
different allocation policies i.e. RR, R, BRS, MPD, FF and FillUp are statistically
significant having p = 7.37888E-07. Similarly, the p value for different migration ap-
proaches i.e. NO, ALL and Cmcr is 0.00488 which confirms that the results are
significantly different. Therefore, Anova rejects the null hypothesis and there are at
least 2 groups different from each other. In order to determine which groups are differ-
ent from which (among NO, ALL and Cmcr), the t-test (post-hoc) details are shown
in Table 4. Note that for efficient allocation, both migration techniques do not show
any significant differences compared to NO approach. However, the p values shows a
clear efficiency of Cmcr over the ALL approach. Fig. 9 shows the box plot for NO,
ALL and Cmcr when combined with all allocation approaches.
In Table 5, we compare the FillUp approach with all other allocation policies com-
bined with NO, ALL and Cmcr. As shown in Fig. 10, the t-test indicates that there
are significant differences between FillUp and RR, R, MPD when considered in com-
bination with NO, ALL, Cmcr. However, the behaviour of FillUp is almost similar
to BRS and FF and the test fails to show that there are significant differences between
these approaches. However, the high probability (p) value is not evidence that the
null hypothesis is true. It is even impossible to distinguish a null effect from a very
small effect as demonstrated in the article at footnote [15].
To summarize this discussion, although we were unable to statistically prove that
the proposed FillUp and Cmcr approach produces significantly different results

15 http://onlinestatbook.com/2/logic of hypothesis testing/nonsignificant.html
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Allocation policy Migration policy t Stat p(T <= t)
one-tail

NO vs. ALL 2.555 0.00669
RR NO vs. Cmcr 2.56 0.0066

ALL vs. Cmcr 0.006 0.49748

NO vs. ALL 2.199 0.016
R NO vs. Cmcr 2.199 0.01603

ALL vs. Cmcr 0 0.5

NO vs. ALL 0.244 0.40405
BRS NO vs. Cmcr 0.828 0.20548

ALL vs. Cmcr 0.569 0.28586

NO vs. ALL 0.764 0.22418
MPD NO vs. Cmcr 0.801 0.21326

ALL vs. Cmcr 0.041 0.48378

NO vs. ALL 0.069 0.47246
FF NO vs. Cmcr 0.163 0.43559

ALL vs. Cmcr 0.093 0.46316

NO vs. ALL 0.093 0.46305
FillUp NO vs. Cmcr 0.139 0.44482

ALL vs. Cmcr 0.046 0.48167

Table 4: The t-test multiple comparisons for different allocation and migration policies
[Cmcr can be seen as more energy efficient that NO and ALL approaches w.r.t the
p values shown in boldface] – the t-critical value is 1.673, [efficient allocation do not
have an impact on consolidation policies]

Fig. 9: The t-test details for NO, ALL and Cmcr migration policies [‘*’ represents
the degree of difference and ‘o’ means there is no significance difference – however,
the minimum, maximum and mean values show that Cmcr is more energy efficient
than NO and ALL]

compared to all other allocation and migration approaches. However, based on the
minimum, maximum and mean results as shown in Fig. 9 and Fig. 10, we can see that
FillUp and Cmcr are more energy efficient than all other allocation and migration
policies. Lastly, there are different methods (like Fisher’s method, weighted Z-method)
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Allocation policy Migration policy t Stat P (T <= t)
one-tail

NO 4.344 2.967E-05
RR ALL 1.993 0.0256

Cmcr 2.0316 0.02348

NO 4.001 9.339E-05
R ALL 1.992 0.02563

Cmcr 2.038 0.02313

NO 1.249 0.10843
BRS ALL 1.07 0.14455

Cmcr 0.582 0.28141

NO 2.333 0.01162
MPD ALL 1.784 0.0399

Cmcr 1.786 0.03975

NO 0.724 0.23615
FF ALL 0.741 0.23097

Cmcr 0.694 0.24514

Table 5: The t-test multiple comparisons of FillUp approach with different allocation
and migration policies [the FillUp approach is much similar to BRS and FF, hence
there are no significant differences] – approaches with p values in boldface are less
efficient than FillUp – the t-critical value is 1.673, [BRS and FF are comparable to
FillUp]

Fig. 10: Comparison of FillUp to other approaches using t-test [‘*’ represents the
degree of difference and ‘o’ means there is no significance difference – however, the
minimum, maximum and mean values show that FillUp is more energy efficient than
RR, R, BRS, MPD and FF]

that can be used to combine the probabilities (p values) if the differences are not sig-
nificant in multiple iterations. Based on non-significant findings, these methods can
reach to an accurate decision about whether the differences are significant or not.
This is illustrated with an example in the article at footnote [16].

16 http://onlinestatbook.com/2/logic of hypothesis testing/nonsignificant.html
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5.2 Validation using Experimental Results (PlanetLab dataset)

To validate our approaches we also use the data provided by a monitoring infrastruc-
ture for PlanetLab17, as part of the CoMon project [21]. The data consists of CPU
utilization values taken at 5 minute intervals. The data is collected from more than
a thousand VMs running inside hosts that are located at more than 500 locations
around the world. We use the traces which span over 10 days and are by default
available inside CloudSim [1]. These traces have been randomly selected from the
workload traces collected during March and April 2011. Table 6 shows the dataset
various characteristics for each day. By using this data, our intention is to compare
the results of our proposed algorithms to other approaches that have been already
published in [33].

Date Number of Util. Mean Util. St. dev. Quartile 1 Median Quartile 3
VMs µ σ (%) (%) (%)

03/03/2011 1,052 12.31 17.09 2 6 15
06/03/2011 898 11.44 16.83 2 5 13
09/03/2011 1,061 10.70 15.57 2 4 13
22/03/2011 1,516 9.26 12.78 2 5 12
25/03/2011 1,078 10.56 14.14 2 6 14
03/04/2011 1,463 12.39 16.55 2 6 17
09/04/2011 1,358 11.12 15.09 2 6 15
11/04/2011 1,233 11.56 15.07 2 6 16
12/04/2011 1,054 11.54 15.15 2 6 16
20/04/2011 1,033 10.43 15.21 2 4 12

Table 6: Workload data characteristics (CPU utilization %) from CoMon project,
PlanetLab [33]

To be consistent with the results in [33], we simulated a datacenter of 800 hetero-
geneous hosts comprised of two different types as shown in Table 7. For the sake of
simulation, the frequency of the host’s CPUs are mapped onto MIPS ratings with
respect to a single core. Moreover, to simplify implementation, we assume that each
host and, therefore, VM can execute exactly one instruction per clock cycle i.e. CPI =
1, as initially described in Sec. 2.2. In addition, each host is configured to have 1 GB/s
network bandwidth. The energy consumption of these hosts relates to the benchmark
values from SPECpower. The characteristics of various VM types, as shown in Table
8, relate to well-known Amazon EC2 instance types with a single exemption that
we assume all VMs as single core machines. This is described by the fact that the
PlanetLab’s workload data comes from single core VMs, as well [33]. Therefore, for
each VM type its corresponding memory (RAM) is divided by the number of cores
as described in Table 8.

Initially, all VMs are placed onto hosts according to: (i) the resource needs as defined
by VM types; and (ii) VM allocation policy. However, using the workload data, if
VMs utilize their provisioned resources less, this create opportunities for consolida-
tion. Note that every VM is assigned a workload trace, randomly, from one of the
VMs (PlanetLab dataset) that lasts for various execution times – as execution times
of VMs matches tasks execution times in Google dataset. As demonstrated in [33],
the Power Aware BFD heuristic (PABFD also known as MPD) is used as the default

17 https://www.planet-lab.org/
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Host Host Speed MIPS No of Memory Pidle Pmax Amount
Name Type (GHz) Rating Cores (GB) (Wh) (Wh)

HP ProLiant Intel Xeon
ML110 G4 3040 1.86 1,860 2 4 86 117 400

HP ProLiant Intel Xeon
ML110 G5 3075 2.66 2,660 2 4 93.7 135 400

Table 7: Host characteristics and number used in the experiments demonstrated in [33]
– MIPS: Million of Instructions Per Second

Instance type Speed (MHz) Memory (GB)

High CPU medium 2,500 0.85
Extra large 2,000 3.75

Small 1,000 1.7
Micro 500 0.613

Table 8: Instance types and their characteristics [33], [34]

allocation policy in CloudSim. During consolidation, the optimization module deter-
mines the overloaded hosts using two techniques: (i) the static threshold policy (THR)
which uses a static upper utilization threshold (80%) for each host; and (ii) the local
regression dynamic threshold policy (LR) which uses dynamic (adaptive) thresholds
instead of a static one. The underutilized hosts are those which have a minimum
utilization level compared to all hosts. If there are several migratable VMs, then the
migration policy uses MMT (minimum migration time) approach to prioritize those
VMs that will take minimum time in migration. Beloglazov et al. [33] suggested that
the MMT policy performs better than all other methods such as random, MCC, MU
as presented in [33], and when combined with LR, it produces minimal results in
terms of energy consumption.
We made a slight modification to the above experiments in order to account for the
migration cost (both in terms of energy consumption and performance degradation).
As, there are two instances running during the migration duration (one on source
host and a second one on the target host); the energy cost relates to the consumed
energy by the least energy efficient host [11]. Moreover, in our evaluation, we account
for 10% performance degradation due to migration that is merely modelled based on
the memory, disk size and available network bandwidth [1], [23]; however, complete
network heterogeneity is not within the scope of this paper. Similarly, co-locating18

VMs when they compete for similar resources can also degrade VMs performance [31].
However, the performance degradation due to co-locating VMs is not considered in
this paper.
We chose the MMT combined with THR and LR techniques as the benchmark poli-
cies for comparison because they perform better than all other techniques in [33]. We
simulated the combination of FillUp and Cmcr (PR – past runtime) techniques and
observed that our approaches outperform even the best combination of allocation and
migration policies presented in [33]. The substitute for MMT policy is our own VM
selection policy i.e. migrate VMs having maximum past runtime. The mean results
(energy consumption and migrations) for all ten workload traces, different allocation
and migration policies are shown in Table 9.
Fig. 11 and Fig. 12 show the results obtained for all ten workload traces. Using the
THR and LR policies, our consolidation approach (FillUp+Cmcr) is ∼51% more
energy efficient than THR-MPD-MMT and ∼53.4% more energy efficient than LR-

18 several VMs that reside on same host sharing memory and other resources
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Policy Avg. energy Avg. number
Host overload Allocation Migration (kWh) of migrations

MPD MMT 246.069 26,779
THR FillUp MMT 192.483 37,100

FillUp Cmcr 127.849 1,391

MPD MMT 233.638 28,389
LR FillUp MMT 170.816 31,202

FillUp Cmcr 124.759 1,340

Table 9: Average energy consumption and number of migrations for ten different traces
from PlanetLab [THR: uses an upper threshold (0.8) for host overload, MPD, default
VM allocation policy in CloudSim, MMT: minimum migration time FU: FillUp, PR:
Cmcr – ‘best’ approaches are shown in boldface]

MPD-MMT. If we assume that the results presented in [33] are correct, then certainly
our results can be assumed valid and accurate. Note that in these experiments all VMs
are running for 24 hours and the resource usage varies according to the PlanetLab
workload. We expect that our approach would be more energy efficient if VMs are
submitted and terminated dynamically at runtime which creates more migration op-
portunities.

THR-MPD-MMT THR-FU-MMT THR-FU-PR LR-MPD-MMT LR-FU-MMT LR-FU-PR
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Fig. 11: Energy consumption using different allocation and migration techniques for
ten workload datasets from PlanetLab as described in Table 6 [MMT: minimum mi-
gration time FU: FillUp, PR: Cmcr]

Note that simulations does not represent the reality and the above results are not
guaranteed to be accurate, even if simulators are verified and validated. Therefore,
there is no guarantee that the same results, as presented in [12], [13], would also be
achievable in a real cloud test-bed. Although, we have tried our best to verify and val-
idate the findings, however, errors and inaccuracy might still be expected due to the
abstraction of mathematical and statistical models until a real heterogeneous cloud
test-bed is used for evaluation. Table 10 summarizes the findings and associated vari-
ables, extensively discussed in this paper. This could also fit the discussion in Sec. 6,
neatly.
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THR-MPD-MMT THR-FU-MMT THR-FU-PR LR-MPD-MMT LR-FU-MMT LR-FU-PR

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N
um

be
r 

of
 m

ig
ra

tio
ns

×104

Fig. 12: Number of migrations using different allocation and migration techniques
for ten workload datasets from PlanetLab as described in Table 6 [MMT: minimum
migration time FU: FillUp, PR: Cmcr]

Criteria Method Findings

Verification Simulation vs.
Analytical [Sec.
4.1]

(a) CloudSim is approximately 98.63% accurate and pre-
cise [regression analysis].

The expected error is approximately ±1.37%.
———————– ————————————————————————–
Simulation vs. (a) The linear power model is 99.79% accurate.
Validated (b) VM migration results in 10% loss in performance.
[Sec. 4.2] (c) The migration power model in 90% accurate.

(d) The migration time model is mathematically valid.
(e) The resource heterogeneity model is based on real
benchmarks and real workload datasets.

Validation Experimental Re-
sults [Sec. 5.1 and
Sec. 5.2]

(a) Statistical techniques such as standard error (SE) and
analysis of variance (ANOVA) were used to show that the
obtained results have significant differences i.e. among
various allocation and migration policies using the real
workload dataset from Google.
(b) A comparison of the proposed policies vs. the closest
rivals, using another real workload dataset from Plan-
etlab cloud, also demonstrates the energy savings and
performance gains.

Allocation and
Consolidation

The energy-performance efficient migration approach
“FillUp+Cmcr”, suggested in [12] and [13], can be up
to 3.66% (±0.05 error) more energy efficient, and 1.87%
(±0.025 error) more performance efficient, than a no mi-
gration strategy.

Table 10: Summary of findings and associated variables or statistical methods
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6 Discussion

A simulated model is more abstract than the real system it represents19. From a per-
formance point of view, this abstraction allows us to focus on the system elements
which are really important, that creates two major problems: (i) the model assumption
we make could, possibly, eliminate details of the real system; and (ii) the abstraction
process introduces inaccuracy due to (i). That said, some degree of inaccuracy may
be necessary or even desirable, to make the model solution tractable. Without doubt,
some assumptions are made in order to construct the model. However, assumptions
should be realistic, plausible and reasonable with respect to the real systems. In other
words a simulated system should exactly match a real system. Moreover, when using
assumptions and simulations, we must put efforts into validation of the mathematical
models. Similarly, if a numerical simulator has been used to produce results from a
model, then the validity of the simulator also matters. If a particular simulator is
verified and validated, then we are assured that the obtained results are accurate or
at least approximated for a real test-bed as well.
CloudSim [1] is among the most popular and highly cited IaaS cloud simulators. The
three major problems with CloudSim are: (i) there is no complete documentation
to show the full working of its different classes; (ii) there is no statistical model to
model and account for resource heterogeneities; and (iii) no study is available at the
moment about its accuracy (to the best of our knowledge). Another cloud simulator
“DISSECT-CF” is shown to be accurate and performs better than CloudSim [3]. The
authors [3] demonstrated that the simulation offers sufficient accuracy even for com-
plex CPUs and network set-ups. In case of networking, though, one has to keep in
mind that the simulator only does rudimentary modelling of network traffic and it
is not capable to model traffic with small sized transfers. However, this is by design
as Kecskemeti et al. describe in [3]; the main aim for the networking of the simu-
lator is to allow proper modelling of VM image transfers. The relative error of the
DISSECT-CF simulator is shown to be less than 0.3% for CPU intensive tasks, and
less than 5% for memory intensive tasks while network transfers of large files have
a relative error of less than 0.5%. Most importantly, the accuracy of the modelled
energy behaviour is shown to be in line with the accuracy of the real CPU model
in use [SPECpower benchmarks]. Moreover, DISSECT-CF simulator also models the
energy consumption of a VM migration as described in [30], [35]. Note that similar
energy models and benchmarks, except the VM migration, are also used in CloudSim
and several other cloud simulators such as DCSim [5]. Unfortunately, DISSECT-CF
and DCSim do not offer any model for resource heterogeneities.
For all simulators, one can only achieve some level of accuracy by ensuring that the
simulator’s models are aligned with the actual hardware he/she is trying to model. For
example, to model a real life host, one has to adjust the processing capability of re-
source consumptions and energy usage of the host (object) [3]. Moreover, degradation
in performance, with respect to execution times, must be kept in view. For example,
as discussed in [36], performance (execution times) of cloud workloads are strongly
dependant on the CPU models (architectures). At the moment, similar performance
models are not available neither in CloudSim, DISSECT-CF and DCSim. As a result,
several researchers [11] have used performance benchmarks values to model perfor-
mance of their workloads in simulations. This means that for accurate results, the
required level of adjustment must be experimentally/empirically identified for actual
hardware and software combination. Fortunately, this adjustment is not necessary for
non-tricky hardware set-ups (such as non-HT enabled, SMP systems) running CPU
intensive applications. Those researchers who are interested to know how to model

19 http://www.inf.ed.ac.uk/teaching/courses/ms/notes/note14.pdf
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software behaviour with processing limits (capabilities), may refer to [37] for more
discussion and details.

7 Related Work

To perform larger-scale experiments and feasibility studies, cloud simulators could be
used. A wide variety of simulators (both open source and commercial) is available with
different features and characteristics. They are designed with one or more objectives;
however, none of them can be used to simulate a whole cloud. Sharkh et al. [15], has
presented a systematic review of several cloud simulators which are often used by the
cloud research community.
Among these, CloudSim [1] is one of the most popularly/widely used and cited. By
using CloudSim, industrial developers and cloud researchers can focus on various de-
sign issues of a particular system they want to investigate, deprived of being involved
in any low level details of cloud infrastructures and services. Largely, CloudSim is
used to evaluate resource scheduling, allocation and consolidation techniques. How-
ever, it provides little or no support for modelling datacenter networks. Moreover,
Greencloud [4] is a classical packet-level simulator for energy-aware datacenters that,
largely, focuses on datacenter networks and communications. Moreover, it offers an
exhaustive fine-grained modelling facility for the energy consumption of various dat-
acenter’s IT equipment such as hosts, communication links and network switches.
iCanCloud [38] is an event-driven simulation environment which is used to model and
simulate infrastructure clouds. The key focus of iCanCloud is to foresee the existing
trade-offs between monetary costs and performance of heterogeneous workloads run
on particular hardware [11]. Moreover, iCanCloud also offers valuable information re-
garding resource provisioning costs.
DCSim [5] differs from GreenCloud in that it is focused on virtualised datacenters
which provide IaaS platform to multiple tenants, similar to CloudSim. However, it
differs from CloudSim in that it focuses, largely, on transactional and continuous
workloads. As such, DCSim has the ability to model replicated VMs that share in-
coming workloads and, in addition to, dependencies among VMs that are part of a
multi-tiered application. In addition, DCSim has a more layered and realistic cloud
architecture (host inside a rack, racks inside a cluster and clusters inside a datacenter)
in comparison to CloudSim. Moreover, DCSim provides support for inter-racks and
inter-clusters VMs migration.
DISSECT-CF [3] is a compact, highly customizable cloud simulator (open source)
that focuses on the internal organization and behaviour of IaaS clouds. This simula-
tor provides more in depth energy estimation techniques both at host and VM level
and is largely validated with real world experiments. The high level components (e.g.,
IaaS level VM and host schedulers) of the simulator were not validated with real life
measurements but by comparing its results with two other simulators: CloudSim and
GroudSim [39]. The experiments are demonstrated in [3], and the relative error of
DISSECT-CF compared to other simulators was revealed to be as low as 0.29%. It is
important to note that the offered high level schedulers are not necessarily following
the implementation details of any scheduler of real life IaaS systems and hypervisors,
although they are having similar behaviour, and are offered only to show simple exam-
ple implementations. Moreover, Kecskemeti et al. [3] describe about the accuracy of
DISSECT-CF simulator that “similar to the CPU models, for highly accurate results,
we must suggest a custom VM scheduler that matches the one used by our modelled
real life IaaS”.
GreenCloud is an extension of the well-known network simulator “NS2” which is
largely used to evaluate energy-aware cloud datacenters. The key characteristic of
GreenCloud is its capability of exhaustive modelling of the communication networks
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in a datacenter. MDCSim [40] is a discrete event-driven simulator (commercial) that
models particular hardware characteristics of various datacenter components such as
hosts, communication links and network switches. Nunez et al. [38] proposed iCan-
Cloud, which is a hypervisor-based simulator specifically with a focus on simulating
instance types offered by Amazon EC2 cloud. The tools and simulators that could
simulate a complete cloud stack comprise CloudSim [1] and DISSECT-CF [3]. Never-
theless, CloudSim offers either limited or no support for more realistic and complex
application types such as the work-flows (communicating tasks), and has no capabil-
ity of cross-layer interaction. Modelling the cross-layer interaction is very important,
particularly, for intra-layer resource management techniques i.e. self-configuration or
adaptation [41]. Moreover, DISSECT-CF permits access to internal cloud information
(such as VMs and workloads) and, therefore, precisely models energy consumption of
IaaS clouds at two levels: (i) hosts (coarse-grained); and (ii) VMs (fine-grained) – as
described in [11].
Unfortunately, all of the above simulators do not offer a statistical model to capture
the platform heterogeneities with respect to performance variations as demonstrated
in [36]. Moreover, with the notable exception of [3], migration energy and performance
costs models are also very rarely addressed.

8 Conclusions

To support and quicken the research associated to clouds, applications and services,
it is very important that accurate simulators and software tools are designed and de-
veloped to aid the cloud research community and industrial developers. Simulation-
based approaches to examine and evaluate cloud and its application behaviour also
offer various important benefits, as they let cloud researchers to: (a) determine the
performance of various resource provisioning and service delivery strategies in a gov-
ernable environment; (b) conduct the experimental evaluation repeatedly and, largely,
free of cost; and (c) tune the performance bottlenecks of various policies before they
are deployed in real public or private clouds.
This paper provides: (a) an extension to the well-known cloud simulator “CloudSim”
to account for resource heterogeneities; and (b) an analysis and evaluation of our
previously published results [12], inside the extended simulator, to demonstrate their
accuracy and preciseness [1]. We compared small-scale real measurements (obtained
on University of Leeds test-bed) to the results obtained from simulations in CloudSim
(simplified model) [18]. During the comparisons, accuracy/precision of the simulator
(extended version) is analysed and is suggested to be approximately 98.63%. With
this number we suggest that our proposed approaches [as described in [12], [13]] could
save approximately 3.66±0.05% more energy than no migration approach. We then
focused on comparative performance and accuracy study of CloudSim with an exist-
ing validated simulators DISSECT-CF. This verifies various statistical/mathematical
models used in CloudSim to confirm the precision of the simulations performed. We
made this choice because:

1. the authors in [18], [19], have already proved their effectiveness in testing a part
of our VM migration model, and

2. this allows us to check the accuracy of our VM migration model against their
mathematical models.

Furthermore, we statistically validated our proposed allocation and migration poli-
cies with 29 different datasets (Google’s cluster) and demonstrated that both our
techniques i.e. allocation (FillUp) and consolidation with migration cost recovery
(Cmcr) achieve higher energy efficiency compared to other policies. Additionally, we
chose to validate our results using another dataset from the CoMon project inside the
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PlanetLab cloud platform.
Note that, in this paper, the verification and validation is limited to only energy
consumption and performance. The results are limited to a minimalistic linear power
model of a single host that uses results of another research; that tests one of the
baseline algorithms – VM level host efficiency model [12]. Moreover, the migration
performance model is very rough and only considers 10% cost; that is merely modelled
based on the memory, disk size and network bandwidth. Furthermore, “CloudSim” [1]
is a generic tool for modelling and simulation of cloud computing infrastructures
and services and its validation requires more in-depth analysis of all other aspects
such as memory, networking, task scheduling, etc. Moreover, the accuracy claimed
for CloudSim is obtained for a particular case and it is not shown that it is verified
for other servers (CPUs). In future research, our aim would be to consider these as-
pects for modelling in cloud simulations; and, then, for versification, validation and
accuracy.
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