
Agri-Food Supply Chains with Stochastic Demands: A

Multi-Period Inventory Routing Problem with

Perishable Products

Bhakti Stephan Onggoa, Javier Panaderob,d,, Canan G. Corluc, Angel A.
Juanb,d

aCORMSIS, Southampton Business School, University of Southampton, UK
b.s.s.onggo@soton.ac.uk

bIN3 – Computer Science, Multimedia and Telecommunication Dept.
Universitat Oberta de Catalunya, Barcelona, Spain

{jpanaderom, ajuanp}@uoc.edu
cMetropolitan College, Boston University, Boston, MA, USA

canan@bu.edu
dEuncet Business School, Terrassa, Spain

Abstract

This paper considers an agri-food supply chain with a single fresh food
supplier, who owns a central warehouse that serves several retail centers. Re-
tail centers carry a certain amount of inventory of the fresh product, which
is prone to deterioration. The supplier makes both inventory and routing de-
cisions to minimize the inventory, transportation, food-waste, and stock-out
costs in the face of stochastic customer demand and perishable products that
need to be delivered to each retail center. This inventory routing problem
is known as perishable inventory routing problem (PIRP) with stochastic
demands in the literature. We model it using a mixed integer program and
propose a simheuristic algorithm, which integrates Monte Carlo simulation
within an iterated local search, to solve it. Our experiments show that the
proposed algorithm can improve the initial solution with reasonable computa-
tional times. The resulting procedure is easy to implement and is applicable
to other domains where a multi-period PIRP with stochastic demands may
appear.

Keywords: agri-food supply chain, multi-period inventory routing problem,
stochastic demands, perishable product, metaheuristics, simheuristics.

Preprint submitted to Journal Simulation Modelling Practice and Theory. August 27, 2019

1. Introduction

Agri-business plays a critical role in the world economy by serving as a
key source of food supply to the world population. Over the last decades, the
management of agri-food supply chains has received considerable attention
both from practitioners and researchers. There are two types of agri-food
supply chains: fresh produce agri-food supply chains and packaged products
agri-food supply chains. Our focus in this paper is on the fresh produce
agri-food supply chains.

Although fresh produce agri-food supply chains have similarities to con-
ventional manufacturing supply chains, they have important characteristics
that make their management more complicated. Specifically, fresh produce
agri-food supply chains are characterized by the perishability of the food
product, seasonality, long supply lead time, and uncertainty in harvest yield
(?). Hence, their management mainly deals with transporting agri-food prod-
ucts from the production centres (farms) to the places of consumption at the
right time, right quantity, and right quality with minimum cost. The cost
includes components such as transportation cost, inventory cost (holding and
stock-out), and food-waste cost.

One way to deal with minimizing the food waste is through a better
integration between actors in agri-food supply chains. However, the study
by ? reveals that most research has focused on either harvesting or process
planning. In general, research into the integration between processes from
harvesting to processing and finally to distribution is lacking. This paper
addresses the integration between inventory and transportation (or routing)
management of a fresh produce agri-food supply chain.

The type of integration where inventory and routing decisions are made
concurrently is known as vendor managed inventories (VMI). The benefit of
VMI in a business setting has been well recognized in the literature. Back
in 1980s, ? discuss the importance of making the inventory and the routing
decisions concurrently when making logistical decisions. ? analyze the ben-
efit of VMI and use real demand-data from different grocery supply chains
to illustrate its value. Since then, there has been a significant amount of
research on the use of VMI in several settings. We refer the reader to ? and
? for complete reviews of VMI practices.

Despite the popularity of VMI in several areas, the use of VMI practices
in the management of agri-food supply chains is very limited. The lack of
research into the integration between processes along an-food supply chain is

2

partly due to its complexity. ? note that actors in an agri-food supply chain
often have a high degree of autonomy with conflicting objectives. They often
have limited perspective which makes it difficult for them to envisage how
their individual decisions may affect the whole supply chain. Furthermore,
their behaviour are often influenced by social, economical, and environmental
factors (ibid). The characteristics of fresh agri-food products create further
challenges to the implementation of VMI practices.

In this paper, we consider a single fresh food supplier (e.g., a big farm
or a co-operative) who owns a central warehouse that serves n retail centers
(RCs). Each RC carries a certain inventory of the fresh food product to
maintain a target service level (e.g., low number of stock-outs). In retail-
managed inventory (RMI) systems, there is no collaboration among RCs
and thus each RC makes its own decision about when and how much to
order. This practice directly affects the route planning process of the supplier
(??). By contrast, the implementation of VMI practices takes the pressure
away from the RCs to make inventory decisions and to hold inventories, thus
allowing the supplier to make both the inventory and the routing decisions.
This leads to the overall optimization of the supply chain, benefiting both
the RCs and the supplier (???).

The implementation of VMI practices in the management of supply chains
leads to a combinatorial optimization problem called inventory routing prob-
lem (IRP). IRP seeks to design routes by also managing inventories in the
RCs. Being an extension of the vehicle routing problem (?), the IRP is also
NP-hard. Therefore, most of the effort to solve this problem has either made
simplifying assumptions (e.g., ignoring the natural uncertainty of agri-food
supply chains) or has focused on metaheuristic methods (??). This paper
presents a simheuristic algorithm (?) that extends a metaheuristic algorithm
to deal with two important characteristics of fresh produce agri-food supply
chains: stochastic customer demands at each RC and perishable products
that need to be delivered to each RC (Figure 1).

The main contribution of this paper is to propose a new simheuristic
algorithm for the multi-period IRP with stochastic demands for a perish-
able product. The stochasticity around customer demands is addressed by
integrating the metaheuristic procedure with Monte Carlo simulation. The
perishability of the product is addressed by reducing the value of the prod-
uct over time until a certain duration, beyond which the product will perish.
Product perishability adds a new complexity to the conventional IRP. As
we know, in IRP, the less frequent deliveries reduce the routing cost at the

3

Figure 1: A stochastic inventory routing problem with perishable products.

expense of inventory holding cost. With product perishability (i.e., PIRP),
in addition to higher inventory holding cost, the less frequent deliveries also
increase the risk of higher product deterioration or product waste cost. It is
therefore critical to balance the routing cost and the product deterioration
cost. Finally, our algorithm also considers the stock-out cost. The proposed
simheuristic algorithm finds the optimal refill policies for each RC in each
period by minimizing the total expected cost over the periods. The total
expected cost includes inventory holding cost, routing cost, product deteri-
oration cost and stock-out cost. We believe this is the first work that uses
a simulation-optimization method to solve a multi-period stochastic PIRP
with stock-outs.

The remainder of this paper is structured as follows: relevant literature
on the agri-food supply chain and IRP is reviewed in Section 2; a mathe-
matical formulation of the multi-period IRP with stochastic demands for a
perishable food product is provided in Section 3; Section 4 outlines the pro-
posed algorithm; a range of computational experiments are described and

4

analyzed in Section 5; finally, Section 6 concludes this work and highlights
future research lines.

2. Literature Review

This section provides an overview of the literature on inventory manage-
ment and transportation in agri-food supply chains, focusing on how mod-
els are used to help making decisions. This is followed by a closer look at
the perishable IRP problem and its solution from cases in agri-food supply
chain and supply chain in general. We conclude the section with a discus-
sion around simheuristic approaches for solving combinatorial optimization
problems including stochastic IRPs.

2.1. Inventory and Transportation Management in Agri-Food Supply Chains

Fresh food products from farms to customers undergo various processes
such as cultivation, harvest, and processing (e.g., washing and packing). The
products are stored and transported at various points in the supply chain (?).
For example, the crop yield from the harvest may be stored briefly at the
farm before being transported to a processing facility. The final products
from the processing facility are stored and then transported to retail cen-
tres (or customers). Hence, inventory and transportation management is an
important part of fresh produce agri-food supply chain management, espe-
cially with the products being perishable. Pressures from regulatory bodies
and consumers on issues such as food safety, traceability, and conformance
(e.g., organic, environmental) have increased the complexity of inventory and
transportation management of fresh food products.

From an inventory management perspective, the proliferation of fresh
food products has added more complexity to the issue (?). For example,
in the past, there were only commodity corn and high-value specialty corn.
Nowadays, there are many different types of corn in the market. The differ-
ent varieties of food products make the issue of product substitutions more
prevalent, hence adding more complexity to the inventory management de-
cisions. Global sourcing has an impact on agri-food supply chains, too. It is
now possible to transport fresh food products from one continent to another
at an acceptable transportation cost. Hence, the distance between supply
chain actors has increased. At the same time, this globalization has also
created more competition which affects profit margin. Global sourcing has
also added more complexity to the routing decisions due to restrictions in

5

terms of local constraints –such as regulations and practices. In short, the
challenges to transportation and inventory management in agri-food supply
chain have become more complex. This is where Operational Research (OR)
techniques may help.

The application of OR techniques in the context of agri-food supply chains
has been reviewed in several papers. ? review the application of OR on crop
production (e.g., planning, harvesting, managing risk, etc.). Decisions sur-
rounding crop production in which OR has been applied include optimum
allocation of lands, optimum allocation of resources during harvest, and opti-
mum cultivation to control weeds. They have found that linear programming
is by far the most popular approach. In addition to production planning, ?
also include the distribution planning of crop-based food products in their
review. They have also found that linear programming is the most pop-
ular method indicating that stochasticity has not been considered in most
work. They have also found that only a few papers account for perishability
of food products, and that there is a lack of studies integrating inventory
and routing decisions for fresh product agri-food supply chains. ? further
reinforce the findings from the previous reviews that very few papers have
addressed the inventory management issues of agri-fresh products, especially
in incorporating the perishability of food products and stochastic demand. ?
focus on how OR techniques have been used to account for stochasticity in
agri-food supply chains. They have observed that studies that incorporate
stochasticity is growing with the most popular techniques being stochastic
programming followed by robust optimization. The number of work that uses
a hybrid simulation-optimization model to solve problems in agri-food supply
chains is limited. This paper fills in this gap in the literature by developing
a simheuristic procedure, which combines a metaheuristic with Monte Carlo
simulation, to solve the integrated inventory management and transportation
problem that arises in fresh produce agri-food supply chains.

2.2. The Perishable IRP

The term inventory routing problem first appeared in ?. Since then, dif-
ferent variants of IRPs have been introduced. We refer the reader to ?, ?, ?,
and ? for a comprehensive discussion of the IRP and its several variants. In
this section, we restrict our focus to the variant of the IRP where perishable
products are considered: the perishable inventory routing problem (PIRP).

Although the PIRP has first been motivated by a healthcare application
(???) due to the perishability of the human blood, several papers then looked

6

at the PIRP in a more general context where the perishable items could be
food or medical drugs. To the best of our knowledge, this paper is the first
to study PIRP (with stochastic demands) in the context of agri-food supply
chains.

Although the work on PIRP is scarce, several variants of it have already
been proposed, including: multiple-product PIRP, PIRP with sustainability
issues, PIRP with production decisions, PIRP with facility location deci-
sions, and PIRP with transshipments. ? provide a comprehensive review of
these variants. In the following, we review the literature on single-product
PIRP and classify the papers based on the nature of the demand that they
assume. More specifically, Section 2.2.1 reviews the papers that study the
single-product PIRP with a deterministic demand, while Section 2.2.2 re-
views papers addressing stochastic demand in the context of a single-product
PIRP. Throughout this section, we keep our focus on the papers that make
a theoretical contribution to the solution of the PIRP.

2.2.1. The PIRP with deterministic demands

Much of the work on the single-product multi-period PIRP assumes that
the demands at the delivery points (retail centers, hospitals, supermarkets,
etc.) are deterministic. Motivated by the inventory routing problem faced
by the blood bank of the Austrian Red Cross for Eastern Austria, ? study
a multi-period PIRP and propose two solution approaches based on integer
programming and variable neighborhood search. The goal is to minimize the
travel cost over a finite horizon, where additional constraints are considered
due to the nature of blood. Examples of additional constraints include: (i)
no out-of-stock situations; (ii) no vehicle capacity constraints; (iii) limited
length of a route; and (iv) no inventory holding costs.

? consider a multi-period PIRP with deterministic demands in the con-
text of the Academic Model for the Prevention and Treatment of HIV (AM-
PATH) program, which aims to provide food support to HIV-infected pa-
tients by transporting fresh foods from production farms to distribution sites.
It is assumed that perishable goods have a fixed shelf life and are discarded
after they expire. Authors model the PIRP as a mixed integer program whose
goal is to minimize the sum of transportation costs and inventory holding
costs. They propose a heuristic based on column-generation that can solve
small- to medium-size problems.

? consider the problem in ?, but without inventory holding costs. The
authors present an arc-based formulation, which features a small number

7

of variables and a large number of constraints. This particular formulation
enables the use of a tabu search algorithm to solve the problem, which is
shown to outperform the column-generation based heuristic of ? in terms of
computational time.

? continue the study of single-product multi-period deterministic PIRP
by formulating it as a mixed integer linear program and devising a branch-
and-cut algorithm to solve the model. The model is general enough to ac-
commodate different types of product perishability constraints (products that
expire after a certain time versus products whose value degrades gradually
over time) and the way retailer handles the aging inventory, i.e.: always sell
the oldest available items first to avoid spoilage versus always sell the fresher
items first to increase revenue because the selling price of the item depends
on its age.

Recently, ? find an inconsistency in the arc-based formulation presented
in ?. Authors propose four mathematical formulations and devise branch-
and-cut algorithms to solve these formulations. Additionally, an iterated
local search metaheuristic is proposed for larger instances.

? further consider the realistic situation that the end customers’ demand
depends on the age of the product and, therefore, a portion of the inventory
that is not sold by the end of the period is considered lost sale. Authors model
this problem as a mixed integer linear program whose goal is to minimize
the sum of transportation costs, holding costs, and lost sales –where lost
sales are assumed to be a linear or exponential function of the inventory age.
Small instances are shown to be solved to optimality, while larger instances
are solved via metaheuristic algorithms based on simulated annealing and
tabu search.

2.2.2. The PIRP with stochastic demands

The literature on stochastic PIRP is extremely limited. ? is the first to
study the PIRP with random demands. These authors devise a heuristic al-
gorithm to solve the problem but the method only works for a single-period.
Very recently, ? study the multi-period stochastic PIRP and propose four
different solution methods to solve the problems that differ in their sophis-
tication and the features considered, including: perishability of the product,
stochasticity of demand, and the target service level. The distinguishing
feature of our work is the design of a simheuristic method which allows the
decision maker to solve a multi-period IRP with stochastic customer demands
at each retailer center for perishable food product. To the best of our knowl-

8

edge, this is the first paper that proposes a simulation-optimization algorithm
for the multi-period PIRP with stochastic demands.

2.3. Simheuristics for Combinatorial Optimization Problems

2.3.1. Simheuristic as a simulation-optimization technique

Simulation-optimization techniques have been extensively used both by
practitioners and academics to solve complex optimization problems that in-
volve uncertainty. ? provide an excellent summary of simulation-optimization
techniques used particularly for inventory replenishment decisions. ? further
review the applications of simulation-optimization techniques in fields includ-
ing manufacturing and production, logistics and supply chain management,
and healthcare.

Simheuristics is a special case of simulation- optimization techniques. As
stated in ? “Simheuristic algorithm is a particular simulation-optimization
approach oriented to efficiently tackle a combinatorial optimization prob-
lem instance that typically contains stochastic components.” By integrat-
ing Monte Carlo simulation into a metaheuristic optimization framework,
simheuristic approaches are able to solve large-scale stochastic NP-hard prob-
lems in reasonable computational times. Another benefit of simheuristic ap-
proaches is their ability to provide performance statistics other than expected
value, which are critical for risk-analysis purposes.

Due to their advantages over several other simulation- optimization tech-
niques, simheuristic algorithms have been used extensively to solve large-
scale, stochastic NP-hard combinatorial optimization problems. In the re-
mainder of this section, we focus on the use of the simheuristic technique to
solve stochastic IRPs and refer the reader to ? and ? for a thorough review
of simheuristic approaches in different application areas.

2.3.2. Simheuristics to solve stochastic IRPs

? is the first to develop a simheuristic algorithm to solve a single-period
stochastic IRP with stock-outs. The idea is to combine simulation with a
vehicle-routing metaheuristic, where simulation is initially used to obtain the
expected costs associated with each combination of retail center and refill pol-
icy of the retail center and a routing metaheuristic is then used for each refill
policy to estimate the total cost including the inventory cost and the routing
cost. ? later extend this work to multi-period case, which bears additional
complexities due to the interdependences between consecutive periods. This
paper also deals with a multi-period IRP with stochastic demands but with

9

an additional consideration of perishable products. To the best of our knowl-
edge, this is the first paper that solves a stochastic PIRP with a simheuristic
algorithm, which provides good solutions in reasonable computational times.

3. Problem Description

The fresh produce agri-food supply chain problem considered in this pa-
per is as follows. We develop the model from the perspective of an agri-food
vendor that supplies a fresh produce product to several RCs, as shown in Fig-
ure 1. The RCs share their inventory level and expected demand information
with the vendor. This is common in a VMI setting, where the vendor is re-
sponsible for the routing and inventory decisions. Fresh produce products
include fruits, vegetables, flowers, and herbs that have not been processed,
or altered by any preservation process, before being packaged. Hence, the
quality of a fresh produce product degrades over time. After a certain time,
final customers will not buy the product and it will be considered waste. The
goal of the vendor is to minimize the total supply chain cost, which includes
inventory holding cost, routing cost, product deterioration cost and stock-
out cost. This problem is known as the multi-period stochastic PIRP with
stock-outs.

This problem can be formulated as a mixed integer linear program (MILP).
The symbols for data and variables used in the model are listed in Table 1
and will be explained next. In the following, we use the word “product” to
refer to the fresh produce product.

We let V = {0, 1, . . . , n} denote a finite set of n+1 locations consisting of
the depot (node 0) and n RCs. The set of RCs is denoted by V ∗ = V \ {0}.
The planning horizon is denoted by P where |P | ≥ 1 periods. The set of
durations in which a product has been stored in the inventory (i.e., the age
of the product) of an RC is denoted by B where |B| is the longest duration
that a product can be stored in the inventory. The product is discarded after
|B| periods.

The decision variables for the inventory management are the quantity
of products, qip ≥ 0, that must be delivered to RC i at the beginning of
period p (∀i ∈ V ∗, ∀p ∈ P). L+

i > 0 denotes the maximum storage capacity
of RC i. Lip and L′ip denote the inventory level at RC i at the start and
the end of period p, respectively (0 ≤ Lip, L

′
ip ≤ L+

i). Then, qip ≤ L+
i − Lip

follows. Since the quality of the products degrades over time, in period p, the

10

Table 1: Data and variables employed in the model.

Symbol Indices Type Meaning

P p = 1, ..., |P | Data
Set of periods included in the planning
horizon

B b = 0, 1, ..., |B| Data
Set of the durations in which a product
has been in the inventory of RC i

V i, j = 0, 1, ..., n Data
Set of locations, including the depot 0
and n RCs

V ∗ i, j = 1, ..., n Data Set of RCs (V ∗ = V \ {0})
K k = 1, ...,K Data Set of vehicles

wb b = 0, 1, ..., |B| Data
Deterioration cost associated with
product age b

cij i, j ∈ V Data Cost of traveling from i ∈ V to j ∈ V

h > 0 Data Total capacity of vehicles

L+
i > 0 i ∈ V ∗ Data Maximum storage capacity of RC i

Lip i ∈ V ∗, p ∈ P Var
Inventory level at RC i at the start of
period p

L′ip i ∈ V ∗, p ∈ P Var
Inventory level at RC i at the end of
period p

lipb i ∈ V ∗, p ∈ P, b ∈ B Var
Inventory level of products age b at RC
i at the start of period p

l′ipb i ∈ V ∗, p ∈ P, b ∈ B Var
Inventory level of products age b at RC
i at the end of period p

Dip i ∈ V ∗, p ∈ P Var Customers’ demand at RC i in period p

dipb i ∈ V ∗, p ∈ P, b ∈ B Var
Customers’ demand at RC i in period
p to be fulfilled by product age b

qip ≥ 0 i ∈ V ∗, p ∈ P Var
Quantity of fresh produce delivered to
RC i at the start of period p

yip ≥ 0 i ∈ V ∗, p ∈ P Var
Binary variable that defines if RC i is
visited in period p

xpkij i, j ∈ V, k ∈ K, p ∈ P Var
Binary variable that defines if vehicle k
goes from i to j in period p

11

aggregated inventory Lip at RC i can be split into the inventory of products
with different ages (b ∈ |B|), as stated in Equation 1:

Lip =
∑
b∈B

lipb (1)

The initial inventory level for the first period (p = 1) is given as an input,
Li1 = li10, ∀i ∈ V ∗ (i.e., all products in the initial inventory are fresh). As for
the remaining periods (p > 1), the inventory level of product age b at RC i
at the start of period p is shown in Equation 2. We assume that all products
delivered in period p to all RCs are fresh (i.e., b = 0). This assumption is
common in agri-food supply chain literature (?). The degradation speed is
controlled by |B| in which a smaller value means that the product degrades
faster.

lipb =

{
qip if b = 0

l′i(p−1)(b−1) if 0 < b ≤ |B|
(2)

The customers’ demand at each RC i ∈ V ∗ during a period p ∈ P is
a random variable, Dip, which follows a known probability distribution. In
this work, it is assumed that these random demands are independent across
RCs and throughout the periods –although they do not need to be identically
distributed. We assume that each RC always satisfies its demand using the
older products first. Hence, the demand for product age b is:

dipb =

{
max(Dip − lipb, 0) if b = |B| i.e., oldest

max(dip(b+1) − lip(b+1), 0) if 0 ≤ b < |B|
(3)

Once the customers’ demand at RC i in period p is known, the stock level
of product age b at the end of period p can be computed using Equation 4.
The aggregated inventory level at RC i at the end of period p is given in
Equation 5. As the product deteriorates, its value decreases. We model this
by applying a penalty cost wb to product age b (where w0 = 0 and wb < wb+1).
The deterioration cost (W) is calculated using Equation 6.

l′ipb = lipb −min(dipb, lipb) (4)

L′ip =
∑
b∈B

l′ipb (5)

12

W =
∑
p∈P

∑
i∈V ∗

∑
b∈B

wb · l′ipb (6)

The inventory cost at RC i in period p can be obtained by using Equa-
tion 7, where λ represents the unit cost of holding surplus inventory at the
end of period p. The total inventory cost can be calculated using Equation 8.

sip = λL′ip (7)

S =
∑
p∈P

∑
i∈V ∗

sip (8)

As for the routing decision, in each period p ∈ P , a VRP needs to be
solved for those RCs with qip > 0 (i.e. we do not need to deliver to an
RC that does not need any replenishment). As discussed in ?, the VRP
can be defined on a complete and undirected graph G = (V,E), where V
includes the depot from which n demand points (RCs) are served with a set
K of homogeneous vehicles, and E is the set of edges connecting each pair
of locations in V . Each of the vehicles in the fleet has a maximum loading
capacity given by h > 0. There is a traveling cost, cij = cji > 0 associated
with a vehicle moving from location i to location j (∀i, j ∈ V, i 6= j). The
routing cost in period p depends on the binary decision variables xpkij , which
define whether or not the edge connecting locations i and j is traversed in
period p by a vehicle k ∈ K. Notice that this depends on the realization of the
random variables representing the customers’ demands Dip. Accordingly, the
total routing cost across all periods can be expressed as shown in Equation
9:

R(xpkij , Dip | i, j ∈ V, p ∈ P, k ∈ K) =
∑
p∈P

∑
i∈V

∑
j∈V

∑
k∈K

cijx
pk
ij (9)

Finally, we assume that the customers’ demand at each RC at any period
(i.e., Dip) will always be satisfied. Thus, should a stock-out occur during a
period p at RC i, i.e., when dip0 > lip0, additional dip0 − lip0 fresh produce
will be delivered immediately from the depot. Equation 10 shows the cost
associated with the stock-out at RC i in period p. It shows that when a
stock-out occurs at RC i, we need to transport the product from the depot
to RC i immediately. The total stock-out cost is shown in Equation 11.

gip =

{
0 if dip0 − lip0 ≤ 0

2 · ci0 if dip0 − lip0 > 0
(10)

13

G =
∑
p∈P

∑
i∈V ∗

gip (11)

The objective of our multi-period stochastic PIRP model with
stock-out is to find the optimum combination of qip and xpkij (i.e.
the decision variables) in order to minimize the expected overall
cost as formulated in Equation 12, where S is the total inventory cost, W
is the total deterioration cost, R is the total routing cost and G is the total
stock-out cost.

E[S +W +R +G] (12)

Constraint 13 ensures that we do not deliver more than the capacity of
each RC.

0 ≤ qip ≤ L+
i − L0

ip ∀i ∈ V ∗,∀p ∈ P (13)

Constraints 14 and 15 make sure that we only deliver to RCs that need
replenishment. If RC i needs a replenishment in period p (i.e. qip > 0) then
yip = 1. Otherwise, yip = 0. M is a very large number.

qip ≤ L+
i yip ∀i ∈ V ∗,∀p ∈ P (14)

yip ≤Mqip ∀i ∈ V ∗, ∀p ∈ P (15)

Constraint 16 makes sure that each vehicle k makes one round trip per
period p. A round trip always starts from the depot and ends at the depot
and the trip is done within one period.∑

i∈V ∗
xpk0i =

∑
i∈V ∗

xpki0 = 1 ∀k ∈ K, ∀p ∈ P (16)

Constraint 17 guarantees that each RC i ∈ V ∗ that needs replenishment
(i.e. yip = 1) will be visited and the vehicle k that visits the RC in period
p will leave the RC on the same period p. Constraint 18 is needed for the
sub-tour elimination.

∑
j∈V \{i}

xpkij +
∑

j∈V \{i}

xpkji = 2 · yip ∀i ∈ V ∗,∀k ∈ K, ∀p ∈ P (17)

14

∑
i∈S

∑
j /∈S

xpkij ≤ 2
∑
i∈S

yip ∀S ⊂ V ∗,∀k ∈ K, ∀p ∈ P (18)

Constraint 19 makes sure that in each round trip, we cannot deliver more
than the vehicle capacity.∑

i∈V ∗

∑
j∈V

xpkij qip ≤ h ∀k ∈ K, ∀p ∈ P (19)

Constraints 20 and 21 enforce binary conditions on the auxiliary and
routing decision variables, respectively.

yip ∈ {0, 1} ∀i ∈ V ∗,∀p ∈ P (20)

xpkij ∈ {0, 1} ∀i, j ∈ V, ∀k ∈ K, ∀p ∈ P (21)

4. Our Simulation-Optimization Approach

We propose a simheuristic method to minimize the expected total cost of
the multi-period stochastic PIRP with stock-out as described in the previous
section. Our proposed method is comprised of three stages:

4.1. Construction of the initial solution

The main objective of this stage is to generate a decent initial solution in
a fast manner. To achieve this, we use a constructive heuristic algorithm that
finds the most optimum refill policy when the same policy is applied to all
RCs in every period. The algorithm compares several refill policies. For each
refill policy, total costs including holding cost, routing cost, deterioration
cost, and stock-out cost are estimated using a Monte Carlo simulation. The
constructive heuristic is presented in detail in Algorithm 1.

The inputs to the algorithm are the set of RCs and a depot (V ∗), the
set of time periods (P), the set of duration in which a product has been
stored in the inventory (B), the initial inventory levels (L0

i1), the maximum
storage capacity of each RC (L+

i), the random variable Dip that represents
the random demand for each RC in each time period, the set of refill policies
(T), and the maximum number of simulation runs that must be executed.

The first phase (lines 1 to 22) estimates the inventory cost (holding cost
and stock-out cost) and the deterioration cost of each refill policy. For the

15

initial solution, we consider 11 possible refill policies: 10%-refill policy, 20%-
refill policy, . . . , 100% (full) refill policy, and, in addition, a no-stock (0%)
refill policy in which an RC can only use its current stock to fulfill the demand
in the subsequent period. The loop in line 1 iterates each refill policy. In
each iteration, the same refill policy will be applied to all RCs (line 4) in
every period (line 9).

In line 7, we execute a small number of Monte Carlo simulation runs
to estimate the costs associated with refill policy t applied to RC i for all
periods P . In each period (the loop in line 9), we first update the age of each
product (line 10). When a product reaches its maximum age, it is discarded.
Then, we determine the quantity to be delivered to RC i in period p (line 11)
taking into account the initial inventory level of the RC and its maximum
storage capacity. Next, we generate a realization of the random variable
Dip, which is the demand at RC i in period p (line 12). With the generated
demand, we can now compute the inventory level at the end of the current
period (line 13), which will become the inventory level at the beginning of
the next period. In line 14, we compute the inventory cost. Should a stock-
out occurs, the inventory cost also includes the stock-out cost which is the
cost of a round trip to the depot. In line 15, we compute the deterioration
(aging) cost. By the end of the first phase, we obtain the expected inventory
and deterioration costs for each refill policy. Figure 2 shows the flowchart of
phase 1 to complement the pseudocode in Algorithm 1.

The second phase (lines 23 to 36) estimates the routing cost for each refill
policy using the plan generated in the first phase (i.e. the number of products
to be delivered to each RC in every period). In phase 1, for each simulation
run, we store the number of products that must be delivered to each RC in
every period. We use the same data structure as in ? whereby a matrix of |V ∗|
rows and |P | columns is used to store the inventory requirement plan. Each
cell (i, p) in the matrix represents the quantity to deliver to RC i in period
p. We maintain one matrix for each simulation run. We use the quantities
from these matrices as the parameters to a biased-randomized version of the
savings heuristic reported in ? to estimate the associated routing cost in
period p (line 30). Next, we calculate the total routing cost for the refill
policy t (line 34). Finally, the refill policy that produces the lowest expected
total cost is chosen as our initial solution (lines 35 and 36). We complement
the pseudocode of phase 2 of Algorithm 1 with a flowchart shown in Figure
3.

16

Algorithm 1: Generate Initial Solution
Inputs:
V = {0, 1, . . . , |V |}: Set of depot (0) and retail centers (RCs) (V ∗)
P = {1, 2, . . . , |P |}: Set of time periods
B = {1, 2, . . . , |B|}: Age index of a product

L0
i1: Initial inventory level of RC i in period 1

L+
i : Maximum storage capacity of RC i

Dip: Random variable for demand at RC i in period p

T : Refill policies as a % of L+
i (e.g., 0%, 10%, 20%,... 90%, 100%)

maxRuns: Maximum number of runs of the Monte Carlo simulation
% Phase 1: Compute expected multi-period inventory costs for each refill policy

1 foreach refill policy t ∈ T do
2 expInvCost[t]← 0 % set expected inventory cost associated with policy t to 0
3 expAgingCost[t]← 0 % set expected deterioration cost associated with policy t to 0
4 foreach RC i ∈ V ∗ do
5 accumInvCost← 0 % set accumulated inventory cost to 0
6 accumAgingCost← 0 % set accumulated deterioration cost to 0
7 iter ← 0
8 while iter < maxRuns do
9 foreach period p ∈ P do

10 updateAging(L0
ip, B) % update the age of each product

11 qip[t][iter]← max{t · L+
i − L0

ip, 0} % determine the quantity to deliver to RC i

12 dip ← generate a realization of demand Dip % generate a demand variable

13 L0
i(p+1) ← max{L0

ip + qip[t][iter]− dip, 0} % compute inventory level at the end of the

current period
14 invCost← computeInventoryCost(t, L0

i(p+1)) % compute inventory cost for RC i and

policy t
15 agingCost← computeAgingCost(L0

ip) % compute deterioration cost for each RC and

policy
16 accumAgingCost← accumAgingCost + agingCost

% compute accumulated deterioration cost
17 accumInvCost← accumInvCost + invCost % compute accumulated inventory cost

end
18 iter ← iter + 1

end
19 avgInvCostRC ← accumInvCost/maxRuns % average inventory cost of RC i at policy t
20 avgAgingCostRC ← accumAgingCost/maxRuns % average deterioration cost of RC i at policy t
21 expInvCost[t]← expInvCost[t] + avgInvCostRC
22 expAgingCost[t]← expAgingCost[t] + avgAgingCostRC

end

end
% Phase 2: Compute average multi-period routing cost and total cost for each policy

23 initSol← emptySol
24 cost(initSol)←∞
25 foreach refill policy t in T do
26 accumRoutingCost← 0
27 foreach period p ∈ P do
28 iter ← 0
29 while iter < maxRuns do
30 routingCost← estimateRoutingCost(q1p[t][iter], . . . , q|V |p[t][iter]) % use

biased-randomized heuristic
31 accumRoutingCost← accumRoutingCost + routingCost
32 iter ← iter + 1

end
33 expRoutingCost← accumRoutingCost/maxRuns

end
34 totalCost← expInvCost[t] + expAgingCost[t] + expRoutingCost

if totalCost < cost(initSol) then
35 initSol← setAllRefillDecisionsToV alue(t)
36 cost(initSol)← totalCost

end

end
37 return initSol

17

Figure 2: Flowchart for phase 1 of algorithm 1.

18

Figure 3: Flowchart for phase 2 of of algorithm 1.

19

4.2. Local Search stage

The objective of the local search (or local optimization) stage is to improve
the homogeneous (global) refill policy obtained from the previous stage by
finding the optimum “local” refill policy. The local refill policy refers to the
refill policy applied to a specific RC in a specific period (i.e., the cell (i, p)
in the matrix described in Section 4.1). This local search method may result
in a different refill policy to be applied to each RC in each period. The
detailed pseudocode and its flowchart are given in Algorithm 2 and Figure
4, respectively.

The local search algorithm starts by assigning the initial solution initSol
generated by Algorithm 1 both to the base solution baseSol, and to the
current best solution bestSol (lines 1-2). Then, it randomly picks a retail
center and a period (lines 6-7, lines 21-22) without a replacement from {V ∗×
P} (i.e., a set of all possible combinations of RCs and periods). For each
combination (line 8), we compare the base refill policy t with t − 10% and
t + 10% refill policies (lines 13-19). In line 15, we estimate the total supply
chain cost using the same constructive heuristic method described in Section
4.1 (the only difference is that now it only affects a subset of elements in the
policy matrix). If the cost of newSol improves over the cost of bestSol, the
current best solution is updated (line 17). If any of the two refill policies
outperforms the current best solution bestSol, the process (lines 13-19) is
repeated by comparing the base refill policy t with t− 20% and t+ 20% refill
policies, and so on (line 20) until there is no improvement that can be made.
The loop (lines 8-22) is then repeated until all the elements in the matrix
have been visited.

4.3. Refinement stage

The aim of this stage is to refine the solution achieved by the local search
algorithm by applying a large number of Monte Carlo simulation runs to the
best solution obtained in the previous stage. Since the simulation process is
time-consuming, we limit the number of iterations to 10,000.

Notice that an important advantage of our approach is its relative sim-
plicity and its reduced number of parameters. This significantly reduces the
need for fine tuning processes and its sensitivity to particular problem charac-
teristics, providing a robust method that performs efficiently across different
instances.

20

Figure 4: Flowchart for algorithm 2.

21

Algorithm 2: Local search procedure
Inputs:
V = {0, 1, . . . , |V |}: Set of depot (0) and retail centers (RCs) (V ∗)
P = {1, 2, . . . , |P |}: Set of time periods
initSol : initial solution

1 baseSol← initSol % assign the initial solution generated by Algorithm 1
2 bestSol← initSol % assign the initial solution generated by Algorithm 1
3 improves← true
4 levelOfUpdating ← 10%
5 RCs = V ∗

6 rc← selectRandRC() % randomly select an RC
7 p← selectRandPeriod() % randomly select a time period
8 foreach (i, p) in {V ∗ × P} do
9 baseRefillPolicy ← getRefillPolicy(baseSol, rc, p) % iterate the refill

policy matrix
10 while improves is true do
11 improves← false
12 newRefillPolicy ← baseRefillPolicy + levelOfUpdating % set the

new refill policy by increasing the base policy by levelOfUpdating
13 foreach incr = 1 To 2 do
14 newSol← modifyRefillPolicy(bestSol, rc, p, newRefillPolicy)

% generate a new solution by increasing the current refill
policy by 10%

15 newSol← constructiveHeuristic(newSol) % recalculate the
solution by using the constructive heuristic in Algorithm 1.

16 if cost(newSol) < cost(bestSol) then
17 bestSol← newSol
18 improves← true

end
19 newRefillPolicy ← baseRefillPolicy − levelOfUpdating

end
20 levelOfUpdating ← levelOfUpdating + 10%

end
21 rc← selectNewRC()
22 p← selectNewPeriod()

end
23 return bestSol

22

5. Computational Experiments and Analysis of Results

We perform a set of experiments to illustrate the effectiveness of our
approach for solving the multi-period stochastic PIRP with stock-out. We
use the 27 VRP instances proposed by ? and adapted for the IRP by ? and
Gruler et al. (2018b). These instances contain a central depot, between 27
and 80 RC nodes, and a fleet of 5–10 homogeneous vehicles. We implement
our approach as a Java application and execute it on a workstation with 64
GB of RAM and an Intel Xeon at 3.7 GHz.

The algorithms are set-up with the following parameters:

• λ is set to 0.25 to ensure that the inventory holding cost has the same
magnitude as the routing cost (see ? and Gruler et al. (2018b)) and
deterioration cost; hence, none of the terms in the objective function
dominates over the others.

• Product age: |B| is set to 3, allowing that each product passes through
three different states in its cycle of life (fresh, semi-fresh and expired).

• Deterioration unit cost: We set w = {0, 0.4, 1.0}. This means that at
the end of the second period the product loses 40% of its value; and at
the end of the third period the product loses its value completely and
is discarded.

• Number of simulation runs in the initial phase: This value is set to a
number that is big enough to provide a good and quick estimate for
the costs of promising solutions. A number up to 100 provides a good
compromise for all instances used in the experiment.

• Number of simulation runs in the refinement phase: After carrying out
several tests, this value is set to 10, 000 experimentally.

We assume that the customer demand at RC i in period p follows a
Log-Normal probability distribution, i.e. Dip ∼ LogNormal(µip, c · σip).
Log-Normal distribution is commonly used to model non-negative random
variables (?). The parameter c > 0 is a design parameter that allows us
to experiment with different levels of uncertainty. It is expected that as c
converges to zero, the results from the stochastic version converge to those
obtained in the deterministic scenario. We consider three different levels of
uncertainty: low (c = 0.10), medium (c = 0.25), and large (c = 0.75).

23

Tables 2 to 4 present the results for the case where there are three planning
horizons (P = 3). The number of retail centers n and vehicles K in each
problem setting are reflected in the instance name. Column (1) depicts the
results of the initial solution (i.e., generated by the constructive heuristic
shown in Algorithm 1). Column (2) shows the total expected cost of our best
solution (OBS), generated by our simheuristic method. This expected total
cost is disaggregated in the following columns: routing (3), inventory (4-6),
and deterioration (7) costs. Furthermore, we break down the expected total
inventory cost (4) into stock-out cost (5) and holding (6) cost. Column (8)
shows the number of units of product with age 1 or 2 (i.e. semi-fresh units),
and (9) shows the total number of units of product which have exceeded
their maximum age and have perished. Finally, the last two columns show
the computational time to obtain the OBS (in seconds), and the average
percentage gaps between the initial solution and the OBS, respectively. Gaps
are calculated as follows:

Gap (CostOBS, CostInitSol) = 100

(
CostOBS − CostInitSol

CostInitSol

)
(22)

A closer look at Tables 2–4 reveals that a higher level of demand-uncertainty
leads to a higher total cost due to a higher inventory cost (holding and stock-
out costs) and a higher deterioration cost. It can further be inferred from the
tables that a higher inventory level increases the risk of higher deterioration
cost and product waste.

We have also carried out experiments for five and seven planning hori-
zons (P = 5 and P = 7). Figure 5 illustrates the average total costs
for various planning horizons P ∈ {3, 5, 7} and different variance levels,
c ∈ {0.1, 0.25, 0.75} for each horizon. In the same figure, we also compare the
expected total cost of the initial solution –in which the same replenishment
policy is applied at all retail centers in each period–, and the OBS found by
the proposed simheuristic method. It shows that the proposed simheuristic
method improves the initial solution provided by the constructive heuristic
(i.e. Algorithm 1). It implies that the local search (i.e. Algorithm 2) has
done well in reducing the expected total cost.

We present the computational times needed to obtain the OBS in Figure
6. The figure presents the average computing times of all 27 VRP instances
in various planning horizons and variance levels. As expected, the average
computational time increases with the number of planning periods (i.e., a
bigger matrix to solve). We also notice that the levels of variance in demand

24

3 Periods 5 Periods 7 Periods

0.10 0.25 0.75 0.10 0.25 0.75 0.10 0.25 0.75

0

2500

5000

7500

10000

12500

Variance Level (c)

E
xp

ec
te

d
To

ta
l C

os
t

Solution

Initial Solution
OBS

Figure 5: Expected total costs over all instances for different variance levels and planning
horizons

25

does not affect the computational time. This is expected because the variance
in the demand does not make the computation more expensive. It simply
affects the quality of the solutions.

● ●

●

0

250

500

750

1000

1250

3 Periods 5 Periods 7 Periods

Planning Periods

T
im

e
(S

ec
.) Variance Levels

c = 0.10
c = 0.25
c = 0.75

Figure 6: Average computational times for different variance levels and planning horizons

Finally, Figure 7 shows the disaggregated total expected cost when the
same refill policy is applied to all RCs in all periods with planning horizon
P = 5 and a medium variance level (c = 0.25). This is shown in the first
eleven bars. We compare this with the optimum solution (OBS) from our
simheuristic method (the rightmost bar). A number of interesting conclu-
sions can be made from this figure. First, a policy with lower refill rate leads

26

to a higher inventory cost, mainly due to a higher stock-out cost. The no-
refill policy (inventory level at 0%) is a special case, in which all the costs are
associated with stock-out costs. Second, as the replenishment level increases,
the holding cost becomes more dominant than the stock-out cost. This is ex-
pected as stock-outs rarely happen when the inventory level is high. We also
observe that deterioration cost increases. This is also expected since a high
inventory level means that more products are subject to the deterioration.
Hence, it increases the risk of product waste. Third, although the difference
in the expected total cost between 50% refill policy applied globally (i.e.,
to all RCs) and different refill policies applied locally at each RC in each
period (i.e., OBS) is not significant, applying refill policies locally leads to a
slightly better result due to a lower deterioration cost. Hence, this solution
is preferred when the concern about food waste is high.

27

Figure 7: Expected routing, inventory, and deterioration cost for the different replenish-
ment policies analyzed (P = 5 planning horizons and c = 0.25 variance level)

28

T
ab

le
2:

R
es

u
lt

s
fo

r
P

=
3

ti
m

e
p

er
io

d
s

a
n

d
a

lo
w

va
ri

a
n

ce
le

ve
l

(c
=

0
.1

0
)

O
B

S
In

it
ia

l
O

B
S

T
ot

al
R

ou
ti

n
g

T
ot

al
In

ve
n
to

ry
S

to
ck

-o
u

t
H

ol
d

in
g

D
et

er
io

ra
ti

on
S

em
i-

F
re

sh
U

n
it

T
im

e
G

A
P

(%
)

S
ol

u
ti

on
C

os
t

C
os

t
C

os
t

C
os

t
C

os
t

C
os

t
U

n
it

s
L

os
s

(s
)

[1
-2

]
[1

]
[2

]
[3

]
[4

]
[5

]
[6

]
[7

]
[8

]
[9

]
A

-n
32

-K
5

34
16

.5
4

31
77

.1
2

27
26

.8
2

28
2.

36
20

1.
33

81
.0

3
16

7.
94

20
6.

40
2

37
-7

.0
1

A
-n

33
-K

5
28

51
.2

1
27

50
.6

0
23

84
.3

4
19

6.
39

11
4.

74
81

.6
6

16
9.

87
20

8.
97

2
40

-3
.5

3
A

-n
33

-K
6

29
59

.9
0

29
51

.4
7

25
33

.8
0

23
4.

54
14

6.
04

88
.5

0
18

3.
13

22
8.

89
0

31
-0

.2
8

A
-n

37
-K

5
28

88
.1

2
27

93
.5

2
23

54
.5

6
20

7.
53

86
.4

0
12

1.
13

23
1.

43
28

8.
85

0
51

-3
.2

8
A

-n
38

-K
5

33
11

.4
9

32
73

.7
2

27
30

.9
4

36
1.

65
27

5.
20

86
.4

4
18

1.
13

22
6.

25
0

29
-1

.1
4

A
-n

39
-K

6
35

26
.0

4
34

18
.8

8
28

71
.6

1
35

6.
81

25
8.

83
97

.9
8

19
0.

46
23

7.
92

0
24

-3
.0

4
A

-n
45

-K
6

39
36

.7
5

37
80

.5
5

31
63

.5
0

38
2.

47
26

9.
45

11
3.

02
23

4.
58

29
0.

34
2

32
-3

.9
7

A
-n

45
-K

7
49

37
.8

6
49

15
.4

9
42

52
.9

7
44

9.
37

34
4.

46
10

4.
91

21
3.

14
26

6.
34

0
77

-0
.4

5
A

-n
55

-K
9

45
74

.2
6

44
46

.5
3

38
51

.7
4

29
2.

21
13

7.
33

15
4.

88
30

2.
58

37
7.

95
0

76
-2

.7
9

A
-n

60
-K

9
60

03
.7

2
57

91
.0

0
47

72
.8

7
70

7.
01

56
2.

73
14

4.
28

31
1.

13
38

7.
03

1
12

2
-3

.5
4

A
-n

61
-K

9
43

50
.1

1
43

45
.5

0
35

70
.3

0
48

4.
89

33
0.

49
15

4.
40

29
0.

30
36

2.
88

0
10

7
-0

.1
1

A
-n

63
-K

9
74

43
.7

4
73

85
.9

7
62

96
.3

0
39

9.
25

77
.7

6
32

1.
49

69
0.

43
86

0.
85

1
12

6
-0

.7
8

A
-n

65
-K

9
53

07
.3

0
51

66
.7

8
41

94
.7

8
67

0.
06

52
4.

62
14

5.
44

30
1.

94
37

7.
29

0
77

-2
.6

5
A

-n
80

-K
10

76
41

.8
0

74
86

.7
6

62
93

.3
8

50
2.

74
18

0.
87

32
1.

87
69

0.
64

85
9.

11
3

17
9

-2
.0

3
B

-n
31

-K
5

30
78

.2
0

29
42

.1
5

24
84

.8
5

31
6.

80
24

3.
94

72
.8

6
14

0.
50

17
5.

46
0

10
-4

.4
2

B
-n

35
-K

5
42

83
.3

6
41

33
.2

4
35

26
.3

2
23

7.
42

72
.4

6
16

4.
96

36
9.

50
45

5.
54

4
24

-3
.5

0
B

-n
39

-K
5

28
06

.6
8

26
79

.6
6

21
67

.3
7

21
6.

92
77

.5
9

13
9.

34
29

5.
36

36
9.

01
0

54
-4

.5
3

B
-n

41
-K

6
35

44
.8

4
35

17
.3

6
29

78
.7

0
33

0.
06

23
5.

25
94

.8
0

20
8.

61
24

8.
08

8
21

-0
.7

8
B

-n
45

-K
5

32
38

.3
5

31
12

.6
0

24
98

.7
3

25
2.

43
87

.2
5

16
5.

19
36

1.
44

45
1.

20
0

56
-3

.8
8

B
-n

50
-K

7
34

78
.1

8
33

89
.0

6
26

26
.8

5
53

8.
95

43
0.

12
10

8.
84

22
3.

25
27

8.
85

0
95

-2
.5

6
B

-n
52

-K
7

34
46

.2
8

34
30

.8
6

24
67

.8
6

75
2.

52
65

6.
42

96
.1

0
21

0.
48

25
4.

66
6

39
-0

.4
5

B
-n

56
-K

7
32

34
.7

8
31

56
.0

4
23

86
.5

3
27

6.
55

49
.0

4
22

7.
51

49
2.

96
61

6.
13

0
96

-2
.4

3
B

-n
57

-K
9

69
84

.7
5

68
99

.2
1

58
61

.4
6

37
3.

24
77

.1
5

29
6.

09
66

4.
52

80
7.

49
15

50
-1

.2
2

B
-n

64
-K

9
39

16
.4

4
38

67
.0

4
29

39
.3

5
63

4.
37

49
2.

52
14

1.
84

29
3.

32
36

6.
63

0
58

-1
.2

6
B

-n
67

-K
10

47
12

.7
1

45
75

.7
6

36
90

.7
8

55
7.

29
40

3.
09

15
4.

20
32

7.
69

40
5.

18
3

92
-2

.9
1

B
-n

68
-K

9
56

86
.9

1
54

97
.4

2
44

94
.2

1
36

7.
65

69
.5

4
29

8.
12

63
5.

56
79

4.
37

0
13

7
-3

.3
3

B
-n

78
-K

10
56

08
.4

6
54

87
.8

1
43

11
.1

7
44

9.
14

10
8.

79
34

0.
35

72
7.

49
90

9.
21

0
82

-2
.1

5
A

ve
ra

ge
:

43
39

.5
8

42
36

.0
0

34
97

.4
8

40
1.

13
24

1.
24

15
9.

90
33

7.
38

41
8.

92
2

84
-2

.3
9

29

T
ab

le
3:

R
es

u
lt

s
fo

r
P

=
3

ti
m

e
p

er
io

d
s

a
n

d
a

m
ed

iu
m

va
ri

a
n

ce
le

ve
l

(c
=

0
.2

5
)

O
B

S
In

it
ia

l
O

B
S

T
ot

al
R

ou
ti

n
g

T
ot

al
In

ve
n
to

ry
S

to
ck

-o
u

t
H

ol
d

in
g

D
et

er
io

ra
ti

on
S

em
i-

F
re

sh
U

n
it

T
im

e
G

A
P

(%
)

S
ol

u
ti

on
C

os
t

C
os

t
C

os
t

C
os

t
C

os
t

C
os

t
U

n
it

s
L

os
s

(s
)

[1
-2

]
[1

]
[2

]
[3

]
[4

]
[5

]
[6

]
[7

]
[8

]
[9

]
A

-n
32

-K
5

35
72

.8
7

34
71

.9
6

28
00

.8
6

33
5.

56
18

1.
44

15
4.

12
33

5.
54

41
8.

98
0

28
-2

.8
2

A
-n

33
-K

5
30

85
.5

5
30

37
.7

0
24

77
.0

7
23

5.
22

82
.0

3
15

3.
20

32
5.

40
40

5.
99

1
43

-1
.5

5
A

-n
33

-K
6

33
57

.6
3

33
00

.4
5

25
91

.3
6

28
3.

53
88

.4
6

19
5.

07
42

5.
56

53
1.

68
0

15
-1

.7
0

A
-n

37
-K

5
30

34
.5

3
29

74
.8

8
23

22
.4

9
37

2.
79

23
6.

39
13

6.
39

27
9.

60
34

4.
64

3
31

-1
.9

7
A

-n
38

-K
5

35
64

.9
1

34
41

.4
0

27
72

.5
3

29
8.

40
12

5.
44

17
2.

96
37

0.
47

46
1.

98
1

21
-3

.4
6

A
-n

39
-K

6
37

38
.5

2
36

96
.0

2
29

20
.4

6
36

8.
04

17
7.

59
19

0.
45

40
7.

52
50

8.
95

0
24

-1
.1

4
A

-n
45

-K
6

41
20

.3
1

40
72

.3
0

32
48

.3
1

35
9.

07
14

3.
47

21
5.

60
46

4.
92

57
4.

22
5

39
-1

.1
7

A
-n

45
-K

7
53

71
.6

7
52

96
.5

8
44

45
.3

0
34

3.
72

10
7.

44
23

6.
28

50
7.

57
63

3.
16

1
74

-1
.4

0
A

-n
55

-K
9

51
00

.0
8

50
15

.8
5

39
73

.4
0

40
2.

05
10

2.
03

30
0.

01
64

0.
40

79
8.

49
1

82
-1

.6
5

A
-n

60
-K

9
63

31
.6

5
62

53
.5

3
49

88
.6

7
61

6.
19

31
8.

58
29

7.
61

64
8.

67
80

9.
94

1
11

2
-1

.2
3

A
-n

61
-K

9
48

86
.8

8
48

40
.4

6
36

81
.8

2
45

6.
95

13
7.

16
31

9.
79

70
1.

69
87

6.
61

0
12

1
-0

.9
5

A
-n

63
-K

9
77

35
.2

0
76

68
.5

7
62

61
.8

0
71

0.
53

39
1.

33
31

9.
20

69
6.

23
86

8.
23

1
13

0
-0

.8
6

A
-n

65
-K

9
56

32
.9

3
56

02
.2

9
43

16
.5

7
57

7.
00

24
9.

28
32

7.
71

70
8.

73
88

4.
97

1
60

-0
.5

4
A

-n
80

-K
10

81
61

.4
5

81
45

.2
5

62
09

.5
7

95
9.

24
70

8.
17

35
1.

08
77

6.
44

95
4.

92
10

17
2

-0
.2

0
B

-n
31

-K
5

31
82

.8
0

31
64

.2
7

25
63

.4
9

26
2.

45
10

7.
43

15
5.

02
33

8.
34

42
2.

44
0

8
-0

.5
8

B
-n

35
-K

5
44

70
.5

7
43

66
.5

0
35

50
.3

6
44

9.
53

28
8.

07
16

1.
46

36
6.

60
45

2.
86

4
34

-2
.3

3
B

-n
39

-K
5

29
65

.8
7

29
23

.8
7

21
68

.2
3

43
1.

14
27

8.
47

15
2.

67
32

4.
50

40
3.

83
1

52
-1

.4
2

B
-n

41
-K

6
38

71
.6

2
38

20
.6

5
30

90
.3

0
26

6.
65

53
.5

9
21

3.
06

46
3.

70
57

5.
81

3
32

-1
.3

2
B

-n
45

-K
5

34
35

.7
4

32
95

.7
6

24
87

.9
1

45
0.

29
28

4.
34

16
5.

94
35

7.
57

44
0.

13
5

63
-4

.0
7

B
-n

50
-K

7
36

50
.8

9
36

05
.9

1
26

77
.6

2
42

4.
76

19
4.

97
22

9.
79

50
3.

54
62

8.
60

1
85

-1
.2

3
B

-n
52

-K
7

36
56

.1
1

35
86

.0
2

26
53

.4
6

44
3.

14
21

7.
56

22
5.

58
48

9.
42

59
8.

55
9

54
-1

.9
2

B
-n

56
-K

7
33

94
.4

5
33

78
.0

0
24

07
.8

8
48

2.
27

25
6.

26
22

6.
01

48
7.

85
60

8.
94

1
10

5
-0

.4
8

B
-n

57
-K

9
72

05
.4

5
71

28
.9

5
58

41
.2

3
62

5.
30

31
9.

30
30

5.
99

66
2.

42
81

4.
82

9
44

-1
.0

6
B

-n
64

-K
9

45
08

.4
2

44
11

.6
1

31
67

.4
3

52
9.

08
20

3.
08

32
6.

00
71

5.
10

88
9.

89
3

68
-2

.1
5

B
-n

67
-K

10
53

54
.5

9
52

62
.8

0
39

68
.4

7
59

5.
45

26
7.

77
32

7.
68

69
8.

88
87

0.
18

2
97

-1
.7

1
B

-n
68

-K
9

59
45

.6
5

57
57

.3
4

44
89

.9
1

62
0.

01
31

8.
29

30
1.

72
64

7.
42

80
5.

98
2

14
9

-3
.1

7
B

-n
78

-K
10

59
35

.3
7

58
88

.4
9

43
00

.2
3

86
1.

35
51

8.
62

34
2.

74
72

6.
90

90
6.

45
1

78
-0

.7
9

A
ve

ra
ge

:
46

39
.6

9
45

70
.6

4
35

69
.5

1
47

2.
58

23
5.

43
24

0.
86

52
1.

15
64

7.
82

3
67

-1
.5

9

30

T
ab

le
4:

R
es

u
lt

s
fo

r
P

=
3

ti
m

e
p

er
io

d
s

a
n

d
a

h
ig

h
va

ri
a
n

ce
le

ve
l

(c
=

0
.7

5
)

O
B

S
In

it
ia

l
O

B
S

T
ot

al
R

ou
ti

n
g

T
ot

al
In

ve
n
to

ry
S

to
ck

-o
u

t
H

ol
d

in
g

D
et

er
io

ra
ti

on
S

em
i-

F
re

sh
U

n
it

T
im

e
G

A
P

(%
)

S
ol

u
ti

on
C

os
t

C
os

t
C

os
t

C
os

t
C

os
t

C
os

t
U

n
it

s
L

os
s

(s
)

[1
-2

]
[1

]
[2

]
[3

]
[4

]
[5

]
[6

]
[7

]
[8

]
[9

]
A

-n
32

-K
5

39
96

.0
1

39
22

.2
4

28
86

.5
1

68
3.

62
52

5.
47

15
8.

15
35

2.
11

42
5.

87
10

35
-1

.8
5

A
-n

33
-K

5
33

50
.8

4
32

53
.2

0
23

87
.8

2
49

4.
35

31
8.

67
17

5.
68

37
1.

03
44

8.
87

10
35

-2
.9

1
A

-n
33

-K
6

35
90

.1
0

35
63

.7
2

26
15

.4
7

50
6.

72
30

5.
11

20
1.

62
44

1.
52

54
8.

74
2

24
-0

.7
3

A
-n

37
-K

5
34

09
.0

2
33

76
.4

4
23

28
.3

0
71

1.
00

54
9.

09
16

1.
91

33
7.

14
40

6.
70

10
41

-0
.9

6
A

-n
38

-K
5

39
37

.3
9

37
46

.9
5

26
96

.9
3

64
0.

35
45

1.
28

18
9.

07
40

9.
68

48
6.

06
17

22
-4

.8
4

A
-n

39
-K

6
41

90
.8

6
41

80
.7

3
29

62
.2

0
79

2.
47

59
1.

62
20

0.
85

42
6.

06
52

7.
14

4
17

-0
.2

4
A

-n
45

-K
6

46
16

.1
9

45
84

.6
7

32
11

.9
4

89
7.

77
67

8.
23

21
9.

54
47

4.
96

58
6.

71
5

41
-0

.6
8

A
-n

45
-K

7
58

10
.6

6
55

74
.9

5
42

24
.1

5
79

6.
60

54
4.

07
25

2.
53

55
4.

19
68

0.
56

8
70

-4
.0

6
A

-n
55

-K
9

54
87

.4
1

54
12

.5
7

39
21

.7
6

82
7.

72
51

7.
75

30
9.

97
66

3.
08

82
3.

07
4

82
-1

.3
6

A
-n

60
-K

9
69

77
.3

1
69

10
.9

7
50

22
.0

0
12

18
.7

7
90

3.
17

31
5.

59
67

0.
21

82
8.

25
6

11
7

-0
.9

5
A

-n
61

-K
9

53
44

.0
2

52
89

.9
2

36
73

.9
4

93
8.

08
61

9.
16

31
8.

92
67

7.
91

84
0.

81
4

10
9

-1
.0

1
A

-n
63

-K
9

85
65

.0
0

83
21

.5
4

59
65

.0
2

16
35

.5
6

13
03

.5
0

33
2.

06
72

0.
96

88
1.

49
13

12
1

-2
.8

4
A

-n
65

-K
9

62
15

.8
8

62
08

.0
9

43
08

.2
5

11
55

.7
1

81
5.

73
33

9.
97

74
4.

13
91

1.
68

12
70

-0
.1

3
A

-n
80

-K
10

95
97

.1
6

94
32

.9
4

67
46

.4
2

14
87

.4
8

93
3.

69
55

3.
79

11
99

.0
3

14
24

.9
2

49
17

2
-1

.7
1

B
-n

31
-K

5
35

88
.5

2
35

26
.3

7
25

64
.5

7
62

0.
81

46
1.

59
15

9.
22

34
0.

99
42

1.
14

3
16

-1
.7

3
B

-n
35

-K
5

49
85

.2
5

49
60

.4
2

35
65

.0
9

10
10

.3
3

83
9.

08
17

1.
25

38
5.

00
46

3.
65

12
30

-0
.5

0
B

-n
39

-K
5

33
99

.0
1

32
84

.9
2

21
33

.7
5

79
5.

38
61

6.
90

17
8.

48
35

5.
79

42
0.

59
16

53
-3

.3
6

B
-n

41
-K

6
41

92
.2

5
40

93
.2

8
29

93
.2

5
59

9.
85

37
3.

46
22

6.
39

50
0.

18
60

4.
49

14
29

-2
.3

6
B

-n
45

-K
5

38
88

.7
6

37
09

.0
9

24
92

.4
9

81
6.

15
62

4.
79

19
1.

36
40

0.
45

48
2.

17
12

65
-4

.6
2

B
-n

50
-K

7
41

57
.5

6
40

58
.9

3
27

13
.3

4
87

0.
08

64
8.

43
22

1.
65

47
5.

52
58

2.
83

8
86

-2
.3

7
B

-n
52

-K
7

42
36

.8
0

41
99

.1
1

26
31

.5
2

10
44

.0
8

80
5.

72
23

8.
36

52
3.

51
62

9.
20

17
49

-0
.8

9
B

-n
56

-K
7

40
06

.2
2

39
09

.4
7

23
50

.9
3

10
40

.4
4

79
9.

69
24

0.
75

51
8.

09
63

0.
17

12
10

2
-2

.4
2

B
-n

57
-K

9
80

23
.3

1
79

68
.1

4
58

92
.2

4
13

76
.0

1
10

47
.3

3
32

8.
68

69
9.

89
83

7.
06

25
40

-0
.6

9
B

-n
64

-K
9

49
12

.1
2

48
13

.1
9

30
87

.3
2

10
09

.0
4

68
1.

05
32

7.
99

71
6.

84
88

7.
14

6
58

-2
.0

1
B

-n
67

-K
10

59
02

.1
6

58
61

.2
8

40
01

.7
6

11
30

.4
6

78
8.

05
34

2.
41

72
9.

05
89

5.
49

11
97

-0
.6

9
B

-n
68

-K
9

68
64

.7
0

67
25

.7
9

45
00

.3
7

15
63

.8
3

12
52

.8
1

31
1.

02
66

1.
60

81
4.

01
9

14
0

-2
.0

2
B

-n
78

-K
10

67
40

.9
9

67
31

.7
1

42
92

.8
8

16
72

.3
6

13
13

.4
3

35
8.

93
76

6.
47

94
5.

29
9

78
-0

.1
4

A
ve

ra
ge

:
51

84
.6

5
50

97
.0

6
35

61
.8

6
97

5.
37

71
5.

14
26

0.
23

55
9.

83
68

2.
74

12
67

-1
.7

8

31

6. Conclusions

We have studied a fresh produce agri-food supply chain where there is a
single fresh food supplier who owns a central warehouse that serves several
retail centers (RCs) with stochastic demands. The supplier makes decisions
on the inventory level of each RC and the transportation of perishable prod-
ucts from the warehouse to the RCs. This can be viewed as a multi-period
inventory routing problem with stochastic demands and perishable products
in the context of agri-food supply chains. It is also known as Perishable
Inventory Routing Problem (PIRP) in the combinatorial optimization field.

We have modelled this problem as a mixed integer program and devel-
oped a simheuristic algorithm, which is based on a local search metaheuristic,
to solve it. The algorithm integrates Monte Carlo simulation into the meta-
heuristic, allowing us to model stochastic demands. The perishability of the
products is included in the model as constraints and costs. We have shown
that the proposed simheuristic algorithm can produce an optimal solution
that minimizes the total expected costs (i.e., inventory costs, routing costs
and costs related to food waste). Although the focus of this paper is on agri-
food supply chains, the proposed method is applicable to other perishable
products including blood supply chains and short-life technology products.

We have identified several research lines based on the limitations of our
model. First, our model only considers one fresh produce product. Hence,
we plan to extend our work to include multiple products and to consider
product substitutions, both are common in agri-food supply chains. Sec-
ondly, our model only integrates the routing and inventory management of
agri-food supply chains. Hence, another extension will include further in-
tegration between harvesting, processing and distribution processes in fresh
produce agri-food supply chains. Thirdly, our model assumes that the de-
mand at all RCs in all periods are independent. We plan to extend our model
to include seasonal and correlated demands. Finally, we plan to extend the
proposed simheuristic algorithm to include different types of heuristics with
a more iterative process between the local search stage and the refinement
stage.

Acknowledgements

This work has been partially supported by the Spanish Ministry of Econ-
omy and Competitiveness (TRA2015-71883-REDT), FEDER. and the Eras-
mus+ programme (2018-1-ES01-KA103-04976).

32

References

Appendix A. List of abbreviations

Table A.5 contains the list of abbreviations used in the text.

Abbreviation Description
PIRP Perishable Inventory Routing Problem
IRP Inventory Routing Problem
VMI Vendor managed inventories
RMI Retail Managed Inventory
VRP Vehicle Routing Problem
RC Retail Center
OR Operational Research
MILP Mixed Integer Linear Program
LS Local Search
MCS Monte Carlo Simulation
OBS Our Best Solution

Table A.5: List of abbreviations

33

