
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Sánchez Gallegos, D., Carrizales Espinoza, D. Reyes
Anastacio, H., González Compean, J.L., Carretero
Pérez, J., Morales Sandoval, M., Galaviz Mosqueda,
A. (2020). From the edge to the cloud: A continuous
delivery and preparation model for processing big IoT
data. Simulation Modelling Practice and Theory, 105,
102136

DOI: 10.1016/j.simpat.2020.102136

© Elsevier, 2020

https://doi.org/10.1016/j.simpat.2020.102136
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

From the edge to the cloud: A continuous delivery and preparation

model for processing big IoT data

Dante D. Sánchez-Gallegosa, Diana Carrizales-Espinozaa, Hugo G. Reyes-Anastacioa, J. L.
Gonzalez-Compeana, Jesus Carreterob, Miguel Morales-Sandovala, Alejandro

Galaviz-Mosquedac

aCinvestav Tamaulipas, Cd, Victoria, Mexico
bUniversidad Carlos III de Madrid, Madrid, Spain

cCICESE, Ensenada, Mexico

Abstract

This paper presents a processing model for big IoT data. The model includes a continu-
ous delivery scheme based on building blocks for constructing software pipelines from the
edge to the cloud. It also includes a data preparation scheme based on parallel patterns
for establishing, in an efficient manner, controls over the production and consumption of
IoT data. This scheme adds data properties such as cost-efficiency storage, security, and
reliability, which are useful to avoid alterations in data and repudiation situations as well
as to mitigate risks still arisen in the cloud such as confidentiality violations and service
outages. An overlay structure, including planes such as Pub/Sub, control, and preservation,
integrates the proposed schemes into software pipelines. The proposed model was developed
in both prototype and simulator of software pipelines. Case studies were conducted based
on pipeline services deployed from the edge, passing from the fog to the cloud for processing
and managing real climate data repositories, which were produced by three different data
sensor sources, such as ground stations deployed on Mexico and Spain, as well as small
distributed IoT devices. Information sharing patterns for end-users to retrieve raw and/or
processed IoT data were also studied. The experimental evaluation revealed the feasibility of
using continuous delivery scheme to create dataflows from the edge to the cloud, the efficacy
of the overlay structure to create information sharing patterns, as well as the efficiency of
data preparation schemes and parallel patterns to improve the end-user service experience
in comparison with traditional state-of-the-art solutions.

Keywords: Cloud computing, big IoT data, fog computing, edge computing, data
preparation.

Email addresses: dante.sanchez@cinvestav.mx (Dante D. Sánchez-Gallegos),
diana.carrizales@cinvestav.mx (Diana Carrizales-Espinoza), hugo.reyes@cinvestav.mx (Hugo G.
Reyes-Anastacio), joseluis.gonzalez@cinvestav.mx (J. L. Gonzalez-Compean),
jcarrete@inf.uc3m.es (Jesus Carretero), miguel.morales@cinvestav.mx (Miguel Morales-Sandoval),
agalaviz@cicese.edu.mx (Alejandro Galaviz-Mosqueda)

1. Introduction

The production of IoT devices has observed a dramatic increment over the few years
according to reports [1]. The industry even is projecting that around 28 billion IoT devices
will be connected/installed by 2021 [2]. Thus, the volume of data produced by IoT devices
that is managed by organizations has incremented dramatically over the past years, which
is producing a data accumulation effect [3]. In real scenarios, this trend results in a big IoT
data processing environment where large repositories of data continuously produced by IoT
devices (volume) are processed by multiple procedures (variety) to obtain useful information
used as input (value and veracity) in critical decision-making processes (velocity) [4]. Tra-
ditionally, cloud computing [5] has been a support for big data scenarios [6] and the most
popular solution to store and process data from IoT devices [7]. However, as the systems
scale-out and the data amount increases in big data scenarios, a centralized data collection
and processing is unfeasible.

To alleviate this problem edge, fog, and cloud computing paradigms have been deployed
as a hierarchical approach for the IoT data management, which avoids the saturation of
cloud nodes and improves response time in IoT scenarios. The edge computing paradigm
considers a collection of technologies where general-purpose computing is usually intercon-
nected directly with sensors devices [8]. Following this approach, IoT devices, that are widely
distributed, are connected to edge nodes which provide storage and computation power to
reduce the amount of data sent to the upper level in the fog [9, 4]. Fog computing [10]
and fog storage [11] are extensions of the cloud computing proposed by Cisco in 2014, in
which computing capabilities are placed close to the edge network. Fog computing is based
on a decentralized computing architecture where storage and processing applications are
distributed between the edge and the cloud [10]. The use of fog and cloud for data man-
agement commonly leads to a lack of controls over stored data [12]. This could result in
critical incidents such as outages, violations of confidentiality, data loss, and unauthorized
data access [13].

Existing end-to-end and in-house solutions have been proposed for adding to contents
properties such as security [14, 15], reliability [16, 17], and integrity [18], which could mitigate
and, in some cases, fully address the effects produced by an incident that could arise in the
cloud. Nevertheless, applying those solutions in real scenarios represents a challenge for
the organizations to face up the expensive costs of the processing and exchange of data
produced in different environments (any of edge, fog, and cloud). In such a scenario, the
number of operations sent to outsourcing services as well as the data volume is costly and
time-consuming tasks increasing the aforementioned issues originated by the accumulation
of data.

In this context, it is also required to face problems associated with the existence of
duplicated data produced during the management of documents versions and to efficiently
manage the accumulated backups performed by the end-users. Data preparation is a tech-
nique mainly used in big data scenarios to preprocess and transform data for improving
its quality. We previously presented an efficient data preparation scheme for cloud storage
based on containerized parallel patterns [19], as an approach for organizations to prevent

2

suffering side-effects from the lack of control over their outsourced data. This approach
also reduced unnecessary processing time associated with replicated data managed by cloud
operations.

However, implementing these schemes over different environments (any combination of
edge, fog, or cloud) and making the data available at each of these environments for end-users
is not a trivial issue to solve in an immediate, portable and cost-efficient manner. In an IoT
solution, portability results in reducing downtime for troubleshooting and fixing installation
errors, whereas efficiency and quick availability end up improving the response times in
decision-making procedures. There is thus a need for frameworks enabling organizations
to build portable, secure, and reliable solutions for processing big IoT data on different
environments by using multiple services in a cost-efficiency manner.

This paper presents a processing model to build software pipelines from the edge to the
cloud for big IoT data scenarios. This model is based on a continuous delivery scheme and
portable infrastructure-agnostic black boxes and building blocks. Continuous delivery is a
popular technique in software engineering for delivering software updates from the developers
through the testing stages to the end-users in an interrupted manner [20]. The basic idea is
to apply this very concept from software engineering to the big IoT data processing pipelines
to produce instrumented processing and data delivery from the edge to the fog to the cloud.

The black boxes are management structures for building pipelines over any combination
of edge, fog, or cloud, whereas the building blocks are used to encapsulate the applications,
defined by organizations, into independent pieces of software that perform, in an implicit
manner.

These structures perform the following management tasks in implicit manner: i) The
automatic delivery of data through the pipelines with a focus on the reduction of I/O opera-
tions by using deduplication and compression techniques. ii) The security and reliability of
data arriving/departing to/from the black boxes. Continuous controls were established over
the production and consumption of data by adding to data properties such as confidential-
ity, access controls, integrity verification, and fault tolerance. iii) The efficient execution of
applications by using both schemes based on in-memory storage and I/O interfaces as well
as recursive parallelism patterns for improving the performance of building blocks to com-
pensate for the costs of implicit management. In this model, the deployment and coupling
of portable black boxes and building blocks in the form of software pipelines is performed
in automatic and transparent manners. An overlay structure has also been proposed to
establish supervision over planes such as Pub/Sub, control, and preservation. This overlay
integrates the preparation and cost-efficiency schemes into software pipelines for producing
a quick availability of IoT data at different stages of the lifecycle. This overlay also enables
organizations to share IoT data and achieved information with end-users and/or partners
at each stage of a pipeline.

This model has been implemented in a prototype that was developed to show the efficacy
and feasibility of the model presented in this paper. As testing in real-world environments
can be slow and cumbersome, a simulator of the system has also been developed for orga-
nizations to fine-tune the parameters of the prototype by measuring each software pipeline
design. The number of stages, types of stages, and pattern features are examples of param-

3

*P5

  

         

Figure 1: IoT solutions taxonomy.

eters than can be tuned in this simulator, whereas different benchmarks can be defined by
using the probabilistic models described in this paper. This simulator is available for edge,
fog, and end-users’ devices by now (cloud latency and processing are aspects not considered
in this simulator).

The experimental evaluation was conducted in the form of two case studies based on
the management and processing of real climate data repositories from Mexico and Spain as
well as small distributed IoT devices. The experimental evaluation revealed the feasibility
of using a continuous delivery approach to create dataflows from the edge to the cloud. It
also revealed the efficacy of the overlay to create an information-sharing pattern as well as
the efficiency of data preparation schemes to mitigate risks in the cloud when using parallel
patterns, which also improved the end-user service experience.

As a summary, the main contributions of this work are:

• A continuous delivery scheme based on building blocks for constructing software
pipelines from the edge to the cloud.

• Data preparation schemes based on parallel patterns and IoT data sharing based on
overlay structure. These schemes enable organizations to establish, in an efficient
manner, control over the production and consumption of IoT data by adding to data
properties such as cost-efficiency storage, security, and reliability.

• A parallel pattern and software pipeline simulator based on virtual containerized build-
ing blocks. A new simulator based on virtual containers enables organizations to esti-
mate service and response times of preparation schemes for processing IoT datasets.

The rest of the paper is organized as follows: Section 2 describes the related work. Sec-
tion 3 describes a continuous delivery model for big IoT data based on building blocks.
Section 4 describes the design principles of an overlay structure for integrating data prepa-
ration schemes into software pipelines. Section 5 presents the design and implementation
of a simulator based on both, the proposed model and the overlay structure. Section 6
presents the implementation details of a prototype. Section 7 shows the results of the ex-
perimentation using the provided simulator and prototype. Section 8 presents an analysis
of strengths, weaknesses, opportunities, and threats. Finally, Section 9 gives conclusion
remarks and future work.

2. Related work

The complex challenge of providing solutions for the processing of big IoT data has been
addressed from different perspectives and scopes [6, 4]. Figure 1 shows a taxonomy of such

4

Table 1: IoT simulators summary.

Work

Environments
Task/element simulated

Sensors Networking Data gathering
Processing

Task placement Resource provisioning
edge fog cloud

Patterns Purpose
MR D&C M/W NFR Validation Analytics

MRPerf (2009) [33] - - - - - - - - - -
Mumak (2009) [26] - - - - - - - - - -
MRSim (2010) [27] - - - - - - - - - -
SimMR (2011) [34] - - - - - - - - - -

CloudSim (2011) [30] - - - - - - - - - -
MR-CloudSim (2012) [35] - - - - - - - - - -

Brambilla et al. (2014) [36] - - - - - - - - - -
SimIoT (2014) [24] - - - - - - - - - -

DPWSim (2014) [37] - - - - - - - - - -
DISSECT-CF (2015) [38] - - - - - - - - - -

Edge-Fog-Cloud (2016) [9] - - - - - - - - -
Narrowband-IoT/OPNET (2017) [21] - - - - - - - - - - -

iFogSim (2017) [25] - - - - - - - - - -
Yaozhong Song et al. (2017) [29] - - - - - - - - -

IoTSim (2017) [31] - - - - - - - - - -
MultiRECloudSim (2017) [32] - - - - - - - - - -

System Vue (2018) [23] - - - - - - - - - -
Minh-Quang Tran et al. (2019) [28] - - - - - - - - -

Mercury (2019) [39] - - - - - - - -
Overlay simulator - - - - - - -

solutions including: i) simulators for the edge, the fog, and the cloud; ii) models based on
graphs, sets, or layers; and iii) end-to-end solutions for the processing and management of
data.

2.1. Simulation tools

Simulation of edge, fog, or cloud environments can be classified into six categories de-
pending on the task or elements being simulated: sensors, networking, data gathering, data
processing, task placement, and resource provisioning.

Representative sensor simulators are OPNET [21] and ATEMU [22]. The first one models
the protocols and technologies to analyze communication networks whereas the second one
includes network integration. Vue [23] is a simulation of networks such as 5G-NR, LTE,
LTE-Advance, HSPA+, DC-HSPDA, MIMO, and multistandard radio signals. By the side
of data gathering, simulators SimIot [24], DPWSim, and iFogSim [25] have been used in
healthcare scenarios, to evaluate data gathering process performance, and for measuring
the impact of resource management techniques on latency, network congestion, and energy
consumption in IoT models. For data processing, the simulator Mumak [26] allows studying
different scheduling algorithms for MapReduce (MR) tasks while MRSimn [27] simulates
the configuration of a Hadoop cluster, the time for completing a job in the cluster and
hardware utilization. In the case of task placement, Mohan and Kangasharjy [9] presented
an edge-fog-cloud simulator aiming at minimizing the processing and network costs. Minh-
Quang Tran et al. [28] presented an extension of SIMIC simulation by adding an IoT layer
to perform the allocation of virtual machines. Yaozhong Song et al. [29] presented another
approach for the distribution and management of tasks through the edge satisfying quality-
of-service requirements. Finally, CloudSim [30], IoTsim [31], and MultiRECloudSim [32] are
representative simulator for modeling, simulation, and evaluation of resource provisioning
algorithms.

Table 1 shows a comparison of previously reported simulators against the one proposed
in this paper, analyzing two large subcategories. The first one is the environment covered
(edge, fog, and cloud) and the tasks/element simulated. The second subcategory it is checked
if the simulator is for sensors [23], networking [21], data gathering [24, 25, 37, 36, 38]; data

5

Table 2: Qualitative comparison of IoT models from the state of the art.

Work
Environment Representation Element modeled

Sensors edge fog cloud Graphs Sets Layers Networking
Apps

Sensing Systems Streaming Analytics
FR NFR

Yinghui and Guanyu (2010) [40] - - - - - - - -
NoFLo (2015) [44] - - - - - - ∼ - - - -
Calvin (2015) [45] - - - - ∼ • - - -

Yuankun Xue et al. (2017) [41] - - - ∼ • � - -
RADF (2017) [42] - - - - ∼ ≈ - -
CCM (2018) [43] - - - - - - ∼ • -

Overlay model - - - - ∼ • ≈ � - - -

FR: functional requirements, NFR: non-functional requirements, efficacy: ∼, security: �, reliability: •, efficiency: ≈.

processing [26, 27, 35, 33, 34, 31], placement of tasks in the infrastructure available [9, 28, 29];
and resource provisioning in the cloud [30].

2.2. Models

The different abstract representations to model the management of components of IoT
environments at the edge, fog and the cloud can be classified into six groups based on the
element being modeled: IoT network, IoT apps, IoT sensing systems, data streaming, and
data analytic.

Examples of networking models are the ones proposed by Yinghui and Guanyu [40],
Yuankun Xue et al. [41], and Sabine and Andreas [42]. These models focused on the represen-
tation of communication protocols, the tokens to expose the network, the lossless channels,
and the bandwidth of the IoT network. Application models [42, 43, 44, 45] allows studying
the interaction among software components, management for mapping software components
to hardware, and modeling the behavior of software processes. Representative models for
sensing systems can be found in [41, 43, 40, 46]. RADF [42] is an adaptive data flow model
for network-of-system specifications supporting event-driven executions. CCM [43] is a con-
centric computing model that considers the complexity, heterogeneity, data volume, and
execution of applications (e.g., data ingestion, cleaning, conformation, transformation, and
shaping).

Table 2 shows a comparison of existing models against the one proposed in this paper.
Three large subcategories were analyzed in that table: the environment covered (IoT sen-
sors, edge, fog, and cloud), the abstract representation of the model (graphs [44, 42, 41, 40],
sets [40] and layers [45, 43]), and the elements abstracted in the model. In the third sub-
category, it is checked the models of networking IoT devices and infrastructure [40, 41, 42],
the functionality of apps and the accomplishment of non-functional requirements (security,
reliability, and efficiency) [42, 43, 44, 45], as well as the IoT sensing systems [41, 43, 40, 46],
the data streaming [42], and data analytic [43].

2.3. End-to-end solutions

Non-functional requirements such as confidentiality, integrity, privacy, and reliability are
crucial in sensitive scenarios when managing IoT data in critical decision-making procedures.
Further, those requirements should be met for the accomplishment of data management
norms and laws imposed by government and organizations [47]. Existing end-to-end and
workflows solutions can be classified according to the non-functional requirements that they

6

Table 3: Summary of end-to-end solutions and workflows engines.

Work
Efficiency

Reliability Security
Scope Processing Storage

Threads Patterns In-memory Compressing Deduplication Data Processing Access control Confidentiality Integrity
Wiseman et al. (2005) [53] End-to-end - - - - - - - - -

CloudSeal (2011) [18] End-to-end - - - - - - -
Jenkins (2011) [49] CD/CI pipelines - - - - - - -

Makeflow (2012) [48] Workflow engine - - - - - - - -
Zhang et al. (2015) [15] End-to-end - - - - - - - -

Mao et al. (2015) [17] End-to-end - - - - - - - - -
StorReduce (2018) [55] Dedup system - - - - - - - -

AES4SeC (2018) [14] End-to-end - - - - - - -
Sacbe (2018) [16] End-to-end - - - - - - -

Dedupv1 (2010) [56] Dedup system - - - - - - - -
Parsl (2018) [51] Workflow engine - - - - - - -

DagOn* (2018) [50] Workflow engine for IoT - - - - - - -
Overlay Workflows and software pipelines -

managed: efficiency, data integrity, data reliability based on data coding and processing
reliability (fault-tolerance), and security based on access control and confidentiality.

Solutions such as Makeflow [48], Jenkins [49], DagOn* [50], and Parsl [51] provide implicit
parallelism based on threads for the execution of tasks in a workflow/pipeline. In-memory
schemes for pipelines and even in a non-distributed workflow [16, 52] have been proposed
for the exchange of data between the stages in a pipeline/workflow. Storage cost-efficiency
schemes based on techniques such as deduplication and data compression are available to
reduce the volume of data to transport and store in the cloud [53]. Deduplication techniques
to find replicated data [54] such as StorReduce [55] and Dedupv1 [56] are few examples of
this type of solution. The integrity requirement has been achieved by computing checksums
(e.g. SHA3) over data before transmission [57] and to identify data alterations during data
movement [58]. Solutions for studying processing reliability have focused on relaunching a
complete pipeline and starting from the beginning of data processing, for example, Parsl [51]
and DagOn* [50], or on recovering the stage with failure and restarting the pipeline from the
last safe state before of the failure, as in Sacbe [16]. Confidentiality, defined as the capacity
of a solution to preserve data privacy between processing stages and nodes [59]; and access
control, defined as the capacity of the solution to give access to data only to those authorized
users have been proposed as services [53, 15, 14]. Data fault tolerance has been achieved by
using information dispersal and data codification techniques [16, 17].

Table 3 shows a comparison of end-to-end existing solutions against the prototype pre-
sented in this paper. The first subcategories show the scope of the solution (end-to-end,
CD/CI pipelines, workflow engine, or dedup system). In the second subcategory, it is shown
the non-functional requirements of efficiency for data processing (threads, patterns, and in-
memory) and data storage (compressing and deduplication), reliability for fault-tolerance
of data storage locations and processing applications, and security by applying users access
control, data confidentiality, and data integrity techniques.

2.4. Discussion

Figure 2 presents a visual summary of the related work previously described based on
quadrants that represent edge, fog, cloud, and end-users. In each quadrant, the horizontal
axis describes the studied properties (efficacy, efficiency, security, and reliability), whereas
the vertical axis represents the scope of the solutions (models, simulators, emulators, and
prototypes). References of related works previously discussed are placed in the diagram

7

<�>�<��>�<��>

 



     















<��>�<��>�<��>�<��>

<�>�<��>�<��>�<��>

<��>

<��>�<��>�<��>

<��>

<��>

<��>�<��>

<��>

<��>

4JNCPMPHZ













0WFSMBZ�

�




�

Ç 

ù 
g 

É 

i




ñ

<��>�<��> � �Ç

<��> � <��> � <��>Ç

<��> Ç <��> � <��>�


È

<��> É <��> È <��>É

<��>ù

<��>�

<��>É

<��> É ù

��> � <��>�

<��> � <��>�

<��>g �

<��>g �

<��><��><��>É

<��><��><��><��>É

<��><��>É

<��> É �

<��>g

<��>É

<��> � <��>�

<��> É <��>i

<��>�

<��>i

<��>i

<��>É

<��>É

<��> � Çi

<��> � Çi

<��> É ù g <��> É ù









<��>ñ

<��>�<��>�<��>�<��>

<�>�<��>�<��>�<��>

Figure 2: State of the art summary based on edge, fog, end-user and cloud quadrants.

showing the requirements they meet, their technological nature, and their area of application
(any of edge, fog, cloud, or end-user). It can be observed from Figure 2 that the existing
works in the literature have been focused mainly on functional requirements. However, the
flexibility of the overlay model presented in this paper allows considering both functional
and non-functional requirements for different environments (edge, fog, cloud, and end-users’
devices) as well as for different scopes (model, simulator and prototype).

The model proposed in this paper not only provides a representation tool but also pro-
vides data preparation schemes for security and data transformation, standardized con-
nections between components, and efficiency patterns through parallel deployment. The
proposed overlay uses integrated parallel patterns (manager/worker and divide&conquer)
and in-memory data flows to improve the efficiency of processing tasks. Implicit parallelism
is provided by cloning apps encapsulated into virtual containers, which not only improves the
continuous delivery of data but also the portability of black boxes and building blocks. Fault-
tolerant data processing is provided by relaunching those virtual containers in case of failures.
Data integrity is achieved using checksums embedded in the input/output connectors, and
by using the information dispersal algorithm (IDA) [60] to provide data redundancy. Access
control is provided by using certificates.

From the model, the simulator proposed in this paper allows organizations to quickly
estimate the execution time of a data processing workflow in IoT-edge-fog-cloud, without
putting a lot of specific details on any component or restricting the processing to MapReduce
operations as most simulators for data processing currently do. Moreover, the proposed
model in this paper is focused on the abstraction of non-functional requirements of security,
reliability, and efficiency in the management of data, not on the abstraction of the network or

8

BBoxedge BBoxfog BBoxcloud BBoxEnd−User

Building block (BB)Black box (BBox)

Symbology

Iot−DSr BBe1 BBe2 BBf1 BBf2 BBc1 BBc2 BBeu1 BBeu2

Diot Dve1 Dve2
Dvf1

Dvf2 Dvc1 Dvc2 Dveu1

Figure 3: A DAG describing a structure for processing IoT data based on black boxes and building blocks.

the sensing systems. Non-functional requirements are required by the end-users for avoiding
data delivery interruption, confidentiality violations, and alterations of IoT data before,
during, and after them are processed from the edge to the cloud, which is crucial in critical
decision-making procedures and to observe norms and regulations when processing sensitive
IoT data.

3. A continuous delivery model for big IoT data

This section presents a continuity processing model for big IoT data based on abstrac-
tions called black boxes (BBoxes), which can be used by developers to construct software
structures for processing IoT data from the edge to the cloud by following the principle of con-
tinuous delivery. BBoxes thus are associated to an IoT environment: BBoxEgde, BBoxfog,
BBoxcloud and BBoxEnd−User (see Figure 3). Thus, a processing IoT solution (IoTS) can in-
clude any combinations of available BBoxes (IoTS = {BBoxedge, BBoxfog, . . . , BBoxcloud}).

The BBoxes consider portable infrastructure-agnostic construction units called building
blocks (BBs) to deploy applications on a given environment. This means a set of BBs
available in a pool of services can be associated to a BBox (e.g., {BB1, BB2, . . . , BB2} ∈
BBoxfog).

These processing solutions for big IoT data are created by following the next steps: i) to
encapsulate a set of applications with their libraries, dependencies, and control structures
into BBs; ii) to associate BBs structures with BBoxes (see BBoxes in Figure 3), which also
includes control structures to be deployed on different environments (see a DAG of BBoxes
mapped with an environment in Figure 3); iii) to apply the continuous delivery concept
from software engineering for coupling BBoxes to create big IoT data processing solutions
1; and iv) to produce uninterrupted processing and data delivery through the BBoxes and
BBs. To illustrate this continuity effect, see in Figure 3 how DIoT , extracted from an IoT
data source, is transformed from the edge to the end-users producing a different version of
DIoT .

The model proposed in this paper is based on trees of directed acyclic graphs (DAG)
to manage, create, and deploy the IoT processing solutions. Nodes of the DAG represent
BBoxes, which also include another DAG where nodes represent BBs. Edges represent the

1Continuous delivery is a technique used in software engineering for uninterruptedly delivering software
updates from the developers through the testing stages to the end-users. [61, 20].

9

Sr BB Sk
Di Dr

Figure 4: A DAG describing the ETL process of a BB.

I/O interfaces used for interconnecting BBoxes at a top-level and BBs at a bottom level.
These I/O interfaces are managed by control structures embedded within the BBoxes and
BBs, and they can be configured to use any of the memory, network, or the file system. To
interconnect the nodes of these DAGs, structures are defined as an Extract, Transform, and
Load (ETL) process. As a result, a BBox can be defined by the following expression:

BBox = (DSr, (BBn
i=1, DAG), DSk), (1)

where DSr is a data source connected to the input of the BBox (extraction stage). BBn
i=1

is a set of BBs managed by the BBox (transformation stage), DAG represents the topology
of the BBs connections, and DSk is a data sink connected to the output of the BBox (load
stage). A BB is modeled by the very processing model used in BBoxes as follows:

BB = (in, task, out), (2)

As it can be seen, a BB includes I/O interfaces and an application for processing data
(any of program, application, or binary). Where in is the input interface, task is the
processing unit, and out is the output interface. When a BBox and a BB are modeled
by an ETL, it is created a pipeline as the DAG showed in Figure 4 [62], where a data Di

is extracted from a data source (Sr) by a transforming entity (BB), which delivers the
transformed data (Dr) to a data sink (Sk).

Thus, the goal of the model is to produce a dataflow through the edges (I/O interfaces)
for nodes (BBoxes and BBs) to uninterruptedly process the incoming data. This is achieved
by using the continuous delivery concept to create a continuous deployment of BBoxes and
BBs on edge-fog-cloud environments. This concept also is used to continuously deliver data
and to establish controls over the execution of the nodes and edges defined in the tree of
DAGs.

Abstractions such as BBoxes and BBs, as well as their combinations to build IoT data
processing structures are managed as services, which enable end-users to reuse the BBoxes
and BBs for building multiple solutions, as well as enable apps to consume data from the
output of each BBox. A service mesh manages these services, which will be described in
the implementation of Section 6.

3.1. Building IoT data processing solutions based on patterns: pipelines and parallel patterns

This section describes different patterns to create IoT processing solutions such as pipelines,
parallel patterns, and workflows which can be built by using the ETL processing model pre-
viously described.

10

3.1.1. Pipelines

In this model, a pipeline is modeled as a set of BBoxes and BBs (filters) connected
in an adjacent manner through I/O paths (pipes), denoted by: PBBoxes = ({BBoxes1,
BBoxes2, . . . , BBoxesn}) and PBBs = ({BB1, BB2, . . . , BBn}). The input data received
and processed by a BB/BBox is denoted as BB[in], the data resulting after BB/BBox
processing is denoted as BB[Out], and the processing task(s) into the BB is denoted as
BB[task]. This is an ETL pattern, named as Pattetl, defined as:

Pattetl = {Sri → BBi[in], BBi[task], BBi[Out]→ Ski}. (3)

where Sr represents a data source as input, and Sk represents a data sink to deliver results
produced by this BB. The notation of an ETL pattern generalizes the definition of chained
BBs. For a given BBj, in a pattern Pattetl,1, its source Srj can be the sink Ski of BBi.
The output of BBj can be associated to the source of BBk given Pattetl,2. This is denoted
as:

{Pattetl,1, BBj} = {Ski, BBj, Skj}, (4)

{BBj, Pattetl,2} = {Srj, BBj, Srk}. (5)

Eq. 4 defines the chaining of BBi with BBj and Eq. 5 defines the chaining of BBj with BBk.
A topology is created by an implicit software embedded within a BBox by using the previous
notation, which is used for the deployment, coupling, and execution of the BBs considered
in a pattern. Figure 3 shows the DAG of an implicit software pipeline, which creates, within
a BBox, a sequence of BBs (nodes) adjacently connected through I/O interfaces (edges).
The notation of the BBox for this pipeline is:

Pipeline = (DSr, (BBn
i=1, Pattetl,x), DSk), (6)

where DSr is connected to BB1[in], DSk is connected to BBn[out], n is the number of BBs
in the pipeline, n ≥ 1, and Pattetl,x is defined as:

Pattetl,x = {BBi[Out]→ BBi+1[In]}n−1i=1 . (7)

This pattern creates a dataflow from a data source (DSr) to a data sink (DSk), where each
BBi will transform the input data. For instance, in Figure 3, Diot input in BBoxedge is
transformed into Dve2 and forwarded to BBoxfog through a pipe represented by an edge.

3.1.2. Implicit parallel patterns at black box level

In this model, IoT solution designers can build implicit parallel patterns to transparently
improve the efficiency of BBoxes by including reserved BBs as control structures such as
divider (D) and worker (w), and in some cases consolidator (C).

Figure 5 depicts an example of a traditional manager/worker pattern [63]. In this pat-
tern, D extracts data from a source, and distributes these data as tasks (P = {c1, c2, . . . , cn},
where n is the size of the contents set ci) to w workers by generating w subsets of contents
(pw = {c1, c2, . . . , cm}). Each worker processes data subsets to produce a content (c′i), which

11

IoTDSr D

w1

w2

wn

DSk
P

p 1
∈

P

p2 ∈ P

p
w
∈

P

p′1

p′2

p′w

Figure 5: Divide&Containerize pattern represented as DAG.

are stored in a given data sink (DSk) that can be placed at another BBox (e.g., any of
BBoxfog, BBoxcloud in a cloud storage location, or BBoxEnd−User). Workers can deliver
the results to any of a BBox, sink, another divide (in a recursive fashion) or a consolidator
entity.

A consolidator BB is required when each incoming content is split into segments and
these cannot be individually used by a BBox. These segments are processed by the workers,
and the processed segments are sent to the consolidator, which organizes and merges the
received segments into a consolidated result. This method produces either a traditional
divide&conquer or fork/join pattern [63] depending on the control structures used by both
workers and the consolidator. The map of a divide&conquer pattern is represented by the
following DAG notation:

BBPatt = {DSr, (D, (wn
i=1, Patt), CE), DSk}, (8)

where n > 1, Patt = {D&C
si−→ wi

ri−→ Cq}ni=1, and CE is a consolidator entity (any of
Cq for divide&conquer or Jn for fork/join patterns. As it can be seen, different types of
combinations of patterns (Patt) can be built in this model for creating a BB, in the same
way, that a software pipeline of BBs can be built to create a BBox.

Notice that parallel patterns are also managed as a service (formally a microservice), thus
additional control structures are added to the patterns for enforcing the implicit management
of data processing. The control structures considered for these tasks are a load balancing BB
for allocation workload as well as messages, and data I/O manager for enforcing the ETL in
the patterns, which includes in-memory data resource library to reduce the operations sent
to slow interfaces (e.g., file system and network).

4. An overlay structure for sharing IoT data in workflows and software pipelines

In this section, we describe an overlay structure developed to organize the patterns of
BBs of each BBox in the form of pipelines, that not only process IoT data but also enables
the decision-makers and end-users to automatically get access at each stage (BBox) of the
IoT lifecycle. Figure 6 depicts the main components of the overlay structure, that includes
planes such as Pub/Sub, Control, and Preservation, which establish controls over metadata,
structured IoT data, and files respectively. The idea is to decouple the data processing from
their preservation and consumption.

12

Figure 6: Architecture overlay.

The overlay considers a reserved BB called proxy (or a set of proxies depending on the
designers’ needs), which collects data from the input interface of a BBox where the overlay is
deployed on and launches the managers of the three planes. Each action in the control plane
triggers an action at the preservation and pub/sub planes. The overlay planes establish
control points over the consumption/production of information, making it available at the
pub/sub plane.

The pub/sub plane as its name suggest is based on a publication/subscription model and
manages the publishing of the data produced by each BB, the control of the metadata, the
access to the data and results, and to notified users subscribed to a catalog when a new
result is produced. Three roles are established in this plane: i) the publishers are BBoxes
acquiring or producing data that will make available for other BBoxes; ii) the consumers
are end-users or BBoxes consuming data by subscribing published catalogs; and iii) the
managers are users that establish rules in the pub/sub patterns, which are created by the
subscriptions performed to publications of catalogs.

The data acquired by the proxy, the data produced at the control plane, and the files
prepared at the preservation plane can be published and consumed on-demand through the
Pub/Sub plane. This means the information can be accessed implicitly and transparently
by any of end-users’ applications, BBs, and BBoxes by only subscribing a given stage at
the processing IoT data structure.

In the control plane, the data are converted into information in the preprocessing/ pro-
cessing phase by executing pipelines of BBs. For instance, preprocessing pipelines with
BB to eliminate/detect outliers, and to enrich the data, or processing pipelines with BBs
to transform, interpolate, and analyze the data to produce information that helps in the
decision-making process. These BBs are selected by the manager, depending on how he/she
wants to manipulate their data. Preprocessing/processing pipelines retrieve the data from
the proxy and deliver the processed data to the preservation plane. The information pro-
duced by this layer is sent to the pub/sub plane, which generates automatic notifications to
the consumers who are subscribed to the sensor.

In the preservation plane, stages such as preparation, indexing, and forwarding are con-
sidered. The preparation stage invokes pipelines to add properties to the data such as
security and reliability for establishing controls over the data lifecycle. These properties

13

(t•))
(t•))
(t•))
(t•))

Edge
computing

:loT
loverlay _

D loT clients

Fog computing
-------------------------------;-.. :-.. :-.. :-.. :-.. :-.. :-· .. ,-:-: .. :-.. -: .. :-.. :-.. :-.. :-.. :-.. :-.. :-:.:-.. :-· .. ,-:-: .. :-.. -: .. :-.. :-.. :-.:-.. :-.. :-.. :-:.:-.. :-· .. :-.. :-: .. :-.. -: .. :-.. :-.. :-.. :-.. :-.. :-.. : F .. :.: .. : .. : .. :.: .. : .. : ,
:10T overlay

:loT
!overlay_

Proxy ,-++--,I Cloud L;:::::::;:;;¥::;:;;;;:;;,~.,,.~':::::::::::;;;:i::::::::;;::::::::;'.,.,,0 ~;::::::::::::::;r:;:,:::::::::;-:::..L , computing

:loT
i __ .:-1---""1 :overlay_

Compressing Hashing&Indexing

Coding

Encrypt&Upload

DS M

C1

C2

Cw

DSH Mhash

H&I1

H&I2

H&Iw

DSIDA MIDA

Div1

Div2

Div3

IDA1

IDA2

IDAs

DSU Upload

U1

U2

Uw

SkyCDS

. . .

. . .

P

iC
1

iC2

iC
w

iC ′
1

iC′
2

iC
′
w

IH′

iH
1

iH2

iH
w

iH ′
1

iH′
2

iH
′
w

U iI2

iI
1

iI
w

s 1
∈
fx

s2 ∈ fx

s
s ∈

f
x

d ∈
s
1

d ∈
ss

d ∈ s2 D

d 1
∈
D

d2 ∈ D

d
n ∈

D

d ′
1 ∈

D ′

d
′
n
∈ D

′

d′2 ∈ D′

Figure 7: DAG representing the data preparation process.

are applied by using techniques such as data compression (to improve the cost-efficiency of
storage), data integrity (to preserve data integrity), encryption (to establish control access),
and information dispersal (to establish fault tolerance). These techniques are managed as
BBs, modeled as parallel patterns, and chained as a pipeline. In the indexing stage, the
status of the prepared files is informed to the control plane. In the forwarding stage, the
control and the data are passed to another BBox.

Notice that the BBs included in a given plane can be implemented as a parallel pattern.

4.1. Applying data preparation and retrieval schemes to the overlay

As established in the study of the related work, non-functional requirements are crucial
for IoT processing scenarios. In the preservation plane of the overlay, the goal is to meet
security and reliability requirements for managing any of ensuring sensitive data, withstand-
ing data unavailability, avoiding confidentiality violations, detecting alterations in the data
during their lifecycle, or presenting solutions for non-repudiation. Figure 7 shows the DAG
of a preparation scheme, which includes four BBs. The first BB improves the cost-efficiency
of capacity management by applying a compression application (LZ4 [64]) implemented as
a manager/worker pattern, where a set of paths P is retrieved from the data source DS. P
is divided into w sub-lists in a load-balanced manner [65], to w number of BBs.

The second BB performs an integrity and duplicity verification (hashing&indexing)
for detecting alterations and replicated data. This BB obtains the hash of the files using
MD5 and SHA3-256 algorithms to achieve two goals: i) to identify files previously prepared,
and ii) to verify the end-to-end integrity of the files, identifying data alterations during
their transportation. The output of this BB is a set of lists (L) containing the hash of the
processed files. These lists are sent to the metadata management service, which indexes the
files and returns a list with files that were not previously indexed. At this point, a reduction
in the number of files to be processed depends on the deduplication BB efficacy and on the
saving achieved by compressing BB.

The third BB (coding) encodes data using the information dispersal algorithm (IDA) [60],
which adds redundancy to data. This process splits the data d into n redundant portions,
where m is sufficient to recover d whenever n > m. This produces fault-tolerance and re-
duces storage utilization (in comparison with replication techniques). This BB implements

14










  

  

  

À

�

�

/

À ��

�

À

�

��

� � \
�
 ^0

�

0

-

Figure 8: Conceptual representation of the simulator developed.

a combination of a manager/worker pattern with a divide&conquer pattern. This means
that each worker invokes a divide&conquer were the incoming data are split into div number
of BBs, which execute IDA (a double segmentation is produced in this BB).

The data arriving at the fourth stage (Encrypt&Upload), are sent to an encrypt and
forwarding demon of a content delivery network called SkyCDS [66]. This demon executes
ciphering techniques based on AES [14] and CP-ABE [67] to encrypt the incoming data and
to create a ciphered object including access controls. The deployment of BBs in the form
of parallel patterns reduces or even eliminates the overhead of applying integrity, security
and reliability to data in these schemes.

5. Parallel patterns and software pipeline simulator based on containerized BBs

This section describes a simulator of BB patterns and pipelines used to estimate execu-
tion times and costs of the preservation plane operations in the overlay structure. Figure 8
depicts the conceptual representation of the simulator based on a modular approach. A trace
generator of IoT sensors produces traces including the size of data and interarrival time of
records produced by sensors. The data size can be configured by using a static parameter
(in the case of the IoT devices) and from a normal distribution when selecting a sensor of
the ground station. It is assumed that the traffic profile of each sensor can be managed
by the wireless technology (e.g., IEEE 802.15.4). Sensors are arranged in a star network
topology, where the sink is connected to a BB. Each sensor includes a timestamp and a
sequence number to every transmitted packet for packet loss control purposes.

The generator is connected with a data workload dispatcher, which receives the traces and
acts as middleware between the generator and the BB pipelines. The traces are distributed
in a load-balanced manner between s number of pipelines of simulated BB. These pipelines
are encapsulated into virtual containers (VCs), and each BB simulates a stage in the data
preparation/recuperation schemes (see stages in Figure 8). The simulator includes a service
time estimation module per pipeline, which produces the interpolation of the service time
from the input data size. This module delivers the calculated service time and the inter-
arrival time for each request in a trace to a queue simulator module based on an exponential
distribution [68]. This module returns the service time, which now includes the queue
contention and accumulates this time to the service time of the previous BB if any.

5.1. Interpolating the service time of BBs

The service time spent by a stage to process IoT data is computed through interpolation
of values in tables reflecting the behavior of the system, as follows:

f(x) = ((x− x1)/(x0 − x1)) ∗ (y0 − y1) + y1, (9)

15

where x is the input data size to process, x0 and x1 represent the range between this size
is founded, in such a way that x0 ≤ x ≤ x1, as well as y0 and y1 represent the service time
of the size files to x0 and x1, respectively. Notice that y0 and y1 depend on the stage of
the data preparation/retrieval schemes, as well as on the type of system where the test is
executed in. For real hardware platforms, the tables for interpolation have been created
through performance evaluation of each stage in the system. However, the tables have to be
redefined in platforms with new features or even variants of actual systems (e.g., changing
the network or the amount of memory) by testing the preparation/retrieval schemes.

5.2. Simulating awaiting queue in a BB

This section describes the design of the queue simulator algorithm (see Algorithm 1)
developed to estimate the average time of simulation, average server utilization, number
operations in the queue, and average delay in the queue of a BB. An exponential variable
generation function (see Algorithm 2) produces a U(0, 1) random number and an exponential
random number. At the end of the simulation a report is generated for each BB including
the response time spent by a pipeline to process each trace.

Algorithm 1 QueueSimulator(mi,ms, nd)

Require: mean inter-arrival (mi), mean service (ms), number of delays required (nd), seed one (s1 = 99275.0), seed two
(s2 = 48612.0)

1: yA = s1;
2: y2 = s2;
3: while num progs delayed ≤ nd do
4: {Determine the next event and update time-average statistical accumulators.}
5: switch (next event)
6: case 1:
7: time next event[1] = time+ expon(mi, yA); {Schedule next arrival.}
8: if server status == BUSY then
9: num in q+ = 1;
10: else
11: num progs delayed+ = 1; {Server is idle, so arriving customer has a delay of zero.}
12: server status = BUSY ;
13: time next event[2] = time+ expon(ms, y2); {Schedule a departure (service completion).}
14: end if
15: case 2:
16: if num in q == 0 then
17: server status = IDLE; { Check to see whether the queue is empty.}
18: time next event[2] = 1.0e+ 30;
19: else
20: delay = time− timearrival[1]; {The queue is nonempty, so decrement the number of customers in queue. }
21: total of delays+ = delay;
22: num progs delayed+ = 1;
23: time next event[2] = time+ expon(ms, y2); {Move each customer in queue (if any) up one place.}
24: end if
25: end switch
26: end while

5.3. Simulating a software pipeline

The preservation plane of the overlay is the one that produces the most significant costs
in the response time of the pipelines considered in this paper. A data preparation/retrieval
scheme includes a set of BBs (PBBs = {pBB1, . . . , pBBm}) which are chained to create

16

Algorithm 2 expon(mean, ygen)

Require: mean (mean), seed (ygen)
1: {Generate a U(0, 1) random variate using ygen variable.}
2: u = U((0, 1), ygen)
3: return −mean ∗ log(u);

patterns: mainly pipelines, manager/worker and divide&conquer patterns. Three different
times are included in the service time produced by a BB, which we recall is based on ETL
model including the input data read time (ITpBBi), data processing time (STpBBi), and the
output data writing time (OTpBBi). The service time (STp) of a pipeline thus is calculated
by the sum of the service times of the BBs:

STp =

|PBB|∑
i=1

STpBBi. (10)

The total input (IT) and output (OT) times of a pipeline are calculated by the sum of the
input (ITpBBi) and output (OTpBBi) times of each pBBi. Therefore, the time observed by
the end-user when a pipeline is executed is the response time (RT), which is calculated by
the sum of ST , IT and OT , as follows: RT = IT + ST + OT .

5.3.1. Simulating parallel patterns

This section describes the simulation scheme created by using the parallel patterns (man-
ager/worker and divide&conquer).

Manager/Worker simulation. This processing parallel pattern includes two main roles: the
manager (M) and the workers (W = {w1, . . . , wn}), where n is the number of BBs (n > 1).
Given an input list of contents (L = {co1, . . . , coo}) with o elements and o > 0, again, three
main times are considered in the service time of a manager: i) the time spent by the manager
to read this content list (RSource); ii) the time spent to generate, in a load-balanced manner
by using the two choices algorithm [65], a sub-list (Lwj = {c1, . . . , cp}) for each worker in
the pattern (LB), where p is the size of the sub-list (Lwj); and iii) the time spent by the
manager to deliver n sub-lists to the n workers (LDW). Therefore, the service time of a
manager is the sum of these times: MT = RSource + LB + LDW .

The service time of a worker (STwj) is calculated by the sum of the input (ITwj,c),
processing (STwj,c), and output (OTwj,c) times for the content in the list (Lwj), as follows:

STwj =
∑
c∈Lwj

[ITwj,c + STwj,c + OTwj,c]. (11)

Therefore, the total service time of the workers is produced by the slower worker, as follows:

STW =
|W|

max
j=0

(STwj). (12)

Thus, the service time of the M/W pattern is the sum of the times MT and STW : STMW =
MT + STW .

17



"QQ

�



"QQ

*



"QQ

�



"QQ

�



#VJMEJOH�CMPDL

�



1BUUFSO�NFTI



"DDFTT



"DDFTT



4FSWJDF�NFTI



1JQFMJOF�.BOBHFNFOU



"QQ

�



"QQ

*



#VJMEJOH�CMPDL

*



1BUUFSO�NFTI



"QQ

�



"QQ

*



"QQ

�



"QQ

�



"DDFTT



1BUUFSO�NFTI



"QQ

*



#VJMEJOH�CMPDL

*



0WFSMBZ�NBOBHFNFOU`



"DDFTT



"DDFTT



#MBDL�CPY

�



1JQFMJOF�QMBOF�NBOBHFS



#VJMEJOH�CMPDL

�



1BUUFSO�NFTI



"DDFTT



"QQ

�



0WFSMBZ�NBOBHFNFOU`



"DDFTT



#MBDL�CPY

*



1JQFMJOF�QMBOF�NBOBHFS

Figure 9: Microservice architecture of the prototype based on the overlay.

Divide&Conquer simulation. Given a set of contents (S = {s1, . . . , sns}), this parallel pat-
tern includes three main service times: i) the time (DivT ime) spent to split a content c into
ns segments; ii) the time spent by each worker to process a segment (STDCk), where k is
the index of the worker in the pattern; and iii) the time spent by the pattern to integrate
the processed segments (ConqT ime) into a new content (c′). The DivT ime time includes
the time spent by the pattern to read the content c, whereas the ConqT ime includes the
time spent by the pattern to write the new content c′ in either memory or the file-system.
Thus the total service time of the pattern is:

STDC = DivT ime +

|S|∑
k=0

STDCk + ConqT ime, (13)

5.3.2. Simulator validation

The simulator was validated by contrasting the service produced by each BB of the
simulator with those metrics produced by the prototype (see Section 6). The service times
of the BBs such as compression (LZ4), integrity (MD5), and reliability (IDA) were compared
to the implementation of these software pieces deployed on real virtual containers. The BBs
included in this simulator were fine-tuned by using the results produced by a prototype.
Notice that the transportation of data to the cloud is not considered in this paper as the
prototype is using SkyCDS for this very task and the simulation model of this content
delivery has already been defined (see SkyCDS simulation model [66]).

6. Implementation of a prototype based on the overlay model

A prototype was developed and implemented by following the design principles of the
continuous delivery model based on pipelines of BBoxes, the overlay of BBs, and parallel
patterns. The prototype follows a microservice architectural model2. It is expected that the

2A microservice is a modular abstraction used to break down large monolithic applications into smaller
and more specialized applications that are independent, language-neutral, and are bounded context [69].

18

microservices will be interconnected through a common interface (an HTTP API) [69], which
results useful as heterogeneous applications are used to create solutions in IoT scenarios. To
materialize the model into implementation, the first step is to encapsulate the applications
into virtual containers to create portable pieces of software. The second one is to manage the
resultant virtual containers by using the coupling model based on DAGs as well as control
structures based on the overlay to create IoT data processing pipelines. In this context, the
BBoxes and the coupling schemes are managed by a microservice architecture enabling the
inter-operation of BBoxes in the form of pipelines.

The management of the components of the overlay in form of virtual containers ensures
the portability and deployment of a IoT solution on different environments having installed
a virtual container platform (e.g., Docker and Linux containers). This technical aspect
and the implicit management of the overlay converts an IoT processing solution into an
infrastructure-agnostic software. When implementing the management of IoT data by using
this overlay model are: i) the preservation and the processing of IoT data are independent
and transparent procedures; ii) the pipelines for preparation/retrieval at the preservation
plane add quality properties to IoT data. iii) The implicit parallelism in the preprocessing
and processing pipelines at the control plane results in independent processing structures;
and iv) The processing of structured data (at data control plane) and raw IoT data (at
preservation plane) are managed in secure, reliable, and efficient manners.

Figure 9 shows the microservice architecture used for the deployment and management
of software pipelines as services. The architecture includes a service mesh to manage the
BBoxes of a pipeline as microservices. This design decision was focused on making feasible
the management of BBoxes by following the model presented in this paper. In a recursive
manner, the BBoxes include an overlay builder (overlay pipeline manager). This component
includes a pipeline builder per each plane enabled in each solution, which can choose BBs
from a pool of microservices. The BBs, in a recursive manner, can execute either one or a
set of apps from the apps pool by using the pattern mesh. As it can be seen, the service mesh
only requires the notation of the model to make compositions of different types of pipeline
solutions for different environments (BBoxes), including different control, preparation, and
sharing of IoT data (BBs), to execute different types of big IoT data applications.

6.1. Black boxes implementation

The microservice architecture components were developed in C programming language.
The microservices were managed by a REST API interface implemented in Python language.
This API is added into the virtual containers of each BB, which enables other BBs and
BBoxes to invoke the functions of that BB. The service mesh of the BBoxes was developed
in C. Each BBox is configured by using a text plain file, where each line is written in the
form key:value. The value can be the path of the source data of the BB, the number of
workers in the pattern, and the access tokens to the content delivery network (CDN). Each
BBox produces an YML file, which is deployed with Docker Compose.

The applications encapsulated into BBs can be managed in the form of source code
or binaries. The control structures manage the execution of the application(s) that were
included in the pattern mesh. The recollection of the output data produced by the execution

19







 



















Figure 10: Experimental evaluation methodology.

of the application is managed by pattern mesh using the IPC memory, local file system calls,
and put/get CURL functions.

6.2. Deploying of pipelines of black boxes and building blocks

A launcher builds and deploys the BBs of the overlay on the corresponding infrastruc-
ture. In deployment time, an Interpreter Service included in the launcher receives, as input
parameter, a configuration file that is transformed into a DAG. The launcher follows the
DAG to create the virtual containers images by adding the control entities (e.g., a manager,
a segmenter, or a load-balancer), and the applications for each BB. The service mesh uses
this information to perform the deployment of each BB considered in each BBox. In ex-
ecution time, the first BBox in the pipeline performs the verification of BBs coupling by
using the I/O interfaces defined in the DAG. When the responses from all the BBoxes are
received, the pipeline is ready to process the data source and to receive requests. A record
is created for each event occurred during the execution of an application encapsulated into
a BB (e.g. successful/failed executions and the execution times).

7. Experimental evaluation methodology and results

This section presents a detailed description of the applied methodology to conduct the
experimental evaluation of the overlay model proposed in this paper. This methodology
considers two phases (see Figure 10) to study the processing of climatic data produced
by sensors of IoT devices of two dimensions (small and large). Controlled evaluation in
laboratory and case studies were conducted in this evaluation to fine-tune the prototype, to
validate the simulator, and to evaluate the flexibility and feasibility of the implementation
of this model in real scenarios in a direct compassion with state-of-the-art solutions.

The first phase of this methodology (based mainly on small sensors) was designed to
evaluate the prototype components when processing IoT data at the edge-fog environments
(see phase 1 branch in Figure 10).

The second phase considers: i) a controlled evaluation to fine-tune the prototype com-
ponents and to validate the simulator of parallel patterns for preparation schemes of non-
functional requirements (security and reliability). And, ii) to show the feasibility and flexi-
bility of implementing the overlay model in real scenarios including fog-cloud-EndUser en-
vironments by conducting a performance direct comparative study between this model and
traditional state-of-the-art solutions for data transportation in the cloud (SCP, rsync), con-
tinuous delivery (Jenkins[49]) as well as workflow engines (Makeflow[48] and DagOn*[50]),
which were also implemented in a prototype (see phase 2 branch 2 in Figure 10) when pro-
cessing repositories of data produced by sensors of ground stations of two countries. In this
phase the simulator also was evaluated with the studied climatic repositories.

20

Table 4: Characteristics and response time of the hub to attend eight sensors transmitting packets at different
rates.

Configuration Sensor Number of sensors/Packets-per-second (pps) Response time (ms)
1

CC1350 SensorTag
8/14 1.155

2 8/128 1.676
3 4/14 and 4/128 1.675

The methodology details, descriptions of studied solutions and configuration as well as
evaluation results are described in the following subsections.

7.1. Metrics

In the case studies conducted in the two phases of this experimental evaluation were
considered the response time, service time, and the throughput as metrics to measure the
performance of each configuration and solution implemented in the prototypes and/or the
simulator.

The service time represents the ETL time of each BB. In the case of the model presented
in this paper, the service time of the BBoxes also includes the preparation/retrieval of the
data. The response time represents the time observed by the end-users when executing the
configurations and solutions evaluated in this paper. The Throughput of a system can be
inferred by analyzing response/service times with the amount of IoT data processed by that
system, which can be directly compared with the metrics produced by similar systems to
determine, for instance, the costs of the management overhead of each system. In this exper-
imental evaluation, these metrics are measured and evaluated to determine the overhead of
the preparation schemes of security, integrity, accesses controls and reliability of the model
proposed in this paper.

7.2. Phase 1: IoT data analytics in edge-fog environments

In this phase is conducted a case study based on processing environmental data records
produced by sensors of IoT devices (see characteristics of these sensors in Table 4). These
sensors obtained environmental data such as temperature, humidity, atmospheric pressure,
solar radiation, etc.

7.2.1. From IoT sensors to the edge-fog study: prototype details

The prototype was used to evaluate the overlay at the edge. In the prototype, an edge-
fog IoT solution was created in the form of a pipeline of two BBoxes, and one was deployed
on the edge (WSN) and the other one on the fog.

The first BBox included a pipeline of two applications encapsulated into three BBs:
the first BB acquired the data produced by eight sensors with the following settings: i) low
packet rate with all the eight sensors sending 14 packets per second (pps), with 55 samples
each. ii) high packet rate with all the eight sensors sending 128 pps, with 16 samples each.
iii) a mixed configuration with four sensors sending 14 pps (55 samples) and four sensors
sending 128 pps (16 samples) The second BB processed the acquired data to identify and

21

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

1 2 4

S
e
rv

ic
e
 t

im
e
 (

s
e
c
o
n
d
s
)

Workers/Threads in execution

Compressing
Hashing&Indexing

Coding

Uploading
Simulation

(a) 14 pps.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

1 2 4

S
e
rv

ic
e
 t

im
e
 (

s
e
c
o
n
d
s
)

Workers/Threads in execution

Compressing
Hashing&Indexing

Coding

Uploading
Simulation

(b) 128 pps.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

1 2 4

S
e
rv

ic
e
 t

im
e
 (

s
e
c
o
n
d
s
)

Workers/Threads in execution

Compressing
Hashing&Indexing

Coding

Uploading
Simulation

(c) Combined.

Figure 11: Response time, at the edge, for preparing traces obtained from eight sensors transmitting samples
at different rates.

remove outliers, whereas the third one prepared the data (compressed, encoded to with-
stand failures, encrypted to ensure confidentiality and producing a hash for future integrity
verification) before to send them to the fog.

The last BBox, deployed on the fog, received the data and indexed the contents to be
used in the future for analytic processes.

7.2.2. Experiments, configurations, and performance evaluation results

Three different configurations were created for this IoT solution. The characteristics of
the configurations and the corresponding performance are showed Table 4. The experiments
were performed as follows: each sensor sends 40,000 samples in total regardless of the packet
rate. Note in Table 4 shows that the lower response time is for the low packet rate configura-
tion. The 14 pps is the lower contention at the MAC layer in comparison with the other two
configurations. In the WSN was implemented the contention-based access media control
(MAC) mechanism CSMA/CA, which means that the number of active nodes (transmitting)
is closely related to the contention at the MAC layer, thus the network performance worsens
as the number of active nodes increases.

Table 4 shows that for configurations two and three with a high packet rate (128 pps)
nodes, the response time increases compared with configuration one (all low packet rate
nodes). This behavior can be explained because sensors are transmitting at a higher packet
rate (128 pps), which increases the contention at the MAC layer and thus increases the
interarrival time of packets at the server. Therefore, the response time of the server increases,
as it is measured at the end of the experiment.

For each sensor transmitting packages, the hub creates one new file that is prepared and
transmitted to the fog. Figure 11 shows three plots with the results obtained to prepare the
files generated after test each configuration of the eight sensors. Each plot in the vertical
axis shows the service time observed to prepare and upload to the fog the eight files by using
a different number of workers in the preparation schemes (horizontal axis). The bars in the
plot depict the service time of the prototype whereas the lines depict the service time of the
produced by the simulator. The average size of each file generated with the 40, 000 packages
was 1.95 MB, which was prepared for sending forward to the end-users consuming this
data (cost-efficiency by compression, integrity by hashing, and fault tolerance by dispersal
information coding).

22

Figure 12: Representation of an IoT processing solution for the analysis of meteorological weather records
from the sensors to the cloud.

Figures 11a, 11b, and 11c depict the results when processing files generated by the sensors
in 8/14, 8/128, and 4/14, 4/128 configurations respectively. The service time observed to
process each set of files by using four workers in the parallel patterns were of 8.08 seconds,
8.24 seconds, and 8.27 seconds respectively for each configuration. Comparing the results
with one and four workers in the pattern, we can observe a reduction in the service time of
20.14%, 17.80%, and 17.35% for each configuration in the sensors respectively.

Results in this section show that the proposed overlay can be used to enable continuous
processing of IoT data at the edge, sending the records collected to the fog (or the cloud)
with the accomplishment of non-functional requirements (efficiency, reliability, and security).

7.3. Phase 2: Fog-Cloud-EndUser solutions for processing big IoT data

This phase of the evaluation considers two studies: a controlled evaluation in laboratory
for the fine-tuning of prototype and simulators as well as a case study based on a comparative
performance evaluation between the overlay model with state-of-the-art solutions.

7.3.1. Controlled evaluation based on processing climatic data

This study is based on an IoT solution that was implemented to conduct a fine-tuning
of the prototype components, which was based on a service of analysis of meteorological
weather records from the sensors to the cloud (see a conceptual representation of this IoT
solution in Figure 14). This laboratory study also considers the validation of the simulator of
the preparation pipelines and parallel patterns. The results of this simulator are compared
with the results produced by both the IoT solution implemented in the prototype as well as
a solution from the state-of-the-art.

IoT solution for processing climatic data: prototype details. In this study, for evaluation
purposes, a trace generator produced a set of s traces of IoT data based on the data acquired
by the sensors described and evaluated in phase 1 of the evaluation. In this context, s
represents the number of sensors considered in the simulation.

In this way, different experiments could be performed in laboratory varying the number
of traces (data produced by a sensor) that were processed by the IoT solution created for
this case study. These traces were used as data source for an IoT solution that considered
four BBoxes (one per edge, fog, Cloud and End-users)

During the experiments, a BB executed in the BBox deployed on the edge retrieved the
traces starting the processing of the IoT data. In that BBox, a BB processed the traces
extracted from different sensors and consolidated them in a unique format. A preprocessing
BB received these consolidated IoT data and executed an outlier detection process.

23

:::::::::: (C•I)
(M)
(C•I)
(M)

Edge nodes {1, .. ,e}

IJ I Data consolidation Outliers detection 11

I Data preparation scheme I

Fog nodes {l, ... ,f} Cloud node

.11 Statistics analysis Linear regressions I ~
~ WI Database H Exhibition

11

I Data preparation scheme I I Cloud storage I

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 3 6 12

S
e
rv

ic
e
 t

im
e
 (

m
in

u
te

s
)

Workers/Threads in execution

Compressing
Hashing&Indexing

Coding

Uploading
Simulation

DagOn*

(a) 10 traces.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1 3 6 12

S
e
rv

ic
e
 t

im
e
 (

m
in

u
te

s
)

Workers/Threads in execution

Compressing
Hashing&Indexing

Coding
Uploading
Simulation

DagOn*

(b) 100 traces.

 0

 10

 20

 30

 40

 50

1 3 6 12

S
e
rv

ic
e
 t

im
e
 (

m
in

u
te

s
)

Workers/Threads in execution

Compressing
Hashing&Indexing

Coding
Uploading
Simulation

DagOn*

(c) 1000 traces.

Figure 13: Service time spent to process 10, 100, and 1000 traces produced with the sensor simulator.

The preprocessed data were forwarded to the BBox deployed on the fog, where f BBs
were also deployed on. These processing BBs calculate statistical measures such as the
mean, standard deviation, median, and the number of values over a predefined threshold
as well as linear regression for each variable in the structured IoT data preprocessed at the
edge nodes.

The results produced by the BBs deployed on the fog were sent to the BBox deployed on
the cloud, where a BB stored this information and indexed in a database, which is consumed
by an exhibition by end-users by using a visualization BB.

Experiment details, studied solutions, simulator configurations and results. The following
experiments were performed with this IoT solution: 10, 100, and 1000 traces each including
1000 records with a packet size average of 20.9 KBs, that were processed and the metrics were
captured for each experiment to calculate the effects and costs of the preparation schemes
on the IoT solution performance.

These experiments were defined to respond to the following questions:

1. What are the costs of each BB of the preparation scheme enforced by the overlay
model?

2. How accurate is the simulator of patterns used in the preparation schemes?

3. Is the performance of the IoT solutions developed in this study competitive in com-
parison with solutions from the state-of-the-art?

Three configurations were evaluated in this study: i) Overlay : this configuration rep-
resents the IoT processing solution defined in this study implemented in the prototype.
ii) Simulator : this configuration represents the IoT processing solution defined in this study
but implemented in the simulator. iii) DagOn* [50]: this configuration represents a work-
flow engine focused on IoT environments. The results of configurations Overlay, Simulator
and DagOn∗ will be used to answer the first, second and third stabled questions respectively.

Figure 13 shows the results obtained for the simulation (for Simulation configuration)
and execution (for overlay and DagOn∗) of the IoT solution processing the three subsets
of 10 (Figure 13a), 100 (Figure 13b) and 1000 (Figure 13c) files produced by the sensor

24

Table 5: Percentual error obtained in each BB.

Number of files Compressing (%) Hashing (%) Indexing (%) Coding (%)
1 2.711 15.466 2.155 9.624

100 0.593 10.352 5.639 15.247
1000 -6.601 6.022 -1.786 -11.966

simulator. As can be seen, the more the workload (traces) and the more workers included
the patterns, the fewer service times for the three studied configurations.

For the first stabled question about the costs of the preparation schemes (cost-efficiency,
integrity and fault tolerance), the answer is: the more large the workload is, the less signif-
icant are the costs of the transportation among the environments (edge → fog → cloud).
In this context, when the IoT solution is large (e.g., 1000 traces of 1000 records) the costs
of processing are more significant than the transportation data, which makes suitable this
solution for big IoT data scenarios.

For the second question about the accuracy of the simulator, the answer is the simulator
follows the trend showed by the prototype with real-world data sets. Interestingly, the
system scales well with the number of files, as the execution time grows proportionally less
than the increase in the number of files. Another interesting result of the simulator is that
the optimum number of workers can be easily chosen. As may be seen, this optimum is 12
workers for the platform simulated and those datasets.

Table 5 shows the error (in %) between real dataset processed and its simulation for
each BB. Negative errors mean that the simulator is faster than the prototype. As may be
seen, the simulator error varies depending on the functionality of the BB, as each service
is sensible to the number of files processed. In general compression and indexing have the
lower average errors (around 3.3% in absolute value) for all cases, while hashing and coding
errors are higher (around 10% and 11% respectively). Compression and hashing are sensible
to the number of files. Hashing and coding errors are mostly due to the differences in the
estimation of file open and read operations from the operating system. Adjustments will
be made in future versions of the simulator to capture more accurately the behavior of the
queues produced by the data exchange per each pair of BBs as well as the queues of the
tasks assigned to the virtual cores.

Nevertheless, the goal of the simulator is to deliver an estimation of the impact of parallel
patterns on the service times of the BBs for organizations could simulate large scale sce-
narios. In this aspect, it is interesting to see that for the whole overlay preparation process,
the error decreases when the number of files increases (7.5% for 10 files and 3.5% for 1000
files), which is coherent with the results of the prototype on real datasets. Moreover, the
simulator error rate got seems acceptable to provide a fast estimation of results.

For the third question about the performance comparison between DagOn* and the
Overlay model, the answer can be obtained from Figure 13c, where it can be observed that
the proposed Overlay processed the 1000 traces produced by 1000 simulated sensors in 5.80
minutes by using 12 workers in the pattern, whereas DagOn* using 12 threads processed the
same data in 10.68 minutes, this means that the overlay has an improvement in the service

25

Table 6: Datasets used for experimentation.

Region Number of files Avg. file (MB) Size (GB) Years Sampling interval
Spain 44 51.77 2.2 2011 10 minutes

Mexico 4386 0.45 2.1 1985-2018 Diary

time 54.30%. Moreover, the overlay not only executes the data analytic of data produced
by IoT devices but also, adds properties to the data, which is not offered by DagOn*. In
addition, it was observed that the more the large workload produced by IoT devices, the
more the efficiency of the parallel patterns, which compensates the time spent by the overlay
to prepare IoT data. Notice that the patterns are not only processing data in a concurrent
manner but also are balancing the load per worker and reducing the number of expensive
I/O requests (file systems and network) by using in-memory schemes, whereas the DagOn*
only produce implicit management of threads.

7.3.2. Comparative performance evaluation between the overlay model with state-of-the-art
solutions

To offer a better answer to the third question formulated in the previous section, addi-
tional compression is performed with other solutions from the state-of-the-art in the next
case study. This case study is based on the implementation of a fog-cloud-EndUser IoT
processing solution for performing a classification analytic procedure. This IoT solution was
evaluated with two environmental data repositories produced by sensors of ground stations
deployed in Mexico and Spain. This study is conducted in two directions: the first one per-
forms a validation of the simulator in this type of scenario and the second one is focused on
a comparison with state-of-the-art solutions (both transport tools and frameworks to build
processing structures).

Repositories experimental scenarios, and prototyping details. The datasets contain records
captured by sensors of ground stations distributed through the territory of two countries:
Mexico and Spain (see Table 6). The Mexican dataset includes records captured by the
Mexican weather station network (EMAS)3, which covers the 32 states of the Mexican ter-
ritory. Each station of the EMAS system has registered weather metrics, such as maximum
and minimum temperatures (measured in Celsius degrees), as well as the precipitation (mea-
sured in millimeters), for 33 years (from 1985 to 2018). The Spanish dataset includes records
from 56 stations that cover the whole Spanish territory. Each ground station has registered
weather metrics, such as a timestamp of the record, precipitations, wind speed, tempera-
ture, and relative humidity. This dataset only considers records of the 2011 year, which were
captured by sensors in a constant period of 10 minutes in a 24/7 manner.

Figure 14 shows the BBoxes included in the IoT processing solution, which was de-
veloped both in the prototype (described in Section 6) and the simulator (described in
Section 5) to process the climate repositories from the fog to deliver useful information to

3https://smn.cna.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-
ema-s

26

https://smn.cna.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-ema-s
https://smn.cna.gob.mx/es/observando-el-tiempo/estaciones-meteorologicas-automaticas-ema-s







 






 





 



Figure 14: Experiment 1: simulation scenario. Processing environmental data from the fog to the cloud.

the cloud. Figure 14 shows that this IoT processing solution starts with a BBox deployed
on the fog, where the records are placed in the form of text files. These files are processed
in two different fog nodes: one for processing Mexican records and another one for Spanish
records. In the fog BBox, at the preservation plane, the files are sent by the proxy to the
processing and preservation planes where both raw and analyzed/classified IoT data are
prepared for sending them to the cloud in secure, efficient and reliable manners by invoking
a preparation pipeline including BBs.

In parallel, at the processing BBs performs tasks such as removing outliers of temper-
atures over the thresholds established for each region analyzed and the results are sent,
as structured data, to the preservation plane to make them available for future processing
operations and forwarding control to the BBox deployed on the cloud. All the processed
files from the fog nodes are sent to the cloud by using SkyCDS [66], which is connected to
the pub/sub of the overlay. Therefore, each data forwarded by the fog BBox is available for
other BBoxes by using subscriptions of the catalog used by SkyCDS when sending data to
the cloud.

In the cloud BBox, the control plane executes an overlay for the proxy to send the data
received from the fog to the control plane where the preprocessing/processing stage invokes
a set of BBs that executes a distributed clustering algorithm based on K-Means. The
clustering algorithm was implemented as a service based on a microservice architecture [70].
This pipeline also includes BBs including a linear regression service in charge of obtaining
trend graphics for each group of stations and an exhibition service for creating graphs based
both on the clustering and the linear regression. Of course, the resultant data are also
prepared to be sent to the cloud storage associated with the BBox and these information
assets are available by connecting the catalogs of SkyCDS with the pub/sub plane.

Experiment details, studied solutions and results. The experiments in this study were per-
formed to answer the question about the efficiency of the overlay model to create continuous
processing IoT data from the edge to the cloud in a secure and reliable manner in compar-
ison with solution from the state-of-the-art. The IoT data processing solution described in
the previous section was thus implemented in the following solutions:

• Rsync: is a traditional tool for syncing local and cloud locations by compressing and
encrypting data during data transportation. The preprocessing/processing of data,
the establishment attribute-based access controls, the verification of integrity, and the
establishment of fault-tolerance are not considered by this solution.

• SCP : is a traditional solution used for sending data to the cloud in a secure manner as
this tool is based on a private/public key model. Thus, it includes data preparation not

27

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 3 6 12 24

S
e
rv

ic
e
 t

im
e
 (

s
e
c
o
n
d
s
)

Workers in execution

Compressing
Hashing&Indexing

Coding
Simulation

(a) Spanish dataset.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

1 3 6 12 24

S
e
rv

ic
e
 t

im
e
 (

s
e
c
o
n
d
s
)

Workers in execution

Compressing
Hashing&Indexing

Coding
Simulation

(b) Spanish dataset.

Figure 15: Service time spent by the preparation scheme to process sensor datasets with a varying number
of workers.

only during transportation but also end-to-end and produces reduced access control
based on a primary key concept.

• DagOn* [50]: this platform creates workflows commonly used to process climate data
and IoT in the cloud.

• Jenkins [71]: it is a platform that enables to create CI/CD software pipelines autom-
atizing the process of building, testing, and deployment of software solutions.

• Makeflow [48]: it is a workflow engine that allows the automatization in the execution
of workflows in clusters, clouds or containerized environments.

• Overlay : this solution represents the IoT processing solution created by using the
model proposed in this paper and implemented in the previously described prototype.

The experiments were performed in two phases. In the first one, the repositories were
processed by using the overlay prototype and the simulator to measure the accuracy of the
simulator when evaluating parallel patterns. In the second phase, the performance of the
workflow of BBoxes implementing overlays in the prototype is compared with the solutions
of the state-of-the-art previously described in this section.

Simulator validation. In this phase of the case study, both the speed-up of the parallel
patterns and the behavior of the prototype and the simulator were evaluated when processing
the datasets defined in this case.

Figure 15a shows the service time when processing all the records of the Spanish dataset
(vertical axis) for a different number of workers (horizontal axis) used in the patterns ex-
ecuted in each BB in the preparation pipeline executed at the preservation plane. As
expected, the implicit parallel patterns used by each BB reduces the service time of these
BBs. Coding and compressing represent the bottleneck in the pipeline. As it can be ob-
served, the simulator behavior closely follows the performance produced by the prototype,
with accuracy enhancing when parallel patterns are executed (when more than 1 worker
is used in the pattern). Figure 15b, shows the service times of the BBs when processing
repositories of the sensors of Mexican ground stations varying the number of workers. In

28

 0.1

 1

 10

 100

1 3 6 12 1 3 6 12 1 3 6 12

S
e
rv

ic
e
 t

im
e
 (

s
e
c
o
n
d
s
)

Workers in execution

Compressing
Hashing&Indexing

Coding
Simulation

CodingHashing&IndexingCompressing

(a) Spanish dataset.

 10

 100

 1000

 10000

1 3 6 12 1 3 6 12 1 3 6 12

S
e
rv

ic
e
 t

im
e
 (

s
e
c
o
n
d
s
)

Workers in execution

Compressing
Hashing&Indexing

Coding
Simulation

CodingHashing&IndexingCompressing

(b) Mexican dataset.

Figure 16: Service time spent by each BB in the pipeline to process the datasets.

this repository, more tasks are performed as the measurements were recorded each day of
the 33 years considered in the records of this repository. As may be seen, the behavior of the
simulator follows well that of the prototype. It is interesting to see how the number of files
affects each BB. Hashing and indexing are scaling well. However, coding and compression
time increases even if the files are smaller. This behavior is due to the file operations in the
operating system and the initialization times. The conclusion to tune the proxy is that, in
general, it is better to have fewer files ranging from several megabytes as input.

Figure 16a shows results similar to those shown in Figure 15a, but showing the effects
of the parallel patterns on each BB when varying the number of workers. As expected, not
only the pipeline improves the performance when increasing the number of workers as shown
in Figure 15a, but also all the BBs improves its performance in a similar way. Similar trends
can be observed in Figure 16b, where more tasks are performed. For compressing and coding,
a speedup of ten is mostly achieved, showing very good scalability for the prototype. As can
be seen, the simulator mimics the behavior of the prototype for both datasets. Nevertheless,
expensive tasks (BBs for compressing and coding) have a higher deviation, which indicates
that simulator should consider, not only the parallel pattern characterization but improving
the characterization of the queues of the interaction of the BBs in the pipeline.

Results of performance comparative study. In this phase of the case study is performed a
direct comparison of the Overlay configuration with DagOn∗ [50], SCP , rsync, Jenkins [49]
and Makeflow [48]. In these engines, the data upload stage was performed by using SCP
as indicated in the documentation of these solutions. Figure 17a and Figure 17b show, in
the vertical axis, the service time spent by the solutions to process the Spanish dataset and
the Mexican dataset respectively. Figure 17 shows that Overlay configuration processes and
transfers IoT data in less time than DagOn*, Jenkins, Makeflow, and even SCP. Figure 17a
shows that the Overlay process and transfer the data in 2.88 minutes, whereas DagOn*,
Makeflow, and Jenkins perform the same operation in 3.01 minutes, 3.18 minutes, and 3.69
minutes respectively, which means a percentage of gain of 4.45%, 9.40%, and 21.89% in
comparison with DagOn* Makeflow and Jenkins respectively. Comparing the Overlay with
SCP, it can be observed a gain in the service time of 6.75%, given that SCP transfers the data
to the cloud in 3.09 minutes. Rsync is the solution that yields the best service time of the four

29

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Con guration

S
e
rv

ic
e
 t

im
e
 (

m
in

u
te

s
)

DagOnStar(12 threads)
SCP

Make ow(12 cores)+SCP

Jenkins(12 threads)+SCP
rsync

Overlay(12 workers)

(a) Spanish dataset.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Con guration

S
e
rv

ic
e
 t

im
e
 (

m
in

u
te

s
)

DagOnStar(12 threads)
SCP

Make ow(12 cores)+SCP

Jenkins(12 threads)+SCP
rsync

Overlay(12 workers)

(b) Mexican dataset.

Figure 17: Direct comparison with solutions in the state of the art to process and transfer data to the cloud.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 2 4 6 8 10 12

R
e
s
p
o
n
s
e
 t

im
e
 (

m
in

u
te

s
)

Workers/Threads in execution

DagOnStar Jenkins Make ow Overlay

(a) Spanish dataset.

 1

 10

 100

 1000

 0 2 4 6 8 10 12

R
e
s
p
o
n
s
e
 t

im
e
 (

m
in

u
te

s
)

Workers/Threads in execution

DagOnStar Jenkins Make ow Overlay

(b) Mexican dataset.

Figure 18: Direct comparison with workflows engines by using different parallelism configurations in the
number of concurrent tasks.

solutions tested as it only uploads the contents to the cloud in 1.38 minutes. Nevertheless,
this time does not consider the execution of the IoT processing solution applications as only
the processed data at the cloud are delivered to the end-users. This means this time should
consider the service times of the IoT solution.

Figure 17b shows the service time spent by each solution to process the Mexican dataset.
The difference in the percentage of performance gain between Overlay and the other so-
lutions implementing the IoT solution (DagOn∗, Jenkins and Makeflow) is increased in
comparison with the results obtained when processing the Spanish dataset. This effect is
caused by the fact of the Mexican dataset includes more records than the Spanish one.
Overlay processes this dataset in 6.25 minutes, DagOn* in 47.27 minutes, Makeflow in 14.71
minutes, Jenkins in 85.32 for a performance gain percentage of Overlay of 86.76%, 57.46%,
92.66% respectively. Again, rsync and SCP only upload the processed data in 2.30 and
12.32 minutes respectively. Nevertheless, the time produced by rsync only represents the
transportation time as this solution only sends data to the cloud by syncing local and cloud
locations. These solutions are only presented to show the overhead of the IoT processing
solutions (without data transportation).

Once shown the overhead of the IoT solutions implemented in frameworks based on
continuous schemes such (DagOn∗, Jenkins, Makeflow, and Overlay), a direct comparison

30

is now showed in Figure 18. Figure 18 shows, in vertical axis, the response time produced
by the studied solutions when varying the number of workers/threads (horizontal axis)
when processing Spanish (see 18a) and Mexican (see Figure 18b) datasets. As it can be
seen, the Overlay configuration produced a better response time than Jenkins (12 threads),
Makeflow (12 threads) and DagOn* (12 threads) by 4.31%, 21.95%, 9.43% in comparison
with DagOn*, Jenkins, and Makeflow respectively When processing the Spanish dataset. In
turn, the Overlay configurations produced better response time than Jenkins (12 threads),
Makeflow (12 threads), and DagOn* (12 threads) by 92.67%, 57.51% and 91.43% respectively
when conducting the case study based on Mexican dataset.

Notice that in the model proposed in this paper, the parallelism operations are managed
by a service mesh (pattern mesh) including a non-deterministic load balancing algorithm
based on the utilization of virtual containers as well as an in-memory data management. In
turn, traditional solutions only launch threads per task in a virtual container.

8. Discussion and analysis of strengths, weaknesses, opportunities, and threats

In a direct comparison of the model with state-of-the-art tools, the evaluation revealed
that the parallel patterns not only reduced the overhead of preparation schemes but also pro-
duced a better performance than Jenkins, Makeflow, and DagOn*. Note that the pub/sub
makes available not only the resultant information produced by processing IoT data but
also all the versions produced in the IoT data lifecycle. Moreover, the properties added to
the IoT data not only produce reliability, portability, and security but also improve the effi-
ciency of the IoT processing, which is significant in big IoT data. Besides these findings, in
this section is presented an analysis of strengths, weaknesses, and opportunities to provide
a comprehensive view of the model proposed:

A continuous delivery scheme based on BBs for constructing software pipelines from the edge
to the cloud. Strengths: It is presented as a processing model for big IoT data, which is
based on reusable abstract structures (BBoxes and BBs). Big IoT data solutions based on
pipelines and implicit parallelism (patterns) can be deployed on the edge, cloud, fog, or end-
user. Weaknesses: Developers require a previous background to understand how to define a
DAG and the functionality of abstractions (BBoxes, BBs, and overlays). Opportunities:
An intuitive and graphical tool should be developed to hide from the developers the details of
creating DAGs. Moreover, other patterns besides the patterns implemented in the prototype
can be explored (e.g., master/slave or fabric).

A data preparation scheme based on parallel patterns and an overlay structure. Strengths:
The proposed overlay allows developers to create separated layers to different behaviors,
which can be updated by adding or removing stages following the proposed model. Also,
stages share data in a secure manner. Weaknesses: The overlay only includes three planes
and how these planes can be modified (reduced or increased) is not considered in this paper.
Opportunities: The model requires another layer for managing an overlay plane mesh in
a similar way to the pipeline service mesh and the pattern mesh.

31

A parallel pattern and software pipeline simulator based on containerized BBs. Strengths:
This component enables to measure the costs of creating preparation schemes for big IoT
data solutions in terms of capacity redundancy and performance, to fine-tune the parameters
of the patterns of these BBs. Weaknesses: This simulator only was validated for the
composition of pipelines for parallel patterns used in the preparation schemes. As shown
in the related work, the big IoT data processing is a complex multidimensional issue. This
simulator does not cover all the aspects of this complex issue. Opportunities: Other BBs
(e.g., for clustering and classification analytic) should be simulated, which can be used as a
DevOps mechanism by the pipelines in decision-making procedures.

The implementation of the prototype and its evaluation. Strengths: The experimental
evaluation revealed the efficacy of the prototype to deploy IoT solutions on different en-
vironments, as well as the efficiency to cost-efficiently preserve the security, reliability,
and integrity in comparison with tools from the stage-of-the-art (rsync, SCP, Jenkins, and
DagOn*). Weaknesses: The prototype is not ready for delivering into production. The ac-
quisition of IoT data only considers a type of sensors. In terms of evaluation, the prototype
could be evaluated by using case studies based on other IoT industry scenarios. It is also
required a more detailed evaluation for the BBox deployed at the edge based on industry
benchmarks. Opportunities: More sensor APIs should be added to the BBox at the edge.
In terms of evaluation, it would result quite interesting to study digital twins in continuous
IoT processing.

Threats are managed in a general manner as the model is supported by a prototype
and a simulator. Also, equal or more work than performed on their implementation should
be made to convert them into production software. Threats arise in the form of attacks
related to the dependability and resilience of these components, which is not addressed in
this paper.

9. Conclusions

This paper presented a model implemented as a framework that enables organizations to
build flexible big IoT data solutions for processing data, in an uninterrupted manner, from
the edge to the fog to the cloud to the end-users’ devices, and making feasible to provide
these solutions with security, efficiency, and reliability schemes in a cost-efficient manner.
This model creates dataflows through end-to-end workflows, which enforces the preparation
of data in an ordered sequence of stages executed in implicit, transparent, and automatic
manners. An adaptive compression stage reduces the data sent to the fog and the cloud
to also reduce the costs of the outsourced preservation data management tasks, a ciphering
stage keeps data privacy, a digital signature stage enables end-users to discover alterations
of downloaded files, and a segmentation stage adds data redundancy for withstanding un-
availability of data or storage locations. Finally, a stage delivers prepared data to different
environments (any of edge, fog or cloud).

The model is based on BBoxes and BBs including I/O connectors created by using an
ETL model and has shown to be flexible to build data IoT solutions modeled as DAGs. These

32

structures enable developers to encapsulate any of programs, applications or functions into
the BBs, which can be coupled to other BBoxes or BBs by using the principle of continuous
delivery through the I/O interfaces that can be configured to use any of the memory, network
or the file system.

The evaluation based on use cases revealed the feasibility of applying these data prepara-
tion schemes to IoT processing solutions by using implicit parallel patterns and service mesh.
The overlay structure enables organizations to establish, in an efficient manner, controls over
the production and consumption of IoT data by creating IoT data and information sharing
patterns at each environment considered in an IoT processing solution (any of edge, fog, or
cloud). The data preparation scheme has been proved to be flexible and efficient allowing
it to establish controls over the production and consumption of IoT data by adding data
properties such as cost-efficiency storage, security, and reliability. Moreover, the usage of
the overlay structure has demonstrated a high potential to integrate the schemes to create
IoT data and information sharing patterns.

A simulator of parallel patterns and software pipelines based on virtual containerized
BBs was also proposed for organizations to estimate service and response times of prepa-
ration schemes for processing IoT datasets. This simulator was designed to make fast es-
timations of time and cost for the continuous data preparation approach for big IoT data.
The simulator has a modular architecture, which allows it to easily include new BBs. Be-
havior can be modeled using statistic functions or through functions reflecting services. In
this case, values are obtained by interpolating values in performance tables. This simulator
allows solution designers to explore the performance and the scalability of the solution and
to choose the optimum number of workers to dimension a further production deployment.

The experimental evaluation in two real-world uses cases for meteorological sensors data
revealed the feasibility of using a data preparation approach for IoT to mitigate risks that
still could arise in the cloud. The evaluation showed that heavy usage of parallelism, by
providing virtual containers implementing parallel patterns, is beneficial in all steps as it
was observed that the larger the workload produced by IoT devices, the more the efficiency
of the parallel patterns, which compensates the time spent by the overlay to prepare IoT
data. As shown in the evaluation, compared with popular tools such as DagOn*, Makeflow,
and Jenkins, a speedup of 11x, 13x, and 2x were achieved respectively. The simulation of
the same scenarios showed that the error obtained is low, thus showing the validity of the
simulator proposed.

As future and ongoing work, the model is under evaluation with other case studies,
such as medical imagery and organizational environments, to explore its generality. The
process of the acquisition and delivery of data by performing the write and read operations
in parallel is already under evaluation for providing secure and cost-efficiency sync for multi-
cloud environments, as data movement is costly and doing it sequentially is a bottleneck
in current solutions. The accuracy of the simulation is also being adjusted to new BBoxes
and BBs, not only at parallel pattern level where a high accuracy has been observed, but
also trying to capture the characteristics of the queuing of requests in the data exchange
performed in each pair of BBs in a pipeline as well as when the patterns use virtual cores,
which is not sufficiently captured by the version of the simulator presented in this paper.

33

We are also working on including different communication standards for IoT devices such
as LoRa and Bluetooth.

Acknowledgments

This research was partially supported by ”Fondo Sectorial de Investigación para la Ed-
ucación”, SEP-CONACyT Mexico, through projects 281565 and 285276, and by Madrid
regional Government (Spain) under the grant ”Convergencia Big data-Hpc: de los sensores
a las Aplicaciones. (CABAHLA-CM)”. Ref: S2018/TCS-4423.

References

[1] M. Malik, Internet of things (iot) healthcare market by component (implantable sensor devices, wearable
sensor devices, system and software), application (patient monitoring, clinical operation and workflow
optimization, clinical imaging, fitness and wellness measurement): Global opportunity analysis and
industry forecast, 2014–2021, Allied Market Research (2016) 124.

[2] Miller, World Internet of Things (IoT) in Healthcare Market (Feb 2016).
URL https://www.alliedmarketresearch.com/iot-healthcare-market

[3] Reinsel, Gantz, Rydning, The digitization of the world: from edge to core, Framingham: International
Data Corporation.

[4] Anawar, Wang, A. Zia, Jadoon, Akram, Raza, Fog computing: An overview of big iot data analytics,
Wireless Communications and Mobile Computing 2018.

[5] B. Rimal, E. Choi, I. Lumb, A taxonomy and survey of cloud computing systems, in: 2009 Fifth
International Joint Conference on INC, IMS and IDC, Ieee, 2009, pp. 44–51.

[6] V. Malik, S. Singh, Cloud, big data & iot: Risk management, in: 2019 International Conference on
Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), IEEE, 2019, pp. 258–262.

[7] A. Botta, W. De Donato, V. Persico, A. Pescapé, Integration of cloud computing and internet of things:
a survey, Future generation computer systems 56 (2016) 684–700.

[8] Shi, Cao, Zhang, Li, Xu, Edge computing: Vision and challenges, IEEE internet of things journal 3 (5)
(2016) 637–646.

[9] Mohan, Kangasharju, Edge-fog cloud: A distributed cloud for internet of things computations, in: 2016
Cloudification of the Internet of Things (CIoT), IEEE, 2016, pp. 1–6.

[10] S. Yi, C. Li, Q. Li, A survey of fog computing: concepts, applications and issues, in: Proceedings of
the 2015 workshop on mobile big data, 2015, pp. 37–42.

[11] Naas, Parvedy, Boukhobza, Lemarchand, ifogstor: an iot data placement strategy for fog infrastructure,
in: 2017 ICFEC, IEEE, 2017, pp. 97–104.

[12] Singh, Chatterjee, Cloud security issues and challenges: A survey, Journal of Network and Computer
Applications 79 (2017) 88–115.

[13] Chow, Golle, Jakobsson, Shi, Staddon, Masuoka, Molina, Controlling data in the cloud: outsourcing
computation without outsourcing control, in: CCSW’2009, ACM, 2009, pp. 85–90.

[14] Morales, Gonzalez, Diaz, Sosa, A pairing-based cryptographic approach for data security in the cloud,
IJISP 17 (4) (2018) 441–461.

[15] Zhang, Zhang, Secure and efficient data-sharing in clouds, CCPE 27 (8) (2015) 2125–2143.
[16] Gonzalez, Sosa, Diaz, Carretero, Yanez, Sacbe: A building block approach for constructing efficient

and flexible end-to-end cloud storage, Journal of Systems and Software 135 (2018) 143–156.
[17] Mao, Wu, Jiang, Improving storage availability in cloud-of-clouds with hybrid redundant data distri-

bution, in: IPDPS 2015m, IEEE, 2015, pp. 633–642.
[18] Xiong, Zhang, Zhu, Yao, Cloudseal: End-to-end content protection in cloud-based storage and delivery

services, in: SecureComm, Springer, 2011, pp. 491–500.

34

https://www.alliedmarketresearch.com/iot-healthcare-market
https://www.alliedmarketresearch.com/iot-healthcare-market

[19] Carrizales, Sánchez, Reyes, Gonzalez, Morales, Carretero, Galaviz, A data preparation approach for
cloud storage based on containerized parallel patterns, in: 2019 IDCS, Springer, 2019, pp. 478–490.

[20] L. Chen, Continuous delivery: Huge benefits, but challenges too, IEEE Software 32 (2) (2015) 50–54.
[21] Y. Miao, W. Li, D. Tian, M. Hossain, M. Alhamid, Narrowband internet of things: simulation and

modeling, IEEE Internet of Things Journal 5 (4) (2017) 2304–2314.
[22] Polley, Blazakis, McGee, Rusk, Baras, Atemu: a fine-grained sensor network simulator, in: SECON

2004, IEEE, 2004, pp. 145–152.
[23] Acharya, Ranjan, Mandal, A novel approach for deployment and throughput analysis of lte-advanced

self-organizing network by using system vue, International Journal of Computational Intelligence &
IoT 1 (1).

[24] S. Sotiriadis, N. Bessis, E. Asimakopoulou, N. Mustafee, Towards simulating the internet of things, in:
2014 AINA, IEEE, 2014, pp. 444–448.

[25] H. Gupta, A. Vahid Dastjerdi, S. Ghosh, R. Buyya, ifogsim: A toolkit for modeling and simulation
of resource management techniques in the internet of things, edge and fog computing environments,
Software: Practice and Experience 47 (9) (2017) 1275–1296.

[26] A. Murthy, Mumak: Map-reduce simulator, MAPREDUCE-728, Apache JIRA.
[27] S. Hammoud, M. Li, Y. Liu, N. Alham, Z. Liu, Mrsim: A discrete event based mapreduce simulator,

in: 2010 FSKD, Vol. 6, IEEE, 2010, pp. 2993–2997.
[28] M. Tran, D. Nguyen, V. Le, D. Nguyen, T. Pham, Task placement on fog computing made efficient for

iot application provision, Wireless Communications and Mobile Computing 2019.
[29] Y. Song, S. Yau, R. Yu, X. Zhang, G. Xue, An approach to qos-based task distribution in edge

computing networks for iot applications, in: 2017 IEEE international conference on edge computing
(EDGE), IEEE, 2017, pp. 32–39.

[30] R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, R. Buyya, Cloudsim: a toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms,
Software: Practice and experience 41 (1) (2011) 23–50.

[31] Zeng, Garg, Strazdins, Jayaraman, Georgakopoulos, Ranjan, Iotsim: A simulator for analysing iot
applications, Journal of Systems Architecture 72 (2017) 93–107.

[32] Lin, Xu, He, Li, Multi-resource scheduling and power simulation for cloud computing, Information
Sciences 397 (2017) 168–186.

[33] G. Wang, A. Butt, P. Pandey, K. Gupta, A simulation approach to evaluating design decisions in
mapreduce setups, in: 2009 MASCOTS, IEEE, 2009, pp. 1–11.

[34] A. Verma, L. Cherkasova, R. Campbell, Play it again, simmr!, in: 2011 IEEE International Conference
on Cluster Computing, IEEE, 2011, pp. 253–261.

[35] J. Jung, H. Kim, Mr-cloudsim: Designing and implementing mapreduce computing model on cloudsim,
in: 2012 International Conference on ICT Convergence (ICTC), IEEE, 2012, pp. 504–509.

[36] G. Brambilla, M. Picone, S. Cirani, M. Amoretti, F. Zanichelli, A simulation platform for large-scale
internet of things scenarios in urban environments, in: 1st EAI Urb-IoT 2020, 2014, pp. 50–55.

[37] Han, Lee, Crespi, Heo, V. Luong, Brut, Gatellier, Dpwsim: A simulation toolkit for iot applications
using devices profile for web services, in: 2014 WF-IoT, IEEE, 2014, pp. 544–547.

[38] G. Kecskemeti, Dissect-cf: a simulator to foster energy-aware scheduling in infrastructure clouds, Sim-
ulation Modelling Practice and Theory 58 (2015) 188–218.

[39] Cárdenas, Arroba, Blanco, Malagón, Risco-Mart́ın, Moya, Mercury: A modeling, simulation, and opti-
mization framework for data stream-oriented iot applications, SIMPAT.

[40] Huang, Li, Descriptive models for internet of things, in: 2010 International Conference on Intelligent
Control and Information Processing, IEEE, 2010, pp. 483–486.

[41] Xue, Li, Nazarian, Bogdan, Fundamental challenges toward making the iot a reachable reality: A
model-centric investigation, ACM TODAES 22 (3) (2017) 1–25.

[42] Francis, Gerstlauer, A reactive and adaptive data flow model for network-of-system specification, IEEE
Embedded Systems Letters 9 (4) (2017) 121–124.

[43] ur Rehman, Ahmed, Yaqoob, Hashem, Imran, Ahmad, Big data analytics in industrial iot using a

35

concentric computing model, IEEE Communications Magazine 56 (2) (2018) 37–43.
[44] H. Bergius, Noflo–flow-based programming for javascript, URL: http://noflojs. org.
[45] Persson, Angelsmark, Calvin-merging cloud and iot., in: ANT/SEIT, 2015, pp. 210–217.
[46] Jabbar, Ullah, Khalid, Khan, Han, Semantic interoperability in heterogeneous iot infrastructure for

healthcare, Wireless Communications and Mobile Computing 2017.
[47] Phillips, International data-sharing norms: from the oecd to the general data protection regulation

(gdpr), Human genetics 137 (8) (2018) 575–582.
[48] Albrecht, Donnelly, Bui, Thain, Makeflow: A portable abstraction for data intensive computing on

clusters, clouds, and grids, in: 2012 SWEET, 2012, pp. 1–13.
[49] J. Smart, Jenkins: The Definitive Guide: Continuous Integration for the Masses, ” O’Reilly Media,

Inc.”, 2011.
[50] R. Montella, D. Di Luccio, S. Kosta, Dagon*: Executing direct acyclic graphs as parallel jobs on

anything, in: 2018 WORKS, IEEE, 2018, pp. 64–73.
[51] Babuji, Chard, Foster, Katz, Wilde, Woodard, Wozniak, Parsl: Scalable parallel scripting in python.,

in: IWSG, 2018, pp. 1–6.
[52] Santiago-Duran, Gonzalez-Compean, Brinkmann, Reyes-Anastacio, Carretero, Montella, Pulido, A

gearbox model for processing large volumes of data by using pipeline systems encapsulated into virtual
containers, Future Generation Computer Systems.

[53] Wiseman, Schwan, Widener, Efficient end to end data exchange using configurable compression, ACM
SIGOPS Operating Systems Review 39 (3) (2005) 4–23.

[54] Meister, Brinkmann, Multi-level comparison of data deduplication in a backup scenario, in: Proceedings
of SYSTOR 2009., ACM, 2009, p. 8.

[55] K. Miller, Cloud deduplication, on-demand: Storreduce, an apn technology partner: Amazon web
services (Mar 2018).

[56] Meister, Brinkmann, dedupv1: Improving deduplication throughput using solid state drives (ssd), in:
MSST 2010, IEEE, 2010, pp. 1–6.

[57] Chen, Lee, Enabling data integrity protection in regenerating-coding-based cloud storage: Theory and
implementation, IEEE transactions on parallel and distributed systems 25 (2) (2013) 407–416.

[58] Liu, Yang, Zhang, Chen, External integrity verification for outsourced big data in cloud and iot: A big
picture, Future generation computer systems 49 (2015) 58–67.

[59] Puttaswamy, Kruegel, Zhao, Silverline: toward data confidentiality in storage-intensive cloud applica-
tions, in: Proceedings of the 2nd ACM Symposium on Cloud Computing, 2011, pp. 1–13.

[60] M. O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance, JACM
36 (2) (1989) 335–348.

[61] Humble, Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment
Automation (Adobe Reader), Pearson Education, 2010.

[62] Buschmann, Henney, Schmidt, Pattern-oriented software architecture, on patterns and pattern lan-
guages, Vol. 5, John wiley & sons, 2007.

[63] Ortega-Arjona, Patterns for Parallel Software Design, 1st Edition, Wiley Publishing, 2010.
[64] Bart́ık, Ubik, Kubalik, Lz4 compression algorithm on fpga, in: 2015 IEEE International Conference on

Electronics, Circuits, and Systems (ICECS), IEEE, 2015, pp. 179–182.
[65] Morales-Ferreira, Santiago-Duran, Gaytan-Diaz, Gonzalez, Sosa, Lopez, A data distribution service for

cloud and containerized storage based on information dispersal, in: SOSE, IEEE, 2018, pp. 86–95.
[66] Gonzalez, Perez, Sosa-Sosa, Sanchez, Bergua, Skycds: A resilient content delivery service based on

diversified cloud storage, SIMPAT 54 (2015) 64–85.
[67] Odelu, Rao, Kumari, Khan, Choo, Pairing-based cp-abe with constant-size ciphertexts and secret keys

for cloud environment, Computer Standards & Interfaces 54 (2017) 3–9.
[68] Gkoutioudi, Karatza, Task cluster scheduling in a grid system, Simulation Modelling Practice and

Theory 18 (9) (2010) 1242–1252.
[69] J. Ghofrani, D. Lübke, Challenges of microservices architecture: A survey on the state of the practice.,

in: ZEUS, 2018, pp. 1–8.

36

[70] Sánchez, Gonzalez, Alvarado, Sosa, Tuxpan, Carretero, A containerized service for clustering and
categorization of weather records in the cloud, in: CSIT, IEEE, 2018, pp. 26–31.

[71] N. Pathania, Learning continuous integration with Jenkins: a beginner’s guide to implementing con-
tinuous integration and continuous delivery using Jenkins 2, Packt Publishing Ltd, 2017.

[72] Mayer, Graser, Gupta, Saurez, Ramachandran, Emufog: Extensible and scalable emulation of large-
scale fog computing infrastructures, in: 2017 FWC, IEEE, 2017, pp. 1–6.

[73] Coutinho, Greve, Prazeres, Cardoso, Fogbed: A rapid-prototyping emulation environment for fog com-
puting, in: 2018 ICC, IEEE, 2018, pp. 1–7.

[74] Mohamed, Lorandel, Romain, Regnery, Baheux, A versatile emulator of mitm for the identification of
vulnerabilities of iot devices, a case of study: smartphones, in: 3rd ICFNDS, 2019, pp. 1–6.

[75] Chang, Tso, Tsai, Iot sandbox: to analysis iot malware zollard, in: ICC ’17, 2017, pp. 1–8.
[76] Le-Trung, Towards an iot network testbed emulated over openstack cloud infrastructure, in: 2017

SigTelCom, IEEE, 2017, pp. 246–251.
[77] Brady, Hava, Perry, Murphy, Magoni, Portillo-Dominguez, Towards an emulated iot test environment

for anomaly detection using nemu, in: 2017 GIoTS, IEEE, 2017, pp. 1–6.
[78] Eriksson, Österlind, Finne, Tsiftes, Dunkels, Voigt, Sauter, Marrón, Cooja/mspsim: interoperability

testing for wireless sensor networks, in: 2nd SIMUTools, 2009, pp. 1–7.
[79] Nikdel, Gao, Neville, Dockersim: Full-stack simulation of container-based software-as-a-service (saas)

cloud deployments and environments, in: 2017 PACRIM, IEEE, 2017, pp. 1–6.
[80] Lin, Xia, Wang, Tian, Song, System design for big data application in emotion-aware healthcare, IEEE

Access 4 (2016) 6901–6909.
[81] Cao, Wachowicz, Renso, Carlini, Analytics everywhere: generating insights from the internet of things,

IEEE Access 7 (2019) 71749–71769.
[82] Patel, Ali, Sheth, On using the intelligent edge for iot analytics, IEEE Intell. Syst. 32 (5) (2017) 64–69.
[83] Hong, Tsai, Cheng, Uddin, Venkatasubramanian, Hsu, Supporting internet-of-things analytics in a fog

computing platform, in: 2017 CloudCom, IEEE, 2017, pp. 138–145.

37

	Introduction
	Related work
	Simulation tools
	Models
	End-to-end solutions
	Discussion

	A continuous delivery model for big IoT data
	Building IoT data processing solutions based on patterns: pipelines and parallel patterns
	Pipelines
	Implicit parallel patterns at black box level

	An overlay structure for sharing IoT data in workflows and software pipelines
	Applying data preparation and retrieval schemes to the overlay

	Parallel patterns and software pipeline simulator based on containerized BBs
	Interpolating the service time of BBs
	Simulating awaiting queue in a BB
	Simulating a software pipeline
	Simulating parallel patterns
	Simulator validation

	Implementation of a prototype based on the overlay model
	Black boxes implementation
	Deploying of pipelines of black boxes and building blocks

	Experimental evaluation methodology and results
	Metrics
	Phase 1: IoT data analytics in edge-fog environments
	From IoT sensors to the edge-fog study: prototype details
	Experiments, configurations, and performance evaluation results

	Phase 2: Fog-Cloud-EndUser solutions for processing big IoT data
	Controlled evaluation based on processing climatic data
	Comparative performance evaluation between the overlay model with state-of-the-art solutions

	Discussion and analysis of strengths, weaknesses, opportunities, and threats
	Conclusions

