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• Experimental data analysis of 3 different setups of a FaaS system.

• Insights into the transient effects of the system, as well as considerations
in terms of modelling approaches

• Explore interesting conclusions regarding the system setup and its
trade-offs, as well as hidden factors influencing performance.
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Abstract

Experimental data can aid in gaining insights about a system operation,
as well as determining critical aspects of a modelling or simulation process.
In this paper, we analyze the data acquired from an extensive experimen-
tation process in a serverless Function as a Service system (based on the
open source Apache Openwhisk) that has been deployed across 3 available
cloud/edge locations with different system setups. Thus, they can be used
to model distribution of functions through multi-location aware scheduling
mechanisms. The experiments include different traffic arrival rates, different
setups for the FaaS system, as well as different configurations for the hard-
ware and platform used. We analyse the acquired data for the three FaaS
system setups and discuss their differences presenting interesting conclusions
with relation to transient effects of the system, such as the effect on wait and
execution time. We also demonstrate interesting trade-offs with relation to
system setup and indicate a number of factors that can affect system per-
formance and should be taken under consideration in modelling attempts of
such systems.
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Performance evaluation, Performance modelling

1. Introduction

Serverless computing [1] is a cloud computing model that enables develop-
ers to build and run applications without worrying about the underlying
infrastructure. This architecture breaks down applications into small, state-
less functions that can be executed in response to events [2], such as HTTP
requests, database changes, messaging notifications or other means of trigger-
ing. Function-as-a-Service (FaaS) systems are the key enabler for serverless
computing, providing an environment in which developers can deploy, man-
age, and execute these functions.
FaaS systems, like the open source Apache Openwhisk [3], typically rely on
the queue based load levelling pattern with competing consumers [4] (Fig. 1).
Incoming requests are queued so that they do not create congestion on the
back-end, while worker nodes consume them (at their own pace) in a First
Come First Serve (FCFS) basis. Through this architecture, back-ends are
relieved from bursty traffic and automatic load balancing is achieved, while
scalability can be regulated through adding or removing worker instances.

Figure 1: Overview of a FaaS System Architecture

This generic FaaS architecture introduces a system uniformity, since all reg-
istered functions follow the same execution model. Thus, generic modelling
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mechanisms, such as queuing models[5], can be used for predicting a system’s
performance with relation to factors, such as response time, wait time in the
system, concurrent clients in the system etc., while needing generic inputs
that can be easily obtained (e.g. incoming request rate, function duration
etc). Thus, they alleviate from the burden of gathering sufficiently large and
diverse datasets needed for training black box methods like ANNs, while they
can easily produce simulated results to help drive decision making (e.g. on
the size of the used cluster).
In this work, the goal is to analyze and get insights from the data initially
acquired from an extensive experimentation process in [6] against 3 differ-
ent types of FaaS systems. The aim of the process is to calculate example
needed parameters for modeling approaches, validating potential assump-
tions required by different modelling methodologies as well as highlight some
esting phenomena that occur during the specific system operation.
Furthermore, the knowledge of how each different location performs in a
multi-cloud-edge setup can aid higher level scheduling mechanisms to opti-
mally distribute incoming requests based on needed constraints. Effective re-
source allocation and scheduling are essential to ensure optimal performance
and cost-effectiveness in such environments [7, 8, 9, 10], balancing between
local resource contention in small size clusters and remote, latency-increasing
execution in large ones.
A preliminary, high level investigation of the acquired dataset is presented
in [6] mainly from an average times point of view. In this paper, we further
analyze the acquired data, include the transitioned time aspect and further
evaluate the collected data.
The paper is organized as follows: In Section 2, related work is portrayed with
relation to FaaS system performance. In Section 3, the experimental setup, as
well as the raw data graphs are presented, while in section 4 they are further
investigated and key take-aways are extracted from them. Conclusions reside
in Section 5.

2. Related Work

The adoption of cloud and edge computing has witnessed a significant surge,
with Function as a Service (FaaS) emerging as a prominent paradigm for
executing serverless computing workloads. As FaaS systems become increas-
ingly prevalent and diverse, there is a growing need to understand their per-
formance characteristics and optimize their operation across various cloud
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and edge environments. This section provides an overview of the existing lit-
erature related to the performance investigation of cloud/edge FaaS systems
and the extraction of baseline data.
Evaluating the performance of Function as a Service (FaaS) systems deployed
in cloud environments is a crucial research topic that sheds light on the ben-
efits and challenges of this emerging cloud computing paradigm. Numerous
studies have focused on measuring and analyzing various performance as-
pects of FaaS platforms, including latency, throughput, scalability, resource
utilization, and cost. Seneviratne et al. [11] discuss the performance chal-
lenges of FaaS and serverless architectures, identifying four main research
directions: benchmarking, modeling, optimization, and testing. Scheuner
et al. [12] provide a comprehensive overview of existing empirical studies
on FaaS performance, synthesizing their findings and implications. Tan et
al.[13] propose a model that depicts the cold-start performance of FaaS sys-
tems and introduce SnapFaaS, a snapshot design that achieves near-optimal
cold-start performance. Additionally, Fard et al. [18] present a comprehen-
sive survey of existing resource allocation techniques in cloud computing,
classifying them based on criteria such as resource type, allocation objective,
allocation strategy, and allocation algorithm. In addition to evaluating FaaS
systems, performance evaluation studies have also explored the analysis of
log files in cloud computing environments [14].
In parallel, the adoption of edge computing, which aims to bring computa-
tion closer to data sources and consumers, has gained significant attention
due to its potential to mitigate latency and reduce bandwidth consumption.
Within this context, the integration of FaaS into edge computing enables the
realization of serverless edge computing (SEC), facilitating the development
and deployment of event-driven net of Things (IoT) applications.
The effective optimization of SEC poses various challenges, including data
transfer, function placement, resource allocation, and scheduling. To address
these challenges, several studies have proposed diverse solutions. Cicconetti
et al. [15] compare three execution models for stateful workflows within
edge networks: pure FaaS, StateProp (involving propagation of the applica-
tion state throughout the entire chain of functions), and StateLocal (with
localized state storage at the workers executing the functions). The au-
thors demonstrate that applying the principle of data locality can effectively
reduce network traffic and enhance end-to-end delay performance. Further-
more, Yao et al. [16] introduces a performance optimization framework for
SEC function placement, leveraging reinforcement learning and graph neural
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networks. This framework dynamically adjusts the function placement based
on prevailing network conditions and specific application requirements.
With relation to other available open datasets, two cases that are frequently
used are the ones from [17] and [18]. However, these traces primarily depict
function invocation workloads and frequencies and are not linked to the inner
resource setup or utilization. Furthermore, they include only the function
execution duration, which is only one part of the total latency experienced
by the end user. In our case, the delays include also network latency, wait
time in the system, as well as execution time for different system setups. By
analyzing the acquired data, we aim to uncover transient effects of the system,
such as the effect on wait and execution time, concurrent container overheads
and identify esting trade-offs in system setup that can inform decision-making
for optimization.

3. Experimental Setup and Data Presentation

3.1. Experiment Setup Description

Experimental data plays a crucial role in gaining insights into system opera-
tions and identifying critical aspects of modeling or simulation processes. In
this paper, the presented data are acquired from an extensive experimenta-
tion process across three diverse cloud/edge locations (Harokopio University,
AWS Sweden and Azure Netherlands), each with unique characteristics. In
each case, one VM node was used (with different characteristics in terms
of CPU and memory) inside which Openwhisk was deployed. The function
invocation rates employed were 12, 30, and 60 messages per minute, while
the test function memory was set to 256MB, 512MB, and 1024MB. Through
this feature, we are also able to regulate the maximum number of containers
that can be launched to server incoming function requests. This number is
the ratio between the node memory available to the Openwhisk process and
the function memory used in each run. Hence, it needs to be viewed as the
maximum number of available worker servers (or the c parameter in e.g. an
M/M/c queuing model). The test function itself was the ehealth function
presented in [6] and consists of a tensorflow-based AI model for inferring on
a patient’s state. The relevant information appears in Table 1.
Load generation is performed through a relevant adapted client[19] that aims
to adapt to the specifications of a FaaS system. These specifications include
the need to get the result through asynchronous calls, meaning that the
client can not block waiting for the request, but needs to poll afterwards
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for getting the result. This is the typical way through which Openwhisk
serves the results of an executed function. Furthermore, the client is able to
log different timestamps in the process, like initial client sample time, total
response time, as well as process FaaS results in order to export provided
statistics, such as wait time in the FaaS system, initialization time for the
function container and pure function execution time (or service time).
Other clients, like Apache Jmeter, which block while waiting for responses,
can not follow the defined rate of requests unless the server is also able to
sustain the desired throughput. However, a set rate load generator ensures a
continuous and unrupted flow of requests. This approach allows for a stable
and controlled load on the system under test, enabling to assert the desired
message throughput.

Table 1: Testbed Data for Various Test Configurations

Testbed Test Function Memory (MB)
Testbed Set Rate Node Memory Cores

(msg/min) (GB) 256 512 1024

HUA 12,30,60 8 4
Max Worker Containers

AWS 12,30,60 8 4
32 16 8

AZURE 12,30,60 1.5 8
32 16 8
6 3 1

In order to eliminate any interference from initial cold starts on the results,
a pre-warming run was conducted for each case. This step was necessary
due to the inclusion of container initialization time in the function execution
duration in Openwhisk, despite being reported separately. Once the warm
containers were available following the pre-warm run, data collection took
place during the main run for a duration of 600 seconds for each case. A
total of 4890 samples were collected throughout the process and published
by Kousiouris [6].

3.2. Raw Data Collection Presentation

The outcomes of the experimental analysis are presented in this section, fo-
cusing primarily on the aspect of time from each experiment start. The
influence of different variables (function memory, set rates, cluster type) on
system performance across various scenarios, can be observed as well as its
evolution as the experiment progresses. By examining these graphs, trends,
patterns, and correlations can be identified, helping to understand how dif-
ferent variables affect system performance.
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3.2.1. HUA Testbed Results

By examining the first series on the HUA testbed (Figure 2), it is evident that
in the low rate case (i.e. 12 msg/min) the system is very stable, having a small
wait time that is mainly functional (e.g. waiting for the incoming request to
be forwarded across the various sub-components of the FaaS architecture).
The amount of memory does not affect the function performance, since in
all 3 memory variations the execution time is very similar ( 6.5 seconds). If
we apply Little’s law in this case, with an incoming rate of 1 request per 5
seconds and a response time 6.5 seconds, we get an average of 1.3 customers
in the system. This means that on average 2 max containers are needed for
serving the functions in these scenarios and they run concurrently for about
30 percent of their time. A similar case applies for the medium rate, although
in this case we have 1 request per 2 seconds and a slightly increased execution
time of 7 seconds leading to about 3.5 customers in the system and, thus, 4
max concurrent containers. However, in the case of the high rate (subfigures
g-i), the system becomes unstable as is evident by the constantly rising wait
time, although there are in principle 32,16 and 8 workers (max container
slots) and this should be enough to accommodate the increased traffic (e.g.
based on typical M/M/C formulas).
However there is a significant difference in the case of FaaS compared to
the application of queuing models in other domains (e.g. a supermarket or a
calling center model). As seen in Fig. 1, a FaaS worker node internally divides
its computational capacity into smaller slots (or container slots). Thus, a
number of function containers can be squeezed in the same worker node
depending on memory availability. This means that the overall resources of
the node are now shared by the concurrent processes which leads to significant
degradation in the function execution performance, due to direct (cpu time)
or indirect (cache contamination) resource sharing.
In most cases queuing model approaches assume that the service rate of the
system is not dependent on the system state (in this case the number of
concurrently served customers/containers in the system) but on a distribu-
tion that relates primarily to differences in the function execution itself. In
a supermarket analogy, one customer may require more time to be served
compared to another (because they have a larger cart) but the time it takes
to be served does not depend on the number of tellers in the supermarket. In
reality, what happens is that the serving time (function execution duration)
will also depend on the amount of tellers in the system (because they waste
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(a) setRate12 mem256 (b) setRate12 mem512 (c) setRate12 mem1024

(d) setRate30 mem256 (e) setRate30 mem512 (f) setRate30 mem1024

(g) setRate60−mem256 (h) setRate60 mem512 (i) setRate60 mem1024

Figure 2: Performance plots of ehealthHUA
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time chatting to each other for example).
For quantifying this increase, one can observe Fig. 2 (g-i), in which the
system is operating using the max available containers. In the case of Fig.
2g the function execution duration increased from 6.5 seconds to 70 seconds.
In the case of Fig. 2(h), we have 16 max containers (and a service time of
35 seconds) while in Fig. 2(i) we have 8 max containers and a service time of
12 seconds. So it seems to be following a rather linear reduction based on the
percentage of cpu core time assigned to each container, once the container
numbers exceed the amount of available cores (4 in the case of the HUA
testbed). This is reasonable since after passing the ratio of 1 container per
core the core time is split between the competing containers.
This leads us to a chicken and egg problem when trying to apply queueing
models in such environments. How can we estimate how many customers in
the system exist at any given time, given that this depends on the service rate,
and on the other hand, how can we estimate the service rate when it depends
on the customers in the system. An iterative approach could be potentially
followed, based on split time windows in order also to adapt to incoming
traffic variations, in which either the execution duration or the customers
in the system are monitored and from this parameter we can estimate the
remaining ones.

3.2.2. AWS Testbed Results

For the AWS case (Fig. 3a-f), we can observe similar behavior, with two
exceptions. The 256 MB case consistently fails due to function memory
being too low. The reason, compared to the HUA testbed, is that in this
case we are using Kubernetes container management system, which kills the
container even if a slight memory violation occurs. On the HUA testbed, we
use the Docker Engine, which is not that strict.

3.2.3. Probability of Failures Due to Image Pulling Bottlenecks

Furthermore, we can observe a number of anomalies in the AWS high rates
(Fig 3f-g). While the system appears to be stable (in the sense that it has
an increased but manageable service time), there are a number of spikes in
waiting time, as well as an increased number of failures in the requests. In
order to further investigate this phenomenon, we broke down the responses
to successful and unsuccessful ones, appearing in Fig. 4. After examina-
tion, it was determined that these failures were due to numerous concurrent
requests for pulling and launching the function container image and can be
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attributed to the image registry and the according storage system. A relevant
ErrImagePull event was generated due to this spike in image pulling, which
was caused by the spike in cold starts. Cold starts are treated in literature
significantly, however what this analysis shows is that they also need to be
linked not only with extended initialization times, but also with higher prob-
abilities of failure. Thus, it should be added as a stage in a kind of Markov
chain analysis.

(a) setRate12 mem512 (b) setRate30 mem512 (c) setRate60 mem512

(d) setRate12 mem1024 (e) setRate30 mem1024 (f) setRate60 mem1024

Figure 3: Performance plots of ehealthAWS

3.2.4. Azure Testbed Results

Respectively, in the Azure testbed, the results appear in Fig. 5. In the low
rate case, the system is stable and performing slightly better than AWS,
given that the VM is based on a slightly more advanced cpu. Here a number
of comparisons can be performed. Comparing between the rate 30-512 MB
cases, it can be noted that the AWS execution time is raised to 3.5 seconds.
On the other hand, the Azure case is more stable around 2.5 seconds (as
the baseline value in the low rate scenario). In 30-1024 MB case, AWS still
maintains the 3.5 seconds execution and Azure the 2.5 one, however due to
the fact that Azure has the restriction of only 1 worker, requests are queued
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(a) success true (b) success False

Figure 4: Behavior of the ehealthAWS with setRate=60 and memory=512

given that they arrive at a rate of 1 every 2 seconds. The key take away from
these testbed results is that, if we want to maintain a very stable execution
time, then we need to do it at the expense of higher waiting time. There is
also one other peculiarity in the graphs that will be explained in detail in
Section 4.1.

4. Results, Analysis and Discussion

In this section, we further analyse the results depicted in the provided graphs
of section 3, as well as we provide some insights into the back-end processes.
More importantly, we highlight the differences between the results of the cases
and discuss them in an attempt to also explain them and, thus, support future
researchers and practitioners that will explore FaaS systems in cloud/edge
computing environments.

4.1. Cut-off points and Load Generation Analysis

From the AWS and Azure cases, some peculiarities were observed in the
exported graphs. For example, in the case of Azure (Fig. 5 c-e-f, the queue
seems to be constantly rising, until a point in which it becomes stable. Given
that the arrival rate is higher than the departure rate from all servers, this
queuing time should be constantly rising. Initially it was considered that
it might be a problem of the load generator. FaaS platforms typically do
not allow blocking calls for a delay larger than a specific limit, thus async
invocations should be performed and the result acquired through a polling
process.
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(a) setRate12 mem512 (b) setRate30 mem512 (c) setRate60 mem512

(d) setRate12 mem1024 (e) setRate30 mem1024 (f) setRate60 mem1024

Figure 5: Performance plots of ehealthAZURE

Thus, a high number of actively monitored functions could put a large strain
on the load generator, not enabling it to meet the desired rate. Furthermore,
the load generator is built in such a way that it logs only the requests from
which a result was obtained from the FaaS platform.
In order to evaluate the performance of the load generator, each request
timestamp was logged at the client side and compared to the target rate. No
deviation was found on that side, following the desired request rate. Then,
we plotted the received requests in the three scenarios, that appear in Figs.
7 and 8. The samples are sorted based on the timestamp of the initial
request (x axis) and the time difference between sample n and (n-1) (y axis).
Hence, a consistent request/response rate should be observed, similar to the
cases of Figure 6, thus a straight line indicating the set rate in requests per
minute. The aforementioned case in the HUA testbed appears to be working
as expected. The fact that we have less samples in the HUA case in the 60
rate scenario can be explained due to the high execution time in this case.
The load generator waits for the 600 seconds of each experiment duration and
then proceeds to calculate the samples arrived up to then. Thus, samples that
arrive after that mark are neglected, hence the low sample count collection
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in the high rate/high delay case.
However, in the cases of Amazon and especially Azure, the samples in the
high rate case (and in some cases in the medium rate towards the end) do
not follow the specified rate. Furthermore, this difference appears to be
very specific, i.e. instead of having samples every 1 second we get a specific
sequence like 1,4,1,3,1 etc. This was due to the fact that in FaaS platforms
there are two cut-off points that can be set. One cut-off point is at the
overall level, indicating that the platform should reject invocations higher
than e.g. 60 per minute. Another cut-off point is the fact that one can
determine the maximum number of concurrent, active invocations. It is due
to this limit that this queue levelling should be attributed. Once this limit
is reached, the platform rejects the next request until one of the previous
ones has been finished and that is why the interarrival times of processed
requests are always at a multiple of 1. In the case of HUA this limit was set
much higher (400 invocations per minute) than the AWS and Azure cases in
which the specific cut-off point was set to 60 invocations per minute, hence
the difference in the processed request sample plots.

(a) ehealthHUA Memory256 (b) ehealthHUA Memory512 (c) ehealthHUA Memory1024

Figure 6: Inter-arrival time (seconds) between processed request samples in ehealthHUA

These details were gathered and calculated in Tables 2, 3 and 4 for the three
cases respectively. What is mostly interesting in this case is to calculate from
the total experiment duration which were the acquired samples compared to
the formally foreseen ones. This can help us determine the effective rate of
requests, i.e. the actual part of the arrival rate that indeed enters the system.
Furthermore, the probability of a request for a given scenario to enter the
system is important. For example, in cases where we need to foresee such a
state (such as in Markov chains), as well as the probability of transitioning to
that state. The difference for higher rejection in the case of AWS compared
to Azure may be attributed to the fact that AWS due to the concurrency
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(a) ehealthAWS Memory 512 (b) ehealthAWS Memory 1024

Figure 7: Inter-arrival time (seconds) between processed request samples in ehealthAWS

(a) ehealthAZURE Memory 512 (b) ehealthAZURE Memory 1024

Figure 8: Inter-arrival time (seconds) between processed request samples in ehealthAzure
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overheads and the higher number of allowed containers has a higher execution
time, thus the rate with which requests leave the system is lower. This leads
to more requests being rejected due to the waiting queue being full.

Table 2: Effective Rate and Request Acceptance Probability for test name = ehealthHUA

Target Rate (request/sec) Memory (MB) Actual Samples Expected Samples Effective rate Probability of
accepted requests

0.2 (12 request/min) 256 114 114 0.199 1
0.2 (12 request/min) 512 114 114 0.199 1
0.2 (12 request/min) 1024 114 114 0.199 1

0.5 (30 request/min) 256 288 288 0.499 1
0.5 (30 request/min) 512 288 288 0.499 1
0.5 (30 request/min) 1024 288 288 0.499 1

1 (60 request/min) 256 232 232 0.999 1
1 (60 request/min) 512 260 260 0.999 1
1 (60 request/min) 1024 300 301 0.995 0.995

Table 3: Effective Rate and Request Acceptance Probability for test name = ehealthAWS

Target Rate (request/sec) Memory (MB) Actual Samples Expected Samples Effective rate Probability of
accepted requests

0.2 (12 request/min) 512 114 114 0.199 0.999
0.2 (12 request/min) 1024 114 114 0.199 1

0.5 (30 request/min) 512 288 288 0.499 1
0.5 (30 request/min) 1024 288 288 0.499 1

1 (60 request/min) 512 358 558 0.641 0.641
1 (60 request/min) 1024 183 539 0.339 0.339

Table 4: Effective Rate and Request Acceptance Probability for test name = ehealt-
hAZURE

Target Rate (request/sec) Memory (MB) Actual Samples Expected Samples Effective rate Probability of
accepted requests

0.2 (12 request/min) 512 114 114 0.199 1
0.2 (12 request/min) 1024 114 114 0.199 1

0.5 (30 request/min) 512 288 288 0.499 1
0.5 (30 request/min) 1024 252 288 0.499 0.976

1 (60 request/min) 512 497 558 0.8902 0.8902
1 (60 request/min) 1024 253 516 0.4901 0.4901

4.2. Cost Model Consideration for Trade-off between Waiting and Execution
Time

4.2.1. Waiting and Execution Time Trade-offs

The distribution of function execution time data for each testbed, as pre-
sented in Figures 9-11, provides valuable insights into the performance char-
acteristics and potential container overheads or resource sharing penalties.
This is influenced by various factors, including the management and execu-
tion of containers, as well as the system configuration and design choices.
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This analysis allows us to observe the stability of the executions, as well as
use them as potential future inputs into identifying the distribution types to
be used in modelling approaches. It can also give insights into the split of
the total response time between waiting and execution, based on the cluster
setup. As an example, if we investigate the graphs of the rate 60-memory 512
case in the AWS testbed (Fig.10(b)), we can observe that it portrays a rather
increased execution time, as well as deviation, given that the distribution
spans across a large interval (2500-20000 milliseconds). This is reasonable
since in this case we can expect that a significantly high number of containers
is concurrently active. On the other hand, the Azure rate 60-memory 512 case
(max 3 concurrent containers) (Fig.10(c)) is very much concentrated around
a small interval (2500-2900 milliseconds). On the waiting time aspect, things
are quite the opposite, with AWS portraying the majority of delays up to
20000 milliseconds while Azure over 20000 milliseconds. This is reasonable
since with fewer container slots, requests need to be queued to find one
available.

4.2.2. Cost Model Consideration for Waiting Time vs Execution Time

The cost model for Function as a Service (FaaS) is typically determined
based on the execution time of a given function and the amount of memory it
allocates for its container[20]. However, in the context of overloaded clusters,
this model may be violated. Under increased load, customers may end up
paying more for a degraded service quality due to the concurrency overheads.
To prevent such violations, it is necessary to configure the system in a way
that prioritizes maintaining a stable execution time, even at the expense
of higher waiting time, as seen in the previous section. This ensures that
customers are not penalized both with higher costs and a suboptimal user
experience.

Figure 9: Distribution of Execution Time for Memory 256
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(a) ehealthHUA (b) ehealthAWS (c) ehealthAZURE

Figure 10: Distribution of Execution Time for Memory 512

(a) ehealthHUA (b) ehealthAWS (c) ehealthAZURE

Figure 11: Distribution of Execution Time for Memory 1024

Figure 12: Distribution of Waiting Time for Memory 256

(a) ehealthHUA (b) ehealthAWS (c) ehealthAZURE

Figure 13: Distribution of Waiting Time for Memory 512
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(a) ehealthHUA (b) ehealthAWS (c) ehealthAZURE

Figure 14: Distribution of Waiting Time for Memory 1024

In order to compare between the scenarios and to check how different config-
urations and loads affect the experienced QoS, Table 5 was created. In this,
we consider as baseline the HUA low rate scenario. Then, we calculate the
percent differences ((T-Tbaseline)/Tbaseline) of each according time of the
other scenarios. Hence, a number of insights can be extracted that can aid
in two directions. On one hand, to compare the different available clusters in
case of routing requests between them. On the other hand, they can be used
to compare configurations and baseline abilities of each cluster. For example,
the main concurrency problems start from a ratio of containers / cores > 1.
However, in the case of the AWS 60 rate for 8 max containers (double the
number of the available cores on the node), although we get almost double
the execution time compared to the AWS low rate case, the achieved exe-
cution time is almost identical to the baseline HUA scenario that is used as
the reference. This gives us an overall good trade-off between execution and
wait time, indicated by the fact that this setup has the lowest degradation in
the total response time (174%) of the high rate case. On the other hand, if
we want to keep a very consistent execution time, then configurations, such
as the Azure testbed, can be used, In these setups, the ratio of 1 container
per core is not violated, thus indicating a stable improvement of around 60%
compared to the baseline HUA execution. However, the user should also be
willing to trade this stability with a higher wait and total time.
Auto-scaling techniques have been widely studied to manage dynamic con-
tainer allocation in Kubernetes. Threshold-based auto-scaling techniques
have been used to adjust container numbers based on thresholds of CPU
or Memory usage rates [21]. Feedback control methods, such as linear-
performance-model-based fixed gain [22, 23], adaptive [24], or multi-model
switching feedback control methods [25], have been widely used in applica-
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Table 5: Comparison of Testbed Data for Various Test Configurations with baseline
HUA32, AWS16, AZURE4

Testbed Set Rate (msg/min)
Testbed Max Worker 12 30 60

Containers Execution Time Waiting Time Total Time Execution Time Waiting Time Total Time Execution Time Waiting Time Total Time

HUA
32 0.00% 0.00% 0.00% 8.87% 14.77% 9.03% 1008.89% 69946.56% 2868.85%
16 -0.50% 8.63% -0.26% 7.87% 25.16% 8.34% 394.67% 78205.41% 2494.02%
8 -2.35% 8.12% -2.07% 8.78% 32.83% 9.43% 103.48% 73593.77% 2086.26%

AWS
16 -56.45% -74.02% -56.93% -45.45% -92.54% -46.72% 122.24% 10746.06% 408.88%
8 -55.38% -73.08% -55.86% -44.47% -78.12% -45.37% -0.25% 6486.98% 174.77%

AZURE
4 -61.30% -94.44% -62.20% -59.50% -96.01% -60.49% -57.79% 13275.80% 301.95%
2 -60.07% -95.31% -61.02% -59.94% 19964.47% 480.32% -59.93% 31940.89% 803.46%

tion resource auto-scaling [26]. Such methods should be applied in order
to regulate the maximum container slots dynamically so that the function
execution time (or its distribution) is relatively similar over time, given the
availability of relevant monitoring data[27].
However, in the case of FaaS platforms, and given the availability of moni-
toring information across system stages , e.g. wait time, initialization time,
execution time etc., more fine grained elasticity may be applied. For example,
if monitoring indicates a rise in execution time, this might mean reducing the
memory setting in order to reduce the number of concurrent containers. If,
on the other hand, we have such a configuration and we observe high waiting
times, it is an indication that further compute nodes should be added to the
kubernetes cluster in a horizontal scaling manner or the used nodes can be
increased mainly from a number of available processors point of view in a
vertical scaling manner.

4.3. Transient Phenomena Stabilization

In many cases, knowing the time it takes for the system to stabilize can be
beneficial. For example, in some modelling cases such as PID (Proportional–
Integral– Derivative) controller-based regulation of resources [28], a tem-
porarily increased derivative of the execution times may lead to corrective
actions such as cluster resizing. In some cases however, we may first need to
see the steady state before actually deciding on the corrective action since the
steady state may still be within the set goals of the system. In that case we
could avoid oscillation of the system metrics caused by premature corrective
actions. Thus such information that can be extracted for example from Fig.
2g (the time it takes to reach a more steady condition in the execution time)
can aid in adding such safeguards by adding a relevant lag in the autoscaling
mechanisms.
From the graphs of section 3 with relation to wait time, the shape and form
of the according graphs is very similar to a type of sigmoidal function. Thus,
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a relevant neural network architecture based on such a transfer function can
easily depict the waiting time transition, if the input is the elapsed time from
a step-wise burst such as the load applied in these experiments.

5. Conclusion

This paper presents extensive experimentation on a serverless Function as
a Service (FaaS) system, yielding empirical insights into its performance
characteristics and optimization opportunities. Through diverse experiments
across cloud/ edge locations and varying configurations, we gained under-
standing of transient effects on waiting and execution time, identifying trade-
offs in system setup, and analyzed the probability of failures due to image
pulling bottlenecks. The findings emphasize the need to consider cold starts
not only for extended initialization times, but also for higher failure prob-
abilities. Furthermore, the analysis highlights the importance of effective
container management and execution strategies to enhance system perfor-
mance and user experience.
Overall, the work contributes to the broader understanding of FaaS system
and informs their design and optimization parameters. Furthermore, we ex-
plore trade-offs associated with system setup, which shed light on the prefer-
ence for either minimizing wait time or execution time. In the long term, the
empirical insights of this study can support and inspire future researchers and
practitioners that design and apply FaaS systems. The explored trade-offs
depending on the system scenarios may inform them towards implementing
optimized systems with satisfied QoS.
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