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Abstract

Hubs, or vertices with large degrees, play massive roles in, for example, epidemic

dynamics, innovation diffusion, and synchronization on networks. However, costs of

owning edges can motivate agents to decrease their degrees and avoid becoming hubs,

whereas they would somehow like to keep access to a major part of the network. By

analyzing a model and tennis players’ partnership networks, we show that combination

of vertex fitness and homophily yields a VIP club made of elite vertices that are influ-

ential but not easily accessed from the majority. Intentionally formed VIP members

can even serve as masterminds, which manipulate hubs to control the entire network

without exposing themselves to a large mass. From conventional viewpoints based on

network topology and edge direction, elites are not distinguished from many other ver-

tices. Understanding network data is far from sufficient; individualistic factors greatly

affect network structure and functions per se.
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1 Introduction

Real networks are neither regular nor completely random. They are random to some

extent and equipped with short diameters and the clustering property (Watts and

Strogatz, 1998). Many networks are also scale-free. In other words, the number of

edges per vertex, which is denoted by k, follows the power-law distribution: p(k) ∝ k−γ

(γ > 0). This implies the existence of a considerable number of hubs, or vertices with

huge degrees, beyond what is expected of a stereotypical bell-shaped p(k) such as the

Gaussian distribution. Hubs play central roles in, for example, robustness against

random and intentional attacks against vertices or edges, propagating innovations,

disease spreading, and synchronizing dynamical agents placed on vertices (Albert and

Barabási, 2002; Newman, 2003; Pastor-Satorras and Vespignani, 2001). Naturally, real

data analysis has focused on finding and characterizing hubs, including the evaluation

of γ (Albert and Barabási, 2002; Newman, 2003; Zhou and Mondragon, 2004).

However, vertices other than hubs are also important on other occasions. As an

example, let us imagine a one-shot transmission of innovation or rumor starting from

an arbitrarily chosen vertex. Diffusion studies establish that very first adopters are

regarded too radical or immature to directly communicate the new information to a

majority. Instead, so-called early adopters or opinion leaders, presumably with high

social statuses, credibility, or high connectivity as represented by hubs, receive the new

information from the first adopters and boost its propagation (Rogers, 2003). Apart

from the obvious role of hubs, however, properties of the first adopters determine the

dominant timescale and even the success probability of diffusion, which are important

in applications such as marketing and epidemics. In infinite particle systems used in

physics and mathematics, such as the percolation and the contact process, the role of

hubs (resp. early adopters) are manifested when there are initially many (resp. few)

vertices.
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If connectivity is flexible, agents can even be motivated to avoid becoming hubs

and take advantage of other hubs. For example, computer viruses on scale-free net-

works proliferate by spreading through hubs since they are more accessible from oth-

ers (Pastor-Satorras and Vespignani, 2001). Then, it is better for the system cracker

to hide behind hubs and exploit them, than to expose themselves to a major part of

networks as hubs, which raises a risk to be detected by the authority or other vertices.

Similarly, intention of manipulating hubs may be present in economical behavior, pol-

itics, and marketing. The tradeoff between a cost of directly spanning edges and a

benefit of having direct and indirect access to others can be formalized by a utility

function such as
∞
∑

l=1

klδ
l − Ck, (1)

where kl is the number of vertices at distance l from a reference vertex, k ≡ k1,

0 < δ < 1 is a discount factor (Jackson and Wolinsky, 1996; Bala and Goyal, 2000;

Watts, 2001), and Ck (C > 0) is the cost of maintaining edges or being exposed to

others. Equation (1) is also related to the growing scale-free network model, in which

new vertices with a typically small constant k are consecutively added to a network.

Based on the assumption of the preferential attachment, newcomers attempt to get

linked to hubs (Albert and Barabási, 2002; Newman, 2003). If edges are dynamically

created and removed according to Eq. (1) or similar utility functions, networks typically

end up with wheels, stars, or complete networks (Jackson and Wolinsky, 1996; Bala

and Goyal, 2000; Watts, 2001). These mathematical results imply realistic network

structures as a result of evolution; for example, stars indicate hubs. However, real

networks seem to deviate from wheels, stars and complete graphs that the utility

model, which usually accompanies strong constraints, predicts. We call a vertex with

a large utility value an elite or a mastermind.

In this paper, we explore how hubs and elites emerge, function, and interact, which

has been neglected except in a few studies (Lau et al., 2000; Anghel et al., 2004).
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Based on thresholding and homophily explained in Sec. 2, we propose a network model

in Sec. 3. In Sec. 4, we show that combination of thresholding and homophily naturally

generates elites in networks. We also analyze tennis tournament data in Sec. 5.

2 Thresholding and Homophily

Let us introduce the intrinsic weight of the ith vertex denoted by wi. It quantifies the

potential to win edges, such as physical ability, fame, and social status (Bianconi and

Barabási, 2001; Caldarelli et al., 2002; Goh et al., 2001; Boguñá and Pastor-Satorras,

2003; Masuda et al., 2004; Barrat et al., 2004; Masuda et al., 2005). Depending

on situations, the direction of influence from vertices with larger weights to ones with

smaller weights can be deduced independently of the predefined edge direction (Anghel

et al., 2004). For instance, whether a computer virus at a host can invade another

depends on the relative security level of hosts, or vertices. Networks with weight-driven

edge direction also underly human relationships.

Another key element is homophily, which means that similar agents, particularly

humans, tend to flock together. Many real data from individual questionnaires (Mars-

den, 1988; McPherson et al., 2001; McPherson and Smith-Lovin, 1987), diffusion

studies (Rogers, 2003), and analysis of online communities (Adamic and Adar, 2003;

Adamic et al., 2003) support homophily according to nominal (e.g. race, hobbies, sex,

religious preference, personal traits) and graduated (e.g. physical distance, age, edu-

cation, social status) parameters. Homophily in terms of vertex degrees, or rates of

social contacts, underlies the fact that the degrees of adjacent vertices are positively

correlated in social networks (Newman, 2003). Various models of real networks and

social interactions incorporate homophily. For example, Granovetter (1973) proposed

that one is mainly connected to similar others, and some weak ties also exist to bridge

heterophilous individuals. Then, the small-world property results because weak ties

shorten the network diameter and abundant homophilous connectivity enhances clus-
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tering (Watts and Strogatz, 1998). Hierarchical networks in which vertices with closer

hierarchical levels are more likely to be adjacent are used to address search and con-

gestion problems on networks (Watts et al., 2002; Dodds et al., 2003). We note that

hierarchy is also reminiscent of weight-driven edge direction mentioned before. Other

examples include the cultural exchange models with general homophily (Axelrod, 1997)

and the gravity models with spatial homophily (Zipf, 1949; Barrat et al., 2004; Masuda

et al., 2005). We focus on homophily based on graduated parameters because vertices

are equipped with graduated intrinsic weights.

3 Model

We show in the context of scale-free networks that combination of thresholding and

homophily yields networks with elites. Let us prepare n vertices and choose wi (1 ≤ i ≤

n) randomly and independently from a distribution f(w). We start with the threshold

graph, in which two vertices with weights w and w′ are connected if w + w′ ≥ θ

(Caldarelli et al., 2002; Boguñá and Pastor-Satorras, 2003; Masuda et al., 2004). A

larger w induces a larger vertex degree k, which is the so-called rich-club phenomenon

(Zhou and Mondragon, 2004). Scale-free networks with the small-world properties

actually result from various f(w); p(k) ∝ k−2 from the exponential distribution f(w) =

λe−λw (w ≥ 0) (Caldarelli et al., 2002; Boguñá and Pastor-Satorras, 2003; Masuda et

al., 2004) and p(k) ∝ k−(a+1)/a from the Pareto distribution f(w) ∝ w−a−1 (w ≥ w0,

∃w0 > 0) (Masuda et al., 2004). We now supply a homophily rule by making the

connection probability decreasing in |w′ −w|. For simplicity, an edge is assumed to be

created only when |w′−w| ≤ c. Together with w+w′ ≥ θ, a vertex with w is adjacent

to vertices whose weights satisfy

w′ ∈











∅, (w < θ−c
2
)

[θ − w,w + c], ( θ−c
2

≤ w < θ+c
2
)

[w − c, w + c]. (w ≥ θ+c
2
)

(2)
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In the limit c → ∞, Eq. (2) becomes θ − w ≤ w′ < ∞, returning to the original

threshold graph. We obtain k as a function of w by integrating f(w′) over the range

given in Eq. (2). If f(w) is monotone decreasing for w > wc ≡ (θ + c)/2, k(w) is

maximized at w = wc. Even if not, sufficiently large w with

1− F (w − c) < F

(

θ + 3c

2

)

− F

(

θ − c

2

)

(3)

satisfies k(w) < k ((θ + c) /2), meaning that k(w) takes the maximum at w = wc ∈

( θ+c
2
,∞). In both cases, vertices with w ∼= wc are hubs. Elites are vertices with w ≫ wc

and not exposed via direct edges to the major group of vertices with small w.

The psychological Weber-Fechner law dictates that vertices may sense relative

rather than absolute differences in weights. To mimic this, let us modify the ho-

mophily condition to |w′ − w|/(w + w′) < c (c < 1). Then, the counterpart of Eq. (2)

reads

w′ ∈











∅, (w < 1−c
2
θ)

[θ − w, 1+c
1−c

w], (1−c
2
θ ≤ w < 1+c

2
θ)

[1−c
1+c

w, 1+c
1−c

w]. (w ≥ 1+c
2
θ)

(4)

For k(w) to be maximized at w = (1 + c)θ/2, f(w) fulfilling

(

1 + c

1− c

)2

f

(

(

1 + c

1− c

)2

w

)

< f(w) (w > (1− c) /2θ) (5)

is required. However, as in the previous case, the maximum of k(w) at w = wc >

(1 + c)θ/2 is assured even if Eq. (5) is violated.

To consider weight-driven edge direction, we again apply |w′ − w| ≤ c. Since a

directed edge w → w′ may form only when w > w′, a vertex with w sends directed

edges to ones with

w′ ∈











∅, (w < θ
2
)

[θ − w,w], ( θ
2
≤ w < θ+c

2
)

[w − c, w], (w ≥ θ+c
2
)

(6)

which is essentially the same as Eq. (2).
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4 VIP-club Phenomenon

For concreteness, we set f(w) = λe−λw (w ≥ 0). The following results hold as long

as f(w) largely decreases when w ≥ wc, which is supported by real data (Zipf, 1949;

Masuda et al., 2004; Masuda et al., 2005). Based on Eq. (6), the vertex degree as a

function of the weight is represented by

k(w) =











0, (w < θ
2
)

e−λ(θ−w) − e−λw, ( θ
2
≤ w < θ+c

2
)

e−λ(w−c) − e−λw, (w ≥ θ+c
2
)

(7)

for θ ≥ c, and

k(w) =



















0, (w < θ
2
)

e−λ(θ−w) − e−λw, ( θ
2
≤ w < θ)

1− e−λw, (θ ≤ w < c)
e−λ(w−c) − e−λw, (w ≥ c)

(8)

for θ < c. As shown in Fig. 1(a) for (θ, c) = (6, 5) [Eq. (7)], k(w) (solid line) has a

single peak. Similar upshots result from Eq. (2), (4), or (8) if the thresholding and the

homophily are roughly balanced.

With a utility function like Eq. (1) in mind, we derive k2(w), which is the number

of the vertices within two hops from a vertex with weight w. Although we exclude the

reference vertex itself, this subtlety does not matter when the network is large enough.

The neighbor’s weight w′ satisfies Eq. (6). The weight of the neighbor’s neighbor,

which is denoted by w′′, similarly satisfies

w′′ ∈











∅, (w′ < θ
2
)

[θ − w′, w′], ( θ
2
≤ w′ < θ+c

2
)

[w′ − c, w′]. (w′ ≥ θ+c
2
)

(9)

For a given w, we integrate the density of vertices f(w′′) over the range compatible

with Eqs. (6) and (9) to obtain

k2(w) ∝







































0, (w < θ
2
)

λe−λθ
(

w − θ
2

)

+ e−2λw−e−λθ

2
, ( θ

2
≤ w < θ+c

2
)

λce−λθ−(eλc−1)e−2λw

2
, ( θ+c

2
≤ w < θ+2c

2
)

λ(θ−2w+3c)+1
2

e−λθ + e−2λw(−e2λc−eλc+1)
2

, ( θ+2c
2

≤ w < θ+3c
2

)
(eλc−1)(e2λc−1)

2
e−2λw, (w ≥ θ+3c

2
)

(10)
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for θ ≥ c, and

k2(w) ∝



























































0, (w < θ
2
)

λe−λθ
(

w − θ
2

)

+ e−2λw−e−λθ

2
, ( θ

2
≤ w < θ)

λθ+1
2

e−λθ − e−λw − e−2λw

2
, (θ ≤ w < c)

λθ+1
2

e−λθ + −e−λc+e−2λw−e(−2w+c)λ

2
, (c ≤ w < c+ θ

2
)

(1− λ (w − c− θ)) e−λθ + 1
2
e−2λw

(

−e2λc − eλc + 1
)

− 1
2
e−λc, (c+ θ

2
≤ w < c + θ)

1
2
e−2λw

(

−e2λc − e−λc + 1
)

− 1
2
e−λc + e−λ(w−c), (c+ θ ≤ w < 2c)

(eλc−1)(e2λc−1)
2

e−2λw, (w ≥ 2c)
(11)

for θ < c. Figure 1(a) shows that k2(w) (dotted line) has a unique peak at w = wc > wc

and that k2(w) decays more slowly in w than k(w) (solid line) does. Under Eq. (1)

or a simpler utility function with only two terms involving k and k2 (Jackson and

Wolinsky, 1996), vertices with w ∼= wc are elites or masterminds, whereas vertices with

w ∼= wc are hubs. The masterminds are linked to the majority of vertices with small

w and presumably large f(w) only indirectly via hubs. Owing to homophily, they

flock together with others with w ∼= wc, which are usually rare. We call it VIP-club

phenomenon in contrast to the rich-club phenomenon (Zhou and Mondragon, 2004),

in which larger w simply means larger k(w).

Figure 1(b) shows k(w) (solid line) and k2(w) (dotted line) for (θ, c) = (6, 100)

with which homophily is practically absent. In accordance with the standard threshold

model, k(w) increases monotonically in w, and vertices with large w serve as hubs

(Caldarelli et al., 2002; Boguñá and Pastor-Satorras, 2003; Masuda et al., 2004). This

is the rich-club but not VIP-club phenomenon.

With homophily only (Fig. 1(c), (θ, c) = (0, 5)), the majority vertices, which have

small w, own large degrees because homophily simply interconnects these vertices in

the absence of thresholding. What reduces k(w) for small w in Fig. 1(c) is the lower

bound of the exponential weight distribution at w = 0, which is nonessential. In

consequence, hubs abound in the network, and the VIP-club does not form. Moreover,

the homophily-only configuration is unrealistic for two reasons. First, p(k) becomes
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flat (circles in Fig. 1(d)), which contradicts real data (Watts and Strogatz, 1998; Albert

and Barabási, 2002; Newman, 2003). In contrast, although homophily prohibits huge

hubs, p(k) of a network with both homophily and thresholding is scale-free (crosses),

as is p(k) of the the threshold graph without homophily (squares). This is because

elites are scarce even if they exist. Second, too strong homophily mars communication

between vertices with distant weights. With the density of edges given, the diameter

becomes too large in a strongly homophilous network due to the scarceness of shortcuts

bridging heterophilous vertices (Granovetter, 1973; Watts and Strogatz, 1998; Rogers,

2003; Adamic et al., 2003). The thresholding effect counteracts the homophily effect

to render a network small-world. In sum, the VIP-club phenomenon requires both

homophily and thresholding in our framework.

Since the analysis developed so far is for deterministic dense networks, let us nu-

merically examine sparse networks with stochasticity. An edge is assumed to form be-

tween vertices with weights w and w′ with probability proportional to e−β2|w′−w|/(1 +

e−β1(w+w′−θ)) where β1 and β2 are the inverse temperatures. We set n = 50000, λ = 1,

θ = 6, and the mean degree 10. Figures 2(a) and 2(b) show k(w) and p(k), respectively,

for (β1, β2) = (1.5, 0.5) (both homophily and thresholding, plotted by crosses), (1.5, 0)

(thresholding only, squares), and (0, 0.5) (homophily only, circles). These results are

roughly consistent with Fig. 1.

Let us next examine a scale-free network in which wi = i−α is assigned to the ith

vertex (Goh et al., 2001). Then, a pair of vertices is picked according to the distribution

p(i) = wi/
∑n

i=1wi, and an edge is created if they are not yet adjacent. This procedure

is repeated until the mean degree 10 is reached. As a result, we obtain p(k) ∝ k−γ

with γ = (1 + α)/α (Goh et al., 2001). A type of thresholding is embedded in this

algorithm. We implement homophily by supposing that an edge forms with probability

e−β2|w′−w| after two vertices with weights w and w′ are selected. The results shown in

Fig. 3 for n = 50000 and α = 0.5 with homophily present (β2 = 5, crosses) and absent
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(β2 = 0, squares) are consistent with Figs. 1 and 2. Although we have presented just

two examples, our framework is applicable to other networks with vertex fitness.

5 Analysis of Tennis Players’ Networks

In social networks with homophily, graduated weight variables often exist but are dif-

ficult to measure. In the professional tennis community, players are ranked based on

the scores, which serve as w, gained by winning the singles games of official tourna-

ments. We analyze networks of tennis players, which are indicative of the VIP-club

phenomenon. For each sex, the score distribution obeys a power law with an expo-

nential cutoff, as the rank-score plots in Fig. 4 indicate. The fact that the probability

density decreases in the score w means that better players are scarcer. The players

constitute undirected networks by doubles partnership, and the edges are defined by

two players pairing up in any of the doubles tournaments in a year. Our model can-

not account for some aspects of the data, such as the homophily in nationality and

score-independent individuality in the frequency of participation in the tournaments.

Nevertheless, two players should be strong in total to be successful, which provides

thresholding. Simultaneously, a strong player is expected to stick to a small number

of partners because of the paucity of similarly strong players and the aversion to tying

with weak players. This is equivalent to homophily.

The women’s network based on all the WTA doubles tournaments in 2003 1 has

n = 366 excluding the isolated vertices. Similarly, the principal connected component

of the men’s network based on the ATP doubles tournaments in 2003 2 has n = 367.

We do not consider mixed doubles in which a man and a woman team up. Since the

ranking is updated every week, players are differently aligned according to the rankings

at the ends of 2002 and of 2003. To circumvent noise in the data, we add k, or the

1http://www.wtatour.com/rankings/singles numeric.asp
2http://www.stevegtennis.com/
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number of doubles partners, of five players with consecutive ranks. The results are

shown for women and men in Figs. 5(a) and 5(b), respectively. Although noise is yet

large and the degree distributions are not scale-free, players with intermediate ranks

are somewhat more capable of encountering partners. The data in other years also

have this tendency (data not shown). Players with high scores form a loose VIP club.

Players with intermediate ranks are popular among both stronger and weaker players.

The VIP-club phenomenon is also expected in other social situations. For example,

when choosing a partner of the life, one may set a threshold on social statuses or

incomes. Since they are graduated quantities subject to homophily (Marsden, 1988;

McPherson et al., 2001; McPherson and Smith-Lovin, 1987), maybe for people to

communicate efficiently and live in comfort, those in upper-middle classes may be

more promising in finding partners than those too close to the top. Similarly, scientific

collaboration networks may exhibit the VIP-club phenomenon particularly in the fields

like mathematics where coauthorship is rather strict. A group of strong researchers

generally publishes their work in nice journals (thresholding), and researchers with close

abilities may flock together to coauthor (homophily). The age also shows homophily

(Marsden, 1988; McPherson et al., 2001; McPherson and Smith-Lovin, 1987), and

the population density, or f(w), naturally decreases in the age, or w. Consequently,

business or social activities that accompany thresholding on ages can result in VIP

clubs formed by the old. More generally, hierarchical organizations of the pyramid

type, such as companies and bureaucracies (Watts et al., 2002; Dodds et al., 2003), are

likely to have VIP clubs.

6 Conclusions

We have shown that the combination of homophily and thresholding on graduated

vertex weights induces networks with elites. Loss of homophily leads to the rich-club

phenomenon (Zhou and Mondragon, 2004), while unrealistically many hubs emerge if
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without thresholding. A VIP club is invisible to the majority of vertices with small

weights. They can even escape the eyes of network analyzers unless the weight-driven

edge direction in addition to the predefined edge direction, which are more readily

obtained, are actually inspected (Anghel et al., 2004). Actually, elites and the major-

ity of vertices with small weights remain undistinguished if based on vertex properties

such as k, the closeness centrality, the reach centrality, the betweenness centrality, or

the local clustering coefficient (Newman, 2003; Scott, 2000). They occupy structurally

equivalent or similar locations of a network (Scott, 2000). Paradoxically, complete un-

derstanding of connectivity and edge direction is not necessarily sufficient for knowing

a network (Anghel et al., 2004). To understand the nature of a network, intrinsic

properties of individual vertices must be taken into account.
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Figure captions

Figure 1: Theoretically evaluated k(w) (solid lines) and k2(w) (dotted lines) for the

threshold graph supplemented by homophily. We set λ = 1, and (a) (θ, c) = (6, 5), (b)

(6, 100), and (c) (0, 5). For clarity, k2(w) is normalized so that the maximum is 1. (d)

p(k) for (θ, c) = (6, 5) (crosses), (θ, c) = (6, 100) (squares), (θ, c) = (0, 5) (circles), and

p(k) ∝ k−2 (line).

Figure 2: Numerically obtained (a) k(w) and (b) p(k) for the modified threshold

graph. We set n = 50000, λ = 1, θ = 6, and (β1, β2) = (1.5, 0.5) (crosses), (β1, β2) =

(1.5, 0) (squares), and (β1, β2) = (0, 0.5) (circles). The lines in (a) and (b) correspond

to k(w) ∝ eλw and p(k) ∝ k−2, respectively, which are the predictions by the threshold

graph without homophily.

Figure 3: (a) The results for the model by Goh et al. (2001) with n = 50000

and α = 0.5. (a) k(w) and (b) p(k) for β2 = 5 (crosses) and β2 = 0 (squares). The

theoretical estimates k(w) ∝ w−α and p(k) = k−(α+1)/α = k−3 are indicated by lines.

Figure 4: Dependence of the score (w) on the rank of female (crosses) and male

(circles) tennis players, based on the ranking at the end of 2003.

Figure 5: Vertex degrees of the (a) women’s and (b) men’s tennis networks in 2003.

The number of partners summed over five players with consecutive ranks are plotted.

The players are arranged according to the ranking at the ends of 2002 (dotted lines)

and of 2003 (solid lines).
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