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e (BECS), Helsinki University of Te
hnology, P.O. Box9203, FIN-02015 HUT, FinlandbPhysi
s Department, Clarendon Laboratory, Oxford University, Oxford OX1 3PU, United Kingdom
Saïd Business S
hool, Oxford University, Oxford OX1 1HP, United KingdomAbstra
tThis paper reviews, 
lassi�es and 
ompares re
ent models for so
ial networks that have mainly been publishedwithin the physi
s-oriented 
omplex networks literature. The models fall into two 
ategories: those inwhi
h the addition of new links is dependent on the (typi
ally lo
al) network stru
ture (network evolutionmodels, NEMs), and those in whi
h links are generated based only on nodal attributes (nodal attributemodels, NAMs). An exponential random graph model (ERGM) with stru
tural dependen
ies is in
luded for
omparison. We �t models from ea
h of these 
ategories to two empiri
al a
quaintan
e networks with respe
tto basi
 network properties. We 
ompare higher order stru
tures in the resulting networks with those in thedata, with the aim of determining whi
h models produ
e the most realisti
 network stru
ture with respe
t todegree distributions, assortativity, 
lustering spe
tra, geodesi
 path distributions, and 
ommunity stru
ture(subgroups with dense internal 
onne
tions). We �nd that the nodal attribute models su

essfully produ
eassortative networks and very 
lear 
ommunity stru
ture. However, they generate unrealisti
 
lusteringspe
tra and peaked degree distributions that do not mat
h empiri
al data on large so
ial networks. On theother hand, many of the network evolution models produ
e degree distributions and 
lustering spe
tra thatagree more 
losely with data. They also generate assortative networks and 
ommunity stru
ture, althoughoften not to the same extent as in the data. The ERGM model turns out to produ
e the weakest 
ommunitystru
ture.Key words: So
ial networks, Complex networks, Network evolution models, Nodal attribute models,Exponential random graph modelsPACS: 64.60.aq, 89.65.Ef, 89.65.-s, 89.75.-k, 02.70.-
1. Introdu
tionModeling so
ial networks serves at least two pur-poses. Firstly, it helps us understand how so
ialnetworks form and evolve. Se
ondly, in studyingnetwork-dependent so
ial pro
esses by simulation,su
h as di�usion or retrieval of information, su
-
essful network models 
an be used to spe
ify thestru
ture of intera
tion. A large variety of modelshave been presented in the physi
s-oriented 
om-plex networks literature in re
ent years, to explore
∗Corresponding authorEmail address: Riitta.Toivonen�tkk.fi (RiittaToivonen)

how lo
al me
hanisms of network formation pro-du
e global network stru
ture. In this paper wereview, 
lassify and 
ompare su
h models.The models are 
lassi�ed into two main 
ate-gories: those in whi
h the addition of new links isdependent on the lo
al network stru
ture (networkevolution models, NEMs), and those in whi
h theprobability of ea
h link existing depends only onnodal attributes (nodal attribute models, NAMs).NEMs 
an be further subdivided into growing mod-els, in whi
h nodes and links are added until thenetwork 
ontains the desired number N of nodes,and dynami
al models, in whi
h the steps for addingand removing ties on a �xed set of nodes are re-Preprint submitted to Elsevier April 3, 2009
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peated until the stru
ture of the network no longerstatisti
ally 
hanges. For 
ompleteness, we in-
lude in our 
omparative study two models fromthe tradition of exponential random graph models(ERGMs). One of them is based solely on nodalattributes, and the other in
orporates stru
turaldependen
ies. All of these models produ
e undi-re
ted networks without multiple links or self-links,and all networks are treated as unweighted, i.e. tiestrengths are not taken into a

ount. We note thatsome of the models were designed with a parti
u-lar property in mind, su
h as a high average 
lus-tering 
oe�
ient, but we will assess their abilityto reprodu
e several of the typi
al features of so-
ial networks. In addition to 
omparing the distri-butions of degree and geodesi
 path lengths and
lustering spe
tra, we assess the presen
e or ab-sen
e of 
ommunities, whi
h in the 
omplex net-works literature are typi
ally de�ned as groups ofnodes that are more densely 
onne
ted to nodes inthe same 
ommunity than to nodes in other 
om-munities Fortunato and Castellano (2008).This paper is stru
tured as follows. In Se
tions1.1 to 1.3, we de�ne the 
ategories of network evolu-tion models and nodal attribute models, and brie�yreview exponential random graph models. Se
tion1.4 dis
usses di�eren
es between the philosophiesbehind NEMs and ERGMs. We �t models fromea
h of these 
ategories to two empiri
al a
quain-tan
e networks with respe
t to basi
 network statis-ti
s. The �tting pro
edure is dis
ussed in Se
-tion 3 and Appendix A.2. In Se
tion 4, we 
omparehigher order stru
tures in the resulting networkswith those in the data. Se
tion 5 summarizes ourresults.1.1. Network evolution models (NEMs)Let us �rst present a 
lass of network models thatfo
uses on network evolution me
hanisms. Thesemodels test hypotheses that spe
i�
 network evolu-tion me
hanisms lead to spe
i�
 network stru
ture.We 
all these network evolution models (NEMs),and de�ne them via three properties as follows:1) A single network realization G is produ
ed by aniterative pro
ess that always starts from an ini-tial network 
on�guration G(t0) spe
i�ed in theNEM. Dynami
al models often begin with anempty network, and growing models start witha small seed network1.1The seed network does not always need to be exa
tly

2) The spe
i�
ations of the NEM in
lude an ex-pli
itly de�ned set of sto
hasti
 rules by whi
hthe network stru
ture evolves in time. Theserules 
on
ern sele
ting a subset of nodes andlinks at ea
h time step, and adding and delet-ing nodes and links within this subset. Therules typi
ally 
orrespond to abstra
ted me
h-anisms of so
ial tie formation su
h as triadi

losure (Granovetter, 1973), i.e. tie formationbased on the tenden
y of two friends of an indi-vidual to be
ome a
quainted. The rules alwaysdepend on network stru
ture and they 
an some-times also in
orporate nodal attributes. Therules determine the possible transitions from onenetwork G(tk−1) to the next G(tk) during theiterative pro
ess that will produ
e one networkrealization G = G(tend).3) The NEM in
ludes a stopping 
riterion:a) For a growing NEM, the algorithm �nisheswhen the network has rea
hed a predeter-mined size. The typi
al assumption is thatrelevant statisti
al properties of the networkremain invariant on
e the network is largeenough.b) For a dynami
al NEM, the algorithm �nisheswhen sele
ted network statisti
s no longervary2.A growing model 
an be motivated as a modelfor so
ial networks in several 
ontexts. For exam-ple, on so
ial networking sites people rarely removelinks, and new users keep joining the network. Sim-ilarly, in a 
o-authorship network Newman (2001)derived from publi
ation re
ords, existing links re-main while new links form. We point out that thegrowing models do not intend to simulate the evo-lution of a so
ial network ab initio. However, theme
hanisms are sele
ted to imitate the way peoplemight join an already established so
ial network.spe
i�ed, as long as it meets the given general 
riterion (su
has being small 
ompared to the network that will be gener-ated), as it typi
ally has a negligible e�e
t on the resultingnetwork.2While the stopping 
riterion for a growing NEM is ex-a
t, requirement 3b) is a heuristi
 
riterion that assumes thatthe algorithm will rea
h a stage at whi
h the sele
ted sta-tisti
al properties of the networks G′(t) stabilize. Althoughwe 
annot know with absolute 
ertainty whether stationarydistributions have been rea
hed, we 
an be relatively 
on�-dent of it if monitored properties remain 
onstant and theirdistributions appear stable for a large number of time steps.2



The NEMs in our 
omparative study in
lude onlynetwork stru
ture based evolution rules (that maydepend on topology and tie strengths), althoughnodal attribute based rules are also possible. Mod-els in whi
h link generation is based solely on (�xed)nodal attributes belong to the 
ategory of nodal at-tribute models (NAMs) dis
ussed below.1.2. Nodal attribute models (NAMs)We adopt the term nodal attribute models(NAMs) for network models in whi
h the probabil-ity of edge eij between nodes i and j being presentis expli
itly stated as a fun
tion of the attributes ofthe nodes i and j only, and the evolutionary aspe
tis absent. NAMs are often based on the 
on
eptof homophily (M
Pherson et al., 2001), the ten-den
y for like to intera
t with like, whi
h is knownto stru
ture network ties of various types, in
lud-ing friendship, work, marriage, information trans-fer, and other forms of relationship. Su
h modelshave also been des
ribed by the term spatial mod-els (Boguña et al., 2004; Wong et al., 2006), refer-ring to that the fa
t that the attributes of ea
h nodedetermine its 'lo
ation' in a so
ial or geographi
alspa
e.1.3. Exponential random graph models (ERGMs)Exponential random graph models(ERGMs) (Frank and Strauss, 1986; Frank, 1991;Wasserman and Pattison, 1996; Robins et al.,2007a; Snijders et al., 2006; Robins et al., 2007b),also 
alled p∗ models, are used to test to whatextent nodal attributes (exogenous fa
tors) andlo
al stru
tural dependen
ies (endogenous fa
tors)explain the observed global stru
ture. For example,Goodreau (2007) used ERGMs to infer that mu
hof the global stru
ture (measured in terms of thedistributions of degree, edgewise shared partnersand geodesi
 paths) observed in a friendshipnetwork 
ould be 
aptured by nodal attributes andpatterns of shared partners and k-triangles, whi
hare relatively lo
al stru
tures.Consider a random graph X 
onsisting of Nnodes, in whi
h a possible tie between two nodes
i and j is represented by a random variable Xij ,and denote the set of all su
h graphs by X . Usingthis notation, ERGMs are de�ned by the probabil-ity distribution of su
h graphs X

Pθ,X (X = x) =
exp {θt

u(x)}

c(θ,X )
, (1)

where θ is the ve
tor of model parameters, u(x)is a ve
tor of network statisti
s based on the net-work realization x, and the denominator c(θ,X ) isa normalization fun
tion that ensures that the dis-tribution sums up to one. The sele
ted statisti
s
u(x) spe
ify a parti
ular ERGM model. Typi
ally,the parameters θ of an ERGM model are deter-mined using a maximum likelihood (ML) estimate,obtained by Markov Chain Monte Carlo (MCMC)sampling (Geyer and Thompson, 1992; Snijders,2002). MCMC sampling heuristi
s are also usedto draw network realizations from the distribu-tion Pθ,X . Several software pa
kages are designedfor �tting and simulating ERGMs (in
luding pnet,SIENA, and statnet, dis
ussed by Robins et al.(2007b)).1.4. Di�eren
es between NEMs and ERGMsAn important di�eren
e between network evolu-tion models and exponential random graph modelsis that a NEM is determined by the rules of net-work evolution, whereas ERGMs do not expli
itlyaddress network evolution pro
esses. The parti
u-lar update steps employed in the iterative MCMCpro
edure for drawing samples are not expli
itlyspe
i�ed in ERGMs, whi
h are de�ned by the prob-ability distribution Pθ,X , although MCMC methods
an also be used to model the evolution of so
ialnetworks (Snijders, 1996, 2001). A 
lass of proba-bility models that in
ludes network evolution is thesto
hasti
 a
tor-orientedmodels for network 
hangeproposed by Snijders (1996), whi
h are 
ontinuous-time Markov 
hain models that are implementedas simulation models. Another di�eren
e is thatunlike ERGMs, NEMs expli
itly spe
ify an initial
on�guration from whi
h the iteration is started,as well as a stopping 
riterion. However, NEMs aretypi
ally not sensitive to the initial 
on�guration.One of the known problems with ERGMs isthat the distributions of their su�
ient statisti
smay be multimodal (Snijders, 2002). This hasbeen of parti
ular 
on
ern with respe
t to ERGMsthat in
lude statisti
s related to transitivity, whi
his a highly relevant feature in modeling so
ialnetworks. The �rst sto
hasti
 model to expresstransitivity, the Markov graph (Frank and Strauss,1986), employed a simple triangle 
ount term thatis known to 
ause problems of model degener-a
y (Jonasson, 1999), and to lead to instability insimulation of large networks with Markov ChainMonte Carlo (MCMC) methods (Snijders, 2002;Hand
o
k, 2003; Goodreau, 2007). This problem3



seems to have been largely over
ome with a re-
ently proposed term related to triangles, the geo-metri
ally weighted edgewise shared partners statis-ti
 (GWESP) (Snijders et al., 2006; Hunter et al.,2008; Robins et al., 2007b). We in
lude in our 
om-parison an ERGM that in
ludes the GWESP term.It turns out that we en
ounter instability even withthis model. In �tting this model to our data, in theoptimal parameter region a very small modi�
ationof the model parameters produ
es a large di�eren
ein the resulting network stru
ture. This is dis
ussedin Se
tion 3 and Appendix A.2.In 
ontrast, transitivity is easy to in
orporate inNEMs. Problems of multimodality have not beenobserved with NEMs. Although we do not alwayshave theoreti
al 
ertainty that the network evolu-tion rules 
ould not lead to multimodal distribu-tions of network statisti
s, in pra
ti
e the modelswith given parameters seem to 
onsistently produ
enetwork realizations with similar statisti
s.The NEMs and ERGMs lend themselves to test-ing di�erent kinds of hypotheses about networks.ERGMs 
an be employed to test to what ex-tent nodal attributes and lo
al stru
tural 
orrela-tions explain the global stru
ture. Although bothNEMs and ERGMs 
an easily in
orporate nodal at-tributes, they have rarely been in
luded in NEMs.The NEMs proposed so far have been of a fairlygeneri
 nature, whereas the ERGM approa
h oftenaims to make inferen
es based on spe
i�
 empiri-
al data, often in
luding nodal attributes. On theother hand, NEMs 
an be employed for testing hy-potheses about network evolution, whi
h ERGMsdo not expli
itly address. For example, a NEM
an be used to test whether a 
ombination oftie-strength-dependent triadi
 
losure and global
onne
tions 
an produ
e a 
learly 
lustered stru
-ture (Kumpula et al., 2007). Although ERGMs 
analso be interpreted as addressing endogenous (net-work stru
ture based) sele
tion pro
esses via stru
-tural dependen
ies, the me
hanisms by whi
h newties are 
reated based on the existing network stru
-ture are made expli
it only in NEMs.For the dynami
al NEMs treated in this pa-per, it is easy to generate (and estimate parame-ters for) networks of 10 000 nodes or more. Thegrowing models 
an easily produ
e networks withmillions of nodes. Based on our hands-on experi-en
e using state-of-the-art ERGM software (stat-net, Hand
o
k et al. (2003, 2007)), it seems thatgenerating a realization from a NEM might typ-i
ally have mu
h lower 
omputational 
ost than

drawing a sample from an ERGM with stru
turaldependen
ies. In generating network realizationsfrom an ERGM, we used as a guideline that thenumber of MCMC steps, 
orresponding to the num-ber of proposals for 
hanges in the link 
on�gura-tion, should be large enough su
h that the presen
eor absen
e of a link between ea
h dyad is likely tobe 
hanged several times. With this approa
h, thenumber of MCMC steps should be proportional tothe number of dyads, implying that the 
omplexityis at least on the order of O(N2). This is alreadya mu
h larger burden than the O(N) 
omplexity ofNEMs based on lo
al operations in the neighbor-hood of a sele
ted node. Our assumption of the
omputational demands of ERGMs is supported bythe fa
t that networks that have thus far been stud-ied with ERGMs have 
onsisted typi
ally of at mosta 
ouple of thousands of nodes (Goodreau, 2007).
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ERGM1Figure 1: Categories of so
ial network models. Within the
ategory of NEMs, we fo
us on models based on triadi
 
lo-sure and global 
onne
tions (TCG). Model labels 
orrespondto models dis
ussed in Se
tion 2.2. Des
ription of the modelsMany 
omplex networks models study the ques-tion of whether stru
tures observed in so
ial net-works 
ould be explained by the network-dependentintera
tions of nodes, without referen
e to intrin-si
 properties of nodes. Su
h models are based onassumptions about the lo
al me
hanisms of tie for-mation, su
h as people meeting friends of friends,and thus forming 
onne
tions with their networkneighbors (triadi
 
losure (Granovetter, 1973)). Anadditional me
hanism to produ
e 'global' 
onne
-tions beyond the lo
al neighborhood is typi
ally in-
luded to a

ount for short average geodesi
 pathlengths (Milgram, 1967). Su
h 
onne
tions mayarise from en
ounters at 
ommon hobbies, pla
esof work, et
. In models that do not 
onsidernodal attributes, 
onta
ts between any dyads in thenetwork are 
onsidered equally likely. These twome
hanisms, triadi
 
losure and global 
onne
tions4



(TCG), form the basis of all the NEMs we study inthis work.Tables 1, 2 and 3 
ontain more detailed des
rip-tions of the models and their parameters, with �xedparameters given in parentheses. Values of the �xedparameters were sele
ted a

ording to the originalauthors' 
hoi
es wherever possible. We label themodels using author initials.Dynami
al network evolution models. We will �rstlook at three dynami
al models that 
ombine tri-adi
 
losure and global 
onne
tions (TCG) for
reating new links. These were proposed byDavidsen et al. (2002) (DEB), Marsili et al. (2004)(MVS), and Kumpula et al. (2007) (KOSKK). Thedi�erent ways of implementing triadi
 
losure anddeletion of links in ea
h of these models are high-lighted in Fig. 2. In triadi
 
losure me
hanism T1,a node is introdu
ed to another node by their 
om-mon neighbor. In me
hanism T2, new 
onta
ts aremade through sear
h via friends: A node links to aneighbor of one of its neighbors. Dynami
al modelsin whi
h new links are 
ontinuously added must alsoin
lude a me
hanism for removing links, to avoidending up with a fully 
onne
ted network. In nodedeletion (ND), all links of a node are deleted. Thisemulates a node 'leaving' and a new
omer joiningthe network. In link deletion (LD), ea
h link has agiven probability of being deleted at ea
h time step.The DEB model is the simplest of the three,with only two parameters, network size N and theprobability p of deleting a node. The MVS andKOSKK models both use triadi
 
losure me
ha-nism T2, a two-step sear
h in the neighborhood ofa node, but the KOSKK model takes intera
tionstrength into a

ount. In KOSKK, new links are
reated preferably through strong ties, and everyintera
tion further strengthens them. This me
h-anism is able to produ
e 
lear 
ommunity stru
-ture (Kumpula et al., 2007), 
on�rmed by our anal-ysis in Se
tion 4. The three models also di�er inwhether a new node 
an remain isolated for severaltime steps (as in the MVS model) or will immedi-ately link to another node (as in KOSKK), and inwhether there is a limit on the number of random
onne
tions ea
h node 
an make (as in DEB). Be-
ause of su
h di�eren
es, it is di�
ult to isolate thee�e
ts of the 
hoi
es of T1 versus T2 and ND versusLD. Therefore, in Se
tion 4.5 we will 
ombine thefour me
hanisms using the DEB model as a basis.Marsili et al. (2004) did not mention whi
h valuethey used in the MVS model for the probability

λ of deleting a link at ea
h time step. We �xed
λ = 0.001 in our simulations, giving ea
h tie an av-erage 'lifetime' of 1000 time steps. When generatingnetwork realizations, the dynami
al models MVS,DEB, and KOSKK are iterated until monitored dis-tributions appear to be
ome stationary. Sometimesthe authors do not state whi
h parti
ular 
riterionthey used. For the MVS and DEB models, we de-termined how many iterations (the steps des
ribedin Table 1) it takes until average degree stabilizesand its distribution appears stationary. When gen-erating networks, we used a number of iterationsabove this limit. For the KOSKK model, we used anumber of iterations determined by the authors tobe su�
ient for the distributions of degree and sev-eral other network properties to appear stationary(2.5×104×N , where N is network size, resulting in
2 × 108 and 2.8 × 107 for �tting to our data sets ofsizes 8003 and 1133 presented in Se
tion 3.2.

KOSKKDEB

MVS

Node deletion
(ND)

Link deletion
(LD)

T1 T2

Figure 2: The dynami
al network evolution models DEB,KOSKK, and MVS, 
lassi�ed a

ording to the me
hanismsfor triadi
 
losure and link deletion employed in them.Growing network evolution models. We in
lude twogrowing models, proposed by Vázquez (2003) (Váz)and Toivonen et al. (2006) (TOSHK). They are de-s
ribed in detail in Table 2. These are to our knowl-edge the only growing models spe
i�
ally proposedfor so
ial a
quaintan
e networks. The motivationbehind the Váz model is to produ
e a high level of
lustering and a power law degree distribution. TheTOSHKmodel also aims at a broad degree distribu-tion and a high 
lustering 
oe�
ient, but also setsout to reprodu
e other features observed in so
ialnetworks, su
h as 
ommunity stru
ture.In TOSHK, ea
h new node links to one or more'initial 
onta
ts', whi
h in turn introdu
e the new-
omer to some of their neighbors. In Váz, a new-
omer node �rst links to a random node i, 
reatingpotential edges (Vázquez's term) between itself andthe neighbors of i. These ties may be realized later,generating triangles in the network. In both mod-els, triangles are only generated between the new-5



Table 1: Category: Dynami
al network evolution models (dynami
al NEMs). Three models based on triadi
 
losure and global
onne
tions.Parameters Me
hanisms. Number of nodes N �xed; repeat steps for I) adding ties and II) deleting tiesuntil stationary distributions are rea
hedDEB (Davidsen et al., 2002)2 free
N , p

I) Sele
t a node i randomly, anda) if i has fewer than two ties, introdu
e it to a random nodeb) otherwise pi
k two neighbors of i and introdu
e them if they are not already a
quainted.II) Sele
t a random node and with prob. p remove all of its ties.MVS (Marsili et al., 2004)3 free
N , ξ, η(λ=0.001) I) Sele
t a node i randomly, anda) 
onne
t i to another random node with probability η.b) sele
t a friend's friend of i (by uniformly random sear
h) with probability ξ and introdu
e

i to it if not already a
quainted.II) Sele
t a random tie and delete it with probability λ.KOSKK (Kumpula et al., 2007)
3 free
N , p∆, pr(w0 = 1,
pd = 0.001,
δ = 0.5) I) Sele
t a node i randomly, anda) sele
t a friend's friend k (by weighted sear
h) and introdu
e it to i with prob. p∆ (withinitial tie strength w0) if not already a
quainted. In
rease tie strengths by δ along the sear
hpath, as well as on the link lik if it was already present.b) additionally, with prob. pr (or with prob. 1 if i has no 
onne
tions), 
onne
t i to a randomnode j (with tie strength w0).II) Sele
t a random node and with prob. pd remove all of its ties.Nodes represent individuals and links represent ties between them. Parameters whose values were �xed a

ordingto the original authors' 
hoi
es are shown in parentheses.
omer and the neighbors of its initial 
onta
t, andfurther pro
esses of introdu
tion are ignored. Aswith all the models, we keep to the authors' 
hoi
espresented in the original paper. A

ordingly, in theTOSHK model, we allow a new
omer to link to atmost two initial 
onta
ts (see Table 2), and pi
kthe number of se
ondary 
onta
ts from the uniformdistribution U [0, k], although this 
learly limits theadaptability of the model.Nodal attribute models. We study two nodal at-tribute models that di�er in the dependen
eof link probability on distan
e and in the em-ployed distan
e measure. These models, proposedby Boguña et al. (2004) (BPDA) and Wong et al.(2006) (WPR), are des
ribed in Table 3. The au-thors mention that a so
ial spa
e of any dimension
ould be used, but study the 
ases of 1D and 2D,respe
tively. We keep to their 
hoi
es.ERGM with stru
tural dependen
ies. As our datadoes not 
ontain nodal attributes, we 
an only in-
lude stru
tural terms in the exponential randomgraph model labeled ERGM1 (Table 4). The term

edge 
ount is an obvious 
hoi
e to in
lude, in orderto mat
h average degree. We must also in
lude aterm related to triads, 
onsidering the prevalen
eof transitivity so
ial networks. We employ the geo-metri
ally weighted edgewise shared partner statis-ti
 (GWESP), proposed by Snijders et al. (2006)and formulated by Hunter et al. (2008) as
v(x; τ) = eτ

n−2∑

i=1

{1 − (1 − eτ )i}EPi(x), (2)where the edgewise shared partners statisti
 EPi(x)indi
ates the number of unordered pairs {j, k} su
hthat xjk = 1 and j and k have exa
tly i 
om-mon neighbors (Hunter, 2007). The simple trian-gle 
ount term employed in Markov random graphsis known to 
ause problems of multimodality, andwe are not aware of other triangle-related termsthat would have been employed in ERGMs. Be-
ause we would also like to mat
h the degree dis-tribution to the data, we in
lude the geometri
allyweighted degree term (GWD) (Snijders et al., 2006;6



Table 2: Category: Growing network evolution models (growing NEMs). Two models based on triadi
 
losure and global
onne
tions.Parameters Me
hanism. Repeat steps for I) adding nodes and ties II) adding ties only until network
ontains N nodes.TOSHK (Toivonen et al., 2006)3 free
N , p, k(simpli�ed) I) Add a new node i to the network, 
onne
ting it to one random initial 
onta
t with proba-bility p, or two with probability 1 − p.II) For ea
h random initial 
onta
t j, draw a number msec of se
ondary 
onne
tions from thedistribution U [0, k] and 
onne
t i to msec neighbors of j if available.Váz (Vázquez, 2003)2 free
N , u

I) With probability 1 − u, add a new node to the network, 
onne
ting it to a random node
i. Potential edges are 
reated between the new
omer n and the neighbors j of i (a potentialedge means that n and j have a 
ommon neighbor, i, but no dire
t link between them).II) With probability u, 
onvert one of su
h potential edges generated on any previous timestep to an edge. Potential edges generated by 
onverting an edge are ignored.Table 3: Category: Nodal attribute models (NAMs).Parameters Me
hanismBPDA (Boguña et al., 2004)3 free

N , α, b

Distribute N nodes with uniform probability in a (1-dimensional) so
ial spa
e (a segmentof length hmax). Link nodes with prob. p = 1/ (1 + (d/b)α), where d is their distan
e in theso
ial spa
e. (hmax 
an be absorbed within b). If treated many-dimensionally, similarityalong one of the so
ial dimensions is su�
ient for the nodes to be seen as similar.WPR (Wong et al., 2006)4 free
N , H , p, pb

Distribute N nodes a

ording to a homogeneous Poisson point pro
ess in a (2-dimensional)so
ial spa
e of unit area. Create a link between ea
h node pair separated by distan
e d withprobability p+ pb if d < H , and with probability p− p∆ if d > H (where p∆(p, pb, H) is su
hthat the total fra
tion p of all possible links is generated).Hunter et al., 2008)3
u(x; τ) = eτ

n−2∑

i=1

{1 − (1 − eτ )i}Di(x), (3)where Di indi
ates the number of nodes withdegree i. We �x the parameter τ = 0.25 asin (Goodreau, 2007). We generate network realiza-3Goodreau (2007) observed that the modeledges+
ovariates+GWESP explains mu
h of the observeddata (an adoles
ent friendship network with 1681 a
tors)and that no improvement is a
hieved by in
luding the termsgeometri
ally weighted degree (GWD) or geometri
allyweighted dyadwise shared partners statisti
 (GWDSP).Based on this, it seems that the terms GWD and GWDSPmight not bring additional value to a model that alreadyin
ludes the GWESP term. However, the 
on
lusions drawnby Goodreau (2007) might not be transferable to our 
asebe
ause our data is di�erent; for example, we do not havenodal attribute data.

tions using the statnet software (Hand
o
k et al.,2007). MCMC iterations are started from anErd®s-Renyi (Bernoulli) network with average de-gree mat
hing the target. We draw 5 realizationsfrom ea
h MCMC 
hain at intervals of 107, usinga burn-in of 5 × 107 time steps. Model parametersare optimized 
onsistently for all models with thepro
edure des
ribed in Se
tion 3 and Appendix A.2.3. Fitting the modelsIn order to 
ompare networks generated by dif-ferent models, it is ne
essary to unify some of theirproperties. To this end, we �t the models to tworeal-world data sets with respe
t to as many of themost relevant network features as the model pa-rameters allow. Our �tting method 
onsists of sim-ulating network realizations with di�erent model7



Table 4: Category: exponential random graph models (ERGM) with stru
tural dependen
ies.Parameters De�nitionERGM1 (Snijders et al., 2006)4 free
N , θL,
θGWESP ,
θGWD(τ = 0.25) The model is de�ned with three terms: edge 
ount L, geometri
ally weighted edge-wiseshared partners (GWESP) v(x; τ ) (Eq. 2), and geometri
ally weighted degree (GWD) u(x; τ )(Eq. 3), as the probability distribution

Pθ,X (X = x) =
exp {θLL + θGWESP v(x) + θGWDu(x)}

c(θ,X )

parameters, and �nding the parameter values thatprodu
e the best mat
h to sele
ted statisti
s.3.1. Targeted features for �ttingThe most important properties that we wish toalign between the models and the data are the num-ber of nodes and links. Be
ause both of our datasets are 
onne
ted 
omponents of a larger network,we fo
us on the properties of the largest 
onne
ted
omponent of the generated networks. Our �rsttwo �tting targets are largest 
onne
ted 
omponentsize NLC and the average number of links per node,or average degree k̄, within the largest 
omponent.They are already su�
ient for �tting the DEB andVáz models, whi
h have only two parameters. Anatural 
hoi
e for the next target is some measurerelated to triangles, be
ause they are highly preva-lent in so
ial networks. We will use the average
lustering 
oe�
ient c̄ (please see Appendix A.1 forthe de�nition), whi
h is a well-established 
hara
-terization of lo
al triangle density in the 
omplexnetworks literature. All of the network evolutionmodels in this study had as one of their aims ob-taining a high 
lustering 
oe�
ient. These threefeatures are su�
ient for �tting the rest of the mod-els ex
ept WPR, if we �x some of the parametersa

ording to the original authors' 
hoi
es (pleasesee Table 1).If mat
hing NLC , k̄ and c̄ is not enough to �xall parameters of the model, we no longer have astraightforward 
hoi
e. We 
onsidered using the as-sortativity 
oe�
ient and geodesi
 path lengths (seeA.1). In the WPR model, assortativity varies
losely together with the average 
lustering 
oe�-
ient, so it 
ould not be used as a fourth target fea-ture. Instead, we used the average geodesi
 pathlength. We also attempted using the assortativ-ity 
oe�
ient for �tting the KOSKK model, allow-

ing the weight in
rement parameter δ to vary, butran into a di�erent problem: attempting high as-sortativity for
ed the weight in
rement parameterto zero, thereby eliminating an important feature ofthe weighted model and weakening the 
ommunitystru
ture. Hen
e, we �xed δ = 0.5 in a

ordan
ewith the authors' 
hoi
e.All of these measures - degree, high 
lustering,assortativity, and geodesi
 path lengths - assess im-portant properties of so
ial networks, whi
h arelikely to a�e
t dynami
s su
h as opinion formationor spreading of information (Onnela et al., 2007a;Moreno et al., 2004; Castellano et al., 2007). Theaverage properties 
an typi
ally be tuned by vary-ing parameter values, but the general shapes of thedistributions are likely to be invariable.3.2. The friendship network at www.last.fm and theemail networkWe sele
ted two so
ial network data sets withslightly di�erent average properties, in order to geta better pi
ture of the adaptability of the models.They di�er in average degree, average 
lustering 
o-e�
ient, and the assortativity 
oe�
ient, althoughboth display assortativity and high 
lustering.We 
olle
ted a mutual friendship network ofusers of the web servi
e last.fm. At the web sitewww.last.fm, people 
an share their musi
al tastesand designate other users as their friends. We usedfor this study only the friendship information, disre-garding the musi
al preferen
es. Be
ause there areseveral hundred thousand users on the site world-wide, we sele
ted users in one 
ountry, Finland,to obtain a smaller network with 8003 individuals.The 
ountry labels were self-reported. This dataset (hen
eforth 
alled lastfm) represents the largest
onne
ted 
omponent of Finnish users at this site.Individuals in the resulting network have on the8



average k̄ = 4.2 friends, and a high 
lustering 
oef-�
ient c̄ = 0.31. The network is highly assortativewith r = 0.22, indi
ating that friends of those userswho have many 
onne
tions at the site are them-selves well 
onne
ted (please see Appendix A.1 forde�nitions). After designating someone as a friend,there is no 
ost to maintaining the tie, i.e. the linknever expires. This means that the data may over-estimate the number of a
tive friendships withinthe last-fm web site. However, the degree distribu-tion is not broader than that observed in a network
onstru
ted from mobile phone 
alls (Onnela et al.,2007b), in whi
h ea
h 
onta
t has a real 
ost intime and money. Requiring ties to be re
ipro
atedensures that the users have at least both a
knowl-edged one another.We also use a smaller a
quaintan
e network 
ol-le
ted by Guimerà et al. (2003), based on emailsbetween members of the University Rovira i Vir-gili (Tarragona). In the derived network, two in-dividuals are 
onne
ted if ea
h sent at least oneemail to the other during the study period, andbulk emails sent to more than 50 re
ipients areeliminated. Again, we use the largest 
onne
ted
omponent of the network. It 
onsists of 1133 in-dividuals, and it is a 
ompa
t network with aver-age geodesi
 path length l̄ = 3.6, average degree
k̄ = 9.6, fairly high average 
lustering 
oe�
ient c̄
= 0.22, and fairly small assortativity r = 0.08.Both of our empiri
al networks are unweighted,meaning that tie strengths are not spe
i�ed. All ofthe models studied here apart from KOSKK areunweighted as well. Averaged basi
 statisti
s ofboth data sets are displayed in Table 6. The degreedistributions, 
lustering spe
tra and degree-degree
orrelations of the lastfm and email networks areshown in Fig. 3, and more plots of their statisti
sare shown in Se
tion 4 in 
onne
tion with the �ttedmodels.Table 5 indi
ates whi
h features were targetedwhen optimizing the parameters of ea
h model, anddisplays the optimized parameters. Table 6 displaysproperties of the networks generated with these pa-rameters. Due to the sto
hasti
 nature of the mod-els, two network realizations generated with thesame parameters are not likely to have exa
tly thesame average properties. The plots and tables 
on-
erning the model networks in this paper always
ontain values averaged over 100 network realiza-tions.Fitting to a limited number of data sets doesnot allow full assessment of the adaptability of the

Figure 3: Properties of the lastfm data set (•) and the emaildata (◦). a) degree distributions, with average degrees k̄

= 4.2 and 9.6, respe
tively. Guimerà et al. (2003) �tted tothe email data an exponential distribution p(k) = e−k/k∗with k∗ = 9.2, whi
h shows as a straight line in a semilog-arithmi
 plot. The lognormal distribution �tted the lastfmdata best of the di�erent distributions we tried (exponential,Weibull, gamma, and lognormal), although not perfe
tly. b)Clustering c(k) de
reases with degree k (average 
lustering
c̄ = 0.31 and 0.22, respe
tively). 
) Degree-degree 
orrela-tions between nodes and their neighbors (knn signi�es av-erage nearest neighbor degree) show that both networks areassortative (with r = 0.22 and r = 0.08, respe
tively).models. However, the features that we examineare similar in our two data sets as in other larges
ale empiri
al so
ial networks, su
h as those basedon 
ommuni
ation via mobile phone (Onnela et al.,2007b; Seshadri et al., 2008) and Mi
rosoft Mes-senger (Leskove
 and Horvitz, 2008). For exam-ple, these networks have skewed degree distribu-tions that imply the presen
e of high degree nodes,high average 
lustering 
oe�
ients c̄, de
reasing
lustering spe
tra c(k), and positive degree-degree-
orrelations r. A detailed des
ription of the �ttingpro
edure is in
luded in Appendix A.2.3.3. Adaptability of the modelsNot surprisingly, for almost all models, averagelargest 
omponent size NLC and average degrees k̄
ould be �tted 
losely to both data sets. For themodels with only two free parameters (DEB, Váz),we had no 
ontrol over other network features.These two-parameter models turn out to have ex-
essively high average 
lustering 
oe�
ients for themoderate average degrees displayed in our two datasets. For most of the other models, 
lustering 
ouldbe tuned rather 
losely. The TOSHK model, withits dis
rete parametrization of the number of tri-angles formed, was not able to exa
tly mat
h the
lustering values despite having three parameters.For the model ERGM1, we allowed the averagedegree to remain slightly below the target in orderto obtain 
orre
t 
lustering, be
ause aiming at both
orre
t average degree and 
lustering led to an in-stable region of model parameters. We initially at-tempted using automated optimization algorithms9



(su
h as snob�t (Huyer and Neumaier, 2008)) to �tthe ERGM1 model, but these failed due to the in-stability. Based on the intuition of the model pa-rameters obtained from the attempts at �tting, weinitially sele
ted values that roughly produ
ed thedesired NLC , k̄, and c̄, and manually modi�ed themfor a better �t. Starting from parameter values thatgenerated networks in whi
h the 
lustering 
oe�-
ient mat
hed the email data and the average de-gree was only slightly too small, it turned out thata very small in
rease in the parameter θL (donein order to in
rease average degree) 
aused averagedegree to jump dramati
ally and the 
lustering 
o-e�
ient to plummet (see Fig. 13 in Appendix A.2).Hen
e, we settled for a lower value of k̄.Average geodesi
 path lengths l̄ were approxi-mately 
orre
t for all but the nodal attribute modeltreated in one dimension (BPDA), although l̄ wasused for �tting only in the WPR model. The as-sortativity 
oe�
ient r was not used for �tting anymodel, although we attempted using it for �ttingWPR and ERGM1. The ERGM1 model was only�tted to the email data, be
ause generating net-works of size 8000 and �tting their parameters didnot seem feasible for the ERG model.Table 5: Targeted network features, and the �tted modelparameters leading to the values 
losest to the lastfm andemail data sets.DEB mat
hed to NLC , k̄lastfm: N = 8330, p = 0.203email: N = 1138, p = 0.064MVS mat
hed to NLC , k̄ , c̄lastfm: N = 9300, ξ = 0.0022, η = 0.000368email: N = 2270, ξ = 0.0062, η = 0.000071KOSKK mat
hed to NLC , k̄ , c̄lastfm: N = 8205, p∆ = 0.0029, pr = 0.0008email: N = 1135, p∆ = 0.0107, pr = 0.0039TOSHK mat
hed to N , k̄ , c̄lastfm: N = 8003, p = 0.60, k = 1email: N = 1133, p = 0.06, k = 3Váz mat
hed to N , k̄lastfm: N = 8003, u = 0.524email: N = 1133, u = 0.793ERGM1 mat
hed to NLC , k̄ , c̄lastfm: −email: N = 1160, θL = −6.962, θGW ESP = 2.4,
θGW D = 0.225BPDA mat
hed to NLC , k̄ , c̄lastfm: N = 8250, α = 1.915, b = 1.51 · 10

−4email: N = 1133, α = 1.565, b = 0.002032WPR mat
hed to NLC , k̄ , c̄ , l̄lastfm: N = 8200, H = 0.0108, p = 0.000506, pb = 0.9994email: N = 1133, H = 0.040, p = 0.008498, pb = 0.991

NLC : average largest 
omponent size (number of nodes), k̄: averagedegree, c̄: average 
lustering 
oe�
ient, l̄: average shortest path length.
k̄, c̄, and l̄ were 
al
ulated for the largest 
omponent of the network.

4. Comparison of higher order statisti
sHaving �tted the models a

ording to averagevalues of parti
ular network 
hara
teristi
s, we ad-dress their degree distributions P (k), 
lusteringspe
tra c(k), and geodesi
 path length distributions
P (l). We also assess the 
ommunity stru
ture of thenetworks using several measures. In Se
tion 4.5 we
ombine and 
ompare the di�erent me
hanisms fortriadi
 
losure and link deletion employed in the dy-nami
al NEMs. We use graphs to assess goodnessof �t as promoted by Hunter et al. (2008).4.1. Degree distributionDegree distributions are shown in Fig. 4 for theemail data and sele
ted models. The exa
t shapesof the degree distributions produ
ed by the mod-els are not as important as their markedly di�erentprobabilities for the presen
e of high degree nodes(Fig. 4). The nodal attribute models, of whi
hthe lastfm �t of WPR is shown, produ
e skewedbut fast-de
aying degree distributions that implythe absen
e of nodes with very high degree. Thesedistributions are well �t with the Poisson distribu-tion4, as shown analyti
ally by Boguña et al. (2004)for the BPDA model. The Váz model produ
esa very broad degree distribution (not shown) thatwas shown by Vázquez (2003) to de
ay as powerlaw, P (k) ∼ k−γ , whi
h implies the presen
e of afew nodes with extremely high degree. The tails ofthe degree distributions produ
ed by the dynami-
al NEMs and the growing TOSHK model as wellas the ERGM1 model all appear to de
ay slowerthan the Poisson distribution, but faster than powerlaw. Of these, the models TOSHK, KOSKK, andERGM1 are displayed in Fig. 4.In our data sets, the degree distribution de-
ays exponentially (email) (Guimerà et al., 2003)or slower (lastfm) (Fig. 3). In larger data sets basedon one-to-one 
ommuni
ation, even broader degreedistributions have been observed (Lambiotte et al.,2008; Onnela et al., 2007b; Seshadri et al., 2008).The NEMs give rise to degree distributions that4The homophily prin
iple does not always lead to a Pois-son degree distribution. The shape of the degree distribu-tion depends on how the nodal attributes are distributed.Masuda and Konno (2006) used an exponentially distributed�tness parameter as the basis for homophily, and obtaineda �at degree distribution P(k)=
onst. As they observe,this is unrealisti
. Combined with another me
hanism,homophily 
an also lead to a broader degree distribution(Masuda and Konno, 2006).10



Table 6: Basi
 statisti
s of the lastfm and email data sets and the models �tted to ea
h.model / data NLC L k̄ c̄ r l̄ lmaxLast-fm-�n 8003 16824 4.20 0.31 0.22 7.4 24DEB 8009 ± 30 16858 ± 224 4.21 ± 0.05 0.38 ± 0.01 0.10 ± 0.01 7.0 ± 1.6 18.1 ± 1.4MVS 7989 ± 38 16816 ± 153 4.21 ± 0.03 0.30 ± 0.01 0.02 ± 0.01 7.8 ± 1.6 17.4 ± 1.0KOSKK 8006 ± 20 16849 ± 207 4.21 ± 0.05 0.31 ± 0.01 0.05 ± 0.01 7.2 ± 1.5 16.3 ± 0.9TOSHK 8003 16791 ± 93 4.20 ± 0.02 0.34 ± 0.01 0.14 ± 0.01 6.6 ± 1.3 13.8 ± 0.6Vàz 8003 16801 ± 171 4.20 ± 0.04 0.29 ± 0.01 0.27 ± 0.02 8.3 ± 2.6 22.6 ± 1.5BPDA 8005 ± 31 16794 ± 141 4.20 ± 0.03 0.29 ± 0.01 0.30 ± 0.02 23.9 ± 9.3 60.1 ± 8.0WPR 8004 ± 19 16972 ± 150 4.24 ± 0.03 0.29 ± 0.01 0.30 ± 0.02 8.1 ± 1.6 18.2 ± 1.1model / data NLC L k̄ c̄ r l̄ lmaxEmail 1133 5451 9.62 0.22 0.08 3.6 7DEB 1133 ± 3 5452 ± 249 9.62 ± 0.43 0.45 ± 0.01 0.06 ± 0.02 3.4 ± 0.9 7.7 ± 0.7MVS 1113 ± 1 5282 ± 77 9.48 ± 0.14 0.23 ± 0.01 0.05 ± 0.04 3.8 ± 1.1 9.6 ± 0.6KOSKK 1134 ± 2 5425 ± 193 9.57 ± 0.34 0.22 ± 0.01 0.06 ± 0.02 3.5 ± 0.9 7.5 ± 0.6TOSHK 1133 5453 ± 52 9.63 ± 0.09 0.29 ± 0.01 0.09 ± 0.02 3.4 ± 0.8 6.1 ± 0.3Vàz 1133 5453 ± 136 9.63 ± 0.24 0.42 ± 0.02 0.12 ± 0.03 4.6 ± 1.7 13.6 ± 1.4BPDA 1133 ± 1 5477 ± 172 9.67 ± 0.30 0.22 ± 0.01 0.22 ± 0.02 4.4 ± 0.8 8.4 ± 0.5WPR 1133 ± 1 5448 ± 72 9.62 ± 0.13 0.21 ± 0.01 0.20 ± 0.03 3.6 ± 0.7 6.0 ± 0.2ERGM1 1133 ± 8 4800 ± 460 8.47 ± 0.77 0.21 ± 0.01 0.04 ± 0.02 3.6 ± 0.84 7.5 ± 0.83All statisti
s are 
al
ulated for the largest 
omponent of ea
h network. NLC : Largest 
omponent size, L: numberof links, k̄: average degree, c̄: average 
lustering 
oe�
ient, r: assortativity 
oe�
ient, l̄: average geodesi
 pathlength, and lmax: longest geodesi
 path length. The values are averaged over 100 realizations of ea
h networkmodel. The standard error of the averages is displayed whenever there was �u
tuation in the values.mat
h these empiri
al data on large a
quaintan
enetworks better than the nodal attribute models.
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kFigure 4: Degree distributions P (k) of the email data (solidline) and in sele
ted models �tted to it. The box plots dis-play medians and �rst and third quartiles in 100 networkrealizations. Whiskers extend from ea
h end of the box tothe most extreme values in the data within 1.5 times theinterquartile range from the ends of the box. Outliers aredenoted by +.4.2. Clustering spe
trumMany network models display roughly an in-verse relation between node degree and 
lustering5:5This follows naturally in any model where an in
reasein the number of links of a node goes hand in hand with an

c(k) ∼ 1
k
. This holds true also for most of theNEMs studied here, of whi
h TOSHK, KOSKK,and DEB are shown in Fig. 5, as well as forthe ERGM1 model (not shown). The �gures dis-play �ts to lastfm data, but results are similar forthe email �ts. In 
ontrast, the homophily me
h-anism on whi
h the nodal attribute models arebased is seen to produ
e a �at 
lustering spe
-trum c(k) = const, shown in Fig. 5 for the lastfm�t of the WPR model. In all empiri
al networkdata that we have 
ome a
ross, in
luding both ofour data sets (Fig. 5) as well as a
quaintan
e net-works based on Messenger and mobile phone 
alls(e.g. Onnela et al. (2007b), Leskove
 and Horvitz(2008)), 
lustering c(k) de
reases with in
reasingdegree k of a node. This indi
ates that attributebased homophily alone does not seem to explain ob-served network stru
tures, supporting the �ndingsby Masuda and Konno (2006) and Hunter et al.(2008).4.3. Geodesi
 pathsApart from the nodal attribute model treatedone-dimensionally (BPDA), in whi
h averagegeodesi
 path lengths are strikingly long 
omparedin
rease in the number of triangles around it. If on averagein
reasing the degree k of a node by one is a

ompanied byan in
rease of the number N∆ of triangles around the nodeby a, the resulting 
lustering 
oe�
ient for a node of degree kwill be on average c(k) = N∆

k(k−1)/2
= ak

k(k−1)/2
≈

2ak
k2 = 2a

k
.11
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trum c(k) in the lastfm data (solidline) and in models �tted to it. Averaged over 100 networkrealizations.to the data, all networks display reasonable pathlength distributions (Fig. 6). The dynami
al NEMsand the TOSHK model are slightly too 
ompa
t,with largest path lengths falling below those in thedata. The Váz model, surprisingly, has rather longgeodesi
 paths despite its broad degree distribu-tion. Generally, high degree nodes de
rease pathlengths a
ross the network, but the high assorta-tivity of the Váz networks seems to 
ounter thee�e
t. For referen
e, even in an extremely largea
quaintan
e network of several million individualsworldwide (Leskove
 and Horvitz, 2008), the aver-age distan
e between two individuals is 6.6, andpath lengths up to 29 have been found.4.4. Community stru
tureCliques. Finally, we assess the 
ommunity stru
-ture of the networks. Perhaps the simplest possiblemeasure of 
ommunity stru
ture is the number of
liques (Fig. 8a), or fully 
onne
ted subgraphs, ofdi�erent sizes. Figure 7 displays the average num-bers of 
liques in the model networks. Be
ause ea
hnetwork has roughly an equal number of nodes andlinks, the di�erent numbers of 
liques are due tothe arrangement of links within the network andnot to di�eren
es in global link density. It turnsout that the NAMs produ
e 
lique size distributionsthat mat
h the data sets fairly well in both �ts. TheWPR model, �tted to the email data, is shown inFig. 7. The KOSKK and DEB models also pro-du
e distributions roughly 
omparable to the em-piri
al data, and the Váz model in fa
t produ
esfar too many large 
liques when link density is high
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ERGM1Figure 6: Distributions P (l) of geodesi
 path lengths l inmodels �tted to (a) the lastfm data, and (b) the email data.The data is shown as a thi
k bla
k line in ea
h panel. Aver-aged over 100 network realizations.(Fig. 7). The MVS and TOSHK models have trou-ble produ
ing large enough 
liques when link den-sity is low (the lastfm �ts). A possible explanationof why the MVS model produ
es very few 
liques isindi
ated by the 
omparison of Se
tion 4.5, wherenode deletion is seen to preserve more 
liques thanlink deletion. The parametrization of the TOSHKmodel, requiring that the number of se
ondary 
on-ta
ts be drawn from a uniform distribution, severelylimits the number of 
oin
ident triangles and hen
e
liques whi
h 
an be formed. The ERGM1 modelprodu
es the fewest 
liques of all the models.
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ounted. Averagedover 100 network realizations.12



k-
lusters. We also identify 
ommunities us-ing the k-
lique-per
olation method developedby Palla et al. (2005). The method de�nes a k-
luster as a subgraph within whi
h all nodes 
anbe rea
hed by 'rolling' a k-
lique su
h that all ex-
ept one of its nodes are �xed (see Fig. 8b). Fig-ure 9 displays the size distributions of k-
lusterswith k = 4 and k = 5 for several models �tted to theemail data. As the ERGM1 model produ
ed veryfew 
liques apart from triangles, it 
annot generatelarge k-
lusters for k > 3. The other models gen-erally produ
e 4-
luster size distributions roughlymat
hing the data, but large 5-
lusters are rela-tively few. The Váz model generates networks 
on-taining very large k-
lusters with high values of k.These are likely due to an extremely dense '
ore'formed around nodes that joined the network earlyon. For example, ea
h of the 100 network realiza-tions 
ontained 10-
luster of size s = 72 ± 15 (notshown). Su
h dense 
lusters are not generally ob-served in empiri
al data. For example, in the lastfmand email data sets, the largest 10-
lusters are ofsizes 10 and 12, respe
tively.
Figure 8: (a) k-
liques for k = 3, 4, 5. (b) An example of a
4-
luster with 6 nodes, highlighting the 4-
liques from whi
hit is formed.Role of links with low overlap. In both of our em-piri
al networks, as well as in the networks gen-erated by the studied models, a rather large fra
-tion of edges does not parti
ipate in any triangles.In the lastfm and email data, the fra
tion of su
hedges is 31.2% and 22.4% respe
tively6. The DEB,TOSHK, Váz, and ERGM1 models produ
e slightlytoo few su
h links (20 to 22% in the the lastfm �tsand 4 to 5% in the email �ts, ex
ept 12, 6% in the6This might be due to the nature of our empiri
al datasets, whi
h are sampled from networks that are 
onstantlygrowing with links and nodes a

umulating over time. Inthem, a relatively large fra
tion of nodes are new
omers whohave only established a few links to the system, su
h thattriangles have not yet been formed around them.
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lusters of size s in a net-work, for k = 4 (⋄) and k = 5 (⋆), in the email data, and inmodels �tted to it. Averaged over 100 network realizations.email �t of ERGM1), whereas the nodal attributemodels and KOSKK tend to generate slightly toomany of them (35 to 40% in the the lastfm �ts and
27 to 41% in the email �ts).We 
an ask what stru
tural role is played by linksthat do not parti
ipate in triangles, or more gener-ally, by links whose end nodes share only a smallfra
tion of their neighbors. Within a 
ommunity,adja
ent nodes tend to share many neighbors, whilefor edges between 
ommunities, the neighborhoodsof the end nodes will not overlap mu
h. This 
anbe quanti�ed using a measure 
alled the overlap
Oij (Onnela et al., 2007b), whi
h 
ould be inter-preted as a modi�
ation of the edgewise sharedpartners measure (Hunter, 2007), measuring thefra
tion instead of the number of edgewise sharedpartners for the end nodes of an edge. The mea-sure also bears resemblan
e to the Ja

ard 
oe�-
ient (Ja

ard, 1901). The overlap is de�ned as
Oij =

nij

(ki−1)+(kj−1)−nij
, where nij is the numberof neighbors 
ommon to both nodes i and j, and kiand kj are their degrees (Fig. 10).

Figure 10: Overlap Oij of edge eij .Removing low-overlap-links will separate dense,loosely inter
onne
ted 
ommunities from one an-other. This turns out to dis
ern the nodal attributemodels and the KOSKKmodel from the other mod-13



els and our empiri
al data. Figure 11(a) displaysthe relative sizes of the largest 
omponent after re-moving links that do not parti
ipate in trianglesfor the lastfm data and the models �tted to it. Thenodal attribute models break down to small 
lus-ters, whereas in the other models a large 
ore re-mains.As noted earlier, the NAMs 
ontain more zero-overlap links than the other models. Hen
e, it isuseful to 
he
k whether their breakdown was dueto a larger fra
tion of removed links. We 
an testthis by removing an equal fra
tion of links fromall networks (41%, the maximum fra
tion of linksremoved from any network when only non-triangle-links were removed) (Fig. 11b). We remove linksin in
reasing order of overlap Oij . Again, a 
oreremains inta
t in most of the NEMs, whereas theNAMs and the KOSKK network break down, indi-
ating in these models the absen
e of a 
ore, and therole of low overlap links as bridges between 
lusters.The link densities of the remaining 
omponents,
d = 2 l/s(s− 1), where s is the number of nodes inthe 
omponent and l the number of links, are more-over observed to be slightly higher in the NAMsthan in the other models, despite the fa
t that morelinks were removed from them (not shown). Theabove �ndings show that these networks 
onsist ofvery 
lear 
ommunities that are loosely inter
on-ne
ted. The other NEMs and ERGM1 on the otherhand 
ontain a 
ore that does not 
onsist of su
hloosely 
onne
ted 
lusters. This di�eren
e is de-pi
ted s
hemati
ally in Fig. 11(
,d).In the email �ts, link density in the network ishigher, and for all networks slightly larger overlaplinks need to be removed in order to de
omposethem to small 
lusters (not shown), but the generaldi�eren
e between the NEMs and NAMs remains.As the ERGM1 model was only �tted to the emaildata, it is not displayed in Fig. 11. Removing lowoverlap links did not redu
e the largest 
omponentof the ERGM1 networks pra
ti
ally at all - even af-ter removing 50 per
ent of links beginning with low-est overlap, a 
ore 
ontaining on average 93.6 per-
ent of the nodes remains inta
t - 
onsistently withthe �nding that the networks did not 
ontain manydenser substru
tures su
h as 
liques or k-
lusters.4.5. Di�eren
es in network stru
ture resulting from
hoi
e of me
hanisms for triadi
 
losure andlink deletionHere, we will examine the di�eren
es in net-work stru
ture resulting from 
ombinations of the
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Figure 11: (a) Relative size RLC of the largest 
onne
ted
omponent in the models �tted to the lastfm data after re-moving links with overlap O = 0. (b) To show that thebreakdown of the nodal attribute models was not simply dueto a larger number of links removed, we now remove the samefra
tion of the lowest overlap links from all models and data(41%, the maximum fra
tion removed in Fig. 11(a)). Dataaveraged over 100 network realizations. (
 and d) S
hemati
depi
tion of the stru
tural di�eren
es related to links withlow overlap (links whose end nodes share only a small fra
-tion of their neighbors). (
) Low overlap links 
onne
t small,relatively tightly bound 
lusters together. (d) The network
ontains a 
ore that does not disintegrate when low overlaplinks are removed.me
hanisms of link generation (T1,T2) and deletion(ND,LD) emplyed in dynami
al network evolutionmodels. Taking as a starting point the simplest ofthe dynami
al models (DEB), in whi
h a new
omerwill link to exa
tly two uniformly randomly 
hosennodes, after whi
h it will only initiate triadi
 
losuresteps, we study all four 
ombinations of the me
h-anisms (Fig. 12, a). Two �ndings speak in favorof using the node deletion me
hanism: The modelvariants using T1 show a 
learly assortative rela-tion, suitable for so
ial network models, whereasthe T2 networks are dissortative or very weakly as-sortative (Fig. 12, b). Node deletion also preservesmore 
liques in the network, a desirable feature forso
ial networks (Fig. 12, 
). The larger number of
liques preserved by node deletion is not explainedby the 
lustering 
oe�
ients, whi
h turned out tobe similar in all networks. The parameters weresele
ted su
h that NLC and k̄ mat
hed the lastfmdata.The 
hoi
e of triangle generation me
hanism, onthe other hand, is seen to a�e
t the degree distribu-tion. Networks generated with the T1 me
hanism14



have higher degree nodes than those using the T2me
hanism (Fig. 12, d). This is be
ause following alink is more likely to lead to a high degree node thanpi
king a node randomly. Be
ause in T1 both of thenodes gaining a link in the triad formation step are
hosen by following a link, high degree nodes ob-tain more additional links than when the T2 me
h-anism is used, in whi
h one of the nodes is 
hosenrandomly. The 
hoi
e of T1 or T2 does not seemto have an e�e
t on the number or size of 
liquesgenerated, nor on degree-degree 
orrelations.

Figure 12: Comparison of me
hanisms employed in dynami-
al network evolution models. (a) Two me
hanisms of triadi

losure (T1 and T2) are 
ombined with two ways of deletinglinks (node deletion refers to deleting all links of a node, andlink deletion refers to deleting randomly sele
ted links). Thesame symbols are used in panels (b)-(d). (b) Average nearestneighbor degree knn with respe
t to node degree k, variantsarranged as in the s
hemati
 �gure. The lastfm data is alsoshown in ea
h panel. (
) Number n(k) of 
liques of ea
hsize k. Smaller 
liques within larger 
liques are not 
ounted.(d) Degree distribution P (k). Averaged over 100 networkrealizations.5. Summary and dis
ussionIn order to assess the resemblan
e to empiri
alnetworks of the many models for so
ial networksthat have been published in re
ent years in thephysi
s-oriented 
omplex networks literature, wehave �tted these models to empiri
al data and as-sessed their stru
ture. We have also 
ompared thesemodels with an exponential random graph modelthat in
orporates re
ently proposed spe
i�
ations,in the �rst systemati
 
omparison between modelsfrom these families. In addition to 
omparing stru
-tural features of networks produ
ed by the models,we have dis
ussed the di�erent philosophies under-lying the model types.

The stru
tural features we fo
used on are sim-ilar in the two in
luded empiri
al data sets asin numerous other large empiri
al so
ial net-works (Onnela et al., 2007b; Seshadri et al., 2008;Leskove
 and Horvitz, 2008) in that they havehighly skewed degree distributions, high average
lustering 
oe�
ients, de
reasing 
lustering spe
-tra c(k), and positive degree-degree-
orrelations r.Therefore, any widely appli
able model for so
ialnetworks should be able to approximately repro-du
e the average values and distributions of theirmain 
hara
teristi
 features. However, as the phi-losophy behind the NEMs studied here is to explainthe emergen
e of 
ommon stru
tural features of so-
ial networks, we shouldn't expe
t them to 
aptureperfe
tly all features of parti
ular empiri
al datasets. Our main motivation for �tting the models tothe sele
ted target features was to unify approxi-mately some of their properties, in order to 
omparemeaningfully their higher order properties, su
h asthe degree distribution and 
ommunity stru
ture.These are not likely to be drasti
ally altered bysmall di�eren
es in the average values. Hen
e, wedo not 
onsider an a

urate �t in the average quan-tities of extreme importan
e.For almost all models, we saw that averagelargest 
omponent size NLC and average degrees k̄
ould be �tted 
losely to both empiri
al data sets.In the ERGM1 model, we 
ompromized mat
hingaverage degree in order to obtain a reasonable 
lus-tering 
oe�
ient. Adaptability was limited by thenumber of free parameters. The models DEB andVáz, whi
h had only one free parameter in additionto network size, turned out to have ex
essively highaverage 
lustering 
oe�
ients even for the moder-ate average degrees displayed by our two data sets.For most of the other models, 
lustering 
ould betuned rather 
losely. Being able to mat
h the tar-geted average values of these two data sets doesnot guarantee that a model is able to mat
h thosefeatures in other empiri
al data, however. In thissense, the generalisability of 
on
lusions based ononly two data sets is limited.Table 7 summarizes the stru
tural features innetworks resulting from the di�erent model types.Nodal attribute models (NAMs) in whi
h the nodesare lo
ated with uniform probability in the under-lying so
ial spa
e and links are based solely on ho-mophily, produ
e a 
lustering spe
trum c(k) strik-ingly di�erent from observed data, indi
ating that itis not a su�
ient des
ription of the me
hanisms atplay in the formation of so
ial networks. They also15



Table 7: Summary of stru
tural properties of networks generated with the studied models.Property lastfm and email NAMs dynami
al NEMs growing NEMs ERGM1degree distribution relatively broad peaked relatively broad broad relatively broad
lustering spe
trum de
reasing �at de
reasing de
reasing de
reasingassortativity yes yes (high) yes (weak) yes (moderate/high) yes (weak)geodesi
 path lengths - in 1D, too longlongest paths reasonable reasonable reasonable
liques many large 
liques many large 
liques many in KOSKK,fewest in MVS too few in TOSHK,ex
eedingly in Váz very few
k-
lusters many large k-
lustersfor k = 4 and k = 5

reasonable reasonable in DEB andKOSKK, too few in MVS in Váz, ex
eedingly large
k-
lusters with large k

no large k-
lusters
onsisting of dense
lusters inter
onne
tedby low-overlap links no yes yes (KOSKK),no (DEB and MVS) no noprodu
e peaked degree distributions without veryhigh degree nodes that do no agree with empiri
aldata on large s
ale so
ial networks. The homophilyprin
iple employed in the nodal attribute modelsis seen to be su�
ient for produ
ing strong positivedegree-degree 
orrelations. This is a dire
t result ofthe dependen
e of link probability on distan
e: be-
ause high degree nodes appear in lo
ations with adense population of nodes, their neighbors will alsotend to have high degree. The NAMs also generatenetworks 
ontaining a large number of 
liques and
onsisting of dense 
lusters loosely 
onne
ted withlow overlap links. Their 
lustered stru
ture appearsmore pronoun
ed than in the data.We �nd that many of the studied network evolu-tion models (NEMs) produ
e broader degree dis-tributions and de
reasing 
lustering spe
tra thatagree more 
losely with empiri
al data. Most ofthem also generate assortative networks, althoughtypi
ally not to the same extent as in the data, andmany large 
liques and k-
lusters. In the dynami
alNEMs, node deletion is seen to produ
e more as-sortative networks than link deletion. With respe
tto thresholding by overlap, the dynami
al KOSKKmodel displayed the 
learest 
lustered stru
ture ofall the NEMs. This shows that the weights em-ployed in tie formation in the KOSKK model playan important role in the formation of 
ommunitystru
ture, as the authors observed (Kumpula et al.,2007). The other NEMs produ
ed networks whi
h,in a

ordan
e with the data, 
ontained a large 
orethat did not break apart when low overlap linkswere removed.The exponential random graph model ERGM1in
orporating re
ently proposed terms forstru
tural dependen
ies (Snijders et al., 2006;Hunter et al., 2008; Robins et al., 2007b) was seen

to generate very few large 
liques. It did produ
eassortative networks, although with relativelylow assortativity. These terms had earlier beenemployed without di�
ulty when �tting ERGMs toa large so
ial network (Goodreau, 2007). However,we en
ountered problems of multimodality withthe model.Very large so
ial networks of millions of individu-als, within a 
ountry or worldwide, 
an be assessedwith data provided by modern ele
troni
 
ommuni-
ations, su
h as mobile phone 
alls (Onnela et al.,2007a) or instant messaging (Leskove
 and Horvitz,2008). The data have revealed features of larges
ale networks of human intera
tion that 
ould notbe dis
erned from a small subnetwork. These in-
lude the tails of highly skewed distributions aswell as distributions of mesos
ale stru
tures, su
h asthe size distribution of 
ommunities. Modeling thestru
ture observed in large networks bene�ts fromthe ability to generate networks of 
omparable size.NEMs and NAMs ful�ll this requirement.Using realisti
 models for so
ial networks in sim-ulation studies of so
ial pro
esses is essential inlight of the knowledge that network stru
ture in-�uen
es many pro
esses (Castellano et al., 2007),su
h as the emergen
e and survival of 
oopera-tion (Lozano et al., 2008), spreading of informa-tion (Onnela et al., 2007a; Moreno et al., 2004) orepidemi
s (ná and Pastor-Satorras, 2002), and 
o-existen
e of opinions (Lambiotte et al., 2007).Many stru
tural 
hara
teristi
s of so
ial networkswere attained even with very simple me
hanisms.However, neither the nodal attribute models basedon homophily, nor the network evolution modelsbased on triadi
 
losure and global 
onne
tions,were able to reprodu
e all important features of so-
ial networks. As both me
hanisms obviously are16



present in the evolution so
ial networks, a 
ombi-nation of the model types 
ould yield more realisti
network models.A
knowledgementsWe a
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ademy of Finland, theFinnish Center of Ex
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e Program 2006-2011,Proje
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hool.A. AppendixA.1. Basi
 network measuresThe network representation of so
ial 
onta
ts 
onsistsof nodes representing the individuals, and links repre-senting the ties between them. An overline is used todenote averaging over all nodes (or links) within thenetwork, or a
ross several networks. We denote by Nthe number of nodes in a network, i.e. network size. A
omponent of a network is a 
onne
ted subset of nodes.In this paper, we study the largest 
omponent LC ofea
h network. We denote its size by NLC . The numberof network neighbors of a node is 
alled its degree k. Anisolated node has degree zero.A measure of lo
al triangle density, the 
lustering
oe�
ient, des
ribes the extent to whi
h the neighborsof node i are a
quainted with one another: if none onthem know ea
h other, ci is zero, while if all of themare a
quainted, ci = 1. For a node i with degree kiand belonging to Ti triangles, the 
lustering 
oe�
ientis de�ned as
ci =

Ti

ki(ki − 1)/2
, (4)where the denominator ki(ki − 1)/2 expresses the max-imum possible number of triangles i 
ould belong togiven its degree. The 
lustering 
oe�
ient is not de-�ned for nodes with degree k < 2. The average 
lus-tering 
oe�
ient, averaged over all nodes with k ≥ 2in the network, is denoted c̄. c(k) denotes the average
lustering 
oe�
ient of nodes with degree k. The 
urve

c(k) is 
alled the 
lustering spe
trum.In large empiri
al so
ial networks, typi
ally high de-gree nodes tend to be linked to other high-degree nodes,and low-degree nodes tend to be linked among them-selves. One way of quantifying this e�e
t is using lin-ear 
orrelation, or the Pearson 
orrelation 
oe�
ient,between the degrees ki and kj of pairs of 
onne
tednodes. This is also 
alled the assortativity 
oe�
ient
r (Newman, 2002):

r =

P

e kikj/E −
ˆ

P

e
1
2
(ki + kj)

˜2
/E2

P

e
1
2
(k2

i + k2
j )/E −

ˆ

P

e
1
2
(ki + kj)

˜2
/E2

,

where E is the total number of links in the network.Assortativity 
an also be quanti�ed using the measureaverage nearest neighbor degree knn(k), found by takingall nodes with degree k, and averaging the degrees oftheir neighbors. If the 
urve knn(k) plotted against khas a positive trend, nodes with high degree typi
allyalso have high-degree neighbors, and hen
e the networkis assortative.The geodesi
 path length lij between nodes i and
j in a network means the minimum number of linksthat need to be traversed in order to get from i to j.The average length l̄ of geodesi
 paths between nodesdes
ribes the 
ompa
tness of the network.A.2. Determining optimal network parametersOur �tting method 
onsists of simulating network re-alizations with di�erent values of the model parameters,and �nding the values (points in the parameter spa
e)that produ
e the best mat
h to the following features ofthe empiri
al data sets: average degree k̄, average 
lus-tering 
oe�
ient c̄, and average geodesi
 path lengths l̄(in this order of importan
e, depending on the numberof model parameters). This approa
h deviates from thetradition of maximum likelihood estimation for �ttingprobabilisti
 models.We attempt to minimize the relative error in ea
h
hosen feature. For example, for average degree k̄ in amodel with given parameter values p, being �tted to adata set with average degree k

target, the relative erroris
|ǫk(p)| =

˛

˛

˛

˛

˛

k(p) − k
target

k
target

˛

˛

˛

˛

˛

. (5)The errors for ea
h feature are 
ombined in the errorfun
tion f(p), whose norm |f(p)| is minimized. Forexample, if �tting to NLC , k̄ and c̄, the error fun
tionand its norm take the shape
f(p) = [wNLC ǫNLC wk̄ǫk̄ wc̄ǫc̄] , (6)and its norm

|f(p)| =
q

w2
NLC

ǫ2NLC
+ w2

k̄
ǫ2
k̄

+ w2
c̄ǫ2c̄ . (7)The error fun
tion should have equally many 
om-ponents as there are network parameters. We 
hoseweights that re�e
ted the order of importan
e givento the targeted features, putting the most emphasison mat
hing the number of nodes and links, less on
lustering, and least on average geodesi
 path lengths.It turned out that for nearly all of the models (DEB,MVS, KOSKK, Vaz, BPDA, email �t of WPR) theresult was insensitive to weights, be
ause the modelswere able to mat
h the target values 
losely (up to thenumber of model parameters). In optimizing the mod-els DEB and KOSKK, we used a linear approximation17



for the 
omponents of the error fun
tion, iteratively re-�ning the approximation 
lose to the optimum. ForMVS, we used the the well established Nelder-Meadmethod (Nelder and Mead, 1965), whi
h involves 
al-
ulating values of the error fun
tion at the 
orners ofa simplex (a triangle in 2-dimensional spa
e, a tetrahe-dron in 3D). The optimal value of the error fun
tion isiteratively approa
hed by rolling one 
orner of the sim-plex over the others su
h that the obje
t moves towardsthe region where the fun
tion gets optimal values. Thediameter of the simplex is adjusted during iteration toin
rease a

ura
y.Optimization algorithms were not needed for the Vázand BPDA models and the email �t of WPR. For theVáz model, a very good approximation for the optimalvalue of u 
an be obtained analyti
ally. This estimate
ould be re�ned manually. For the BPDA model, theanalyti
al estimates for k̄ and c̄ derived by the authors
ould be used as a starting point in optimization. Were�ned the initial estimates by �rst adjusting α to �ndthe 
orre
t value for the 
lustering 
oe�
ient, and then
hanging b until the 
orre
t mean degree was found.For small enough adjustments, the latter 
orre
tionsdid not a�e
t the value of c̄. The adjustments weredone by trial and error, but it was not di�
ult to getan a

urate �t for mean degree and 
lustering in thismanner. For the email �t of WPR, it turned out that
NLC ≈ N , and hen
e the number of free parameterswas redu
ed. p was set to obtain desired average de-gree, and the two remaining parameters were optimizedby generating networks with a grid of their values.Exa
t �ts 
ould not be obtained for TOSHK,ERGM1, and the lastfm �t of WPR. For WPR, weused weights [wNLC , wk, wc, wl] = [4 4 2 1] and gridoptimization similarly as in the email 
ase, although itwas 
ostly in four dimensions. Obtaining values in agrid enabled us to visulize the dependen
e of the tar-geted features on the model parameters. It turned outthat assortativity and 
lustering varied 
losely together,rendering assortativity useless as a �tting target if 
lus-tering was used; hen
e we used average geodesi
 pathlengths, whi
h enabled an optimum to be determined.As the TOSHK model has only one 
ontinuous param-eter p, it su�
es to optimize p for all values of the dis-
rete parameter k below some kmax, making sure that
kmax is large enough. The parameter p was optimizedto rea
h the desired mean degree for ea
h k, and thepair (k, popt(k)) that provided the best mat
h to thedesired c̄ was sele
ted as the optimum. Optimizationwas 
arried out with the Matlab optimization toolboxfun
tion fminbnd.m, whi
h is based on golden se
tionsear
h and paraboli
 interpolation.For the remaining 
ase in whi
h no exa
t mat
h wasfound (ERGM1), we attempted using the linear approx-imation method and Nelder-Mead algorithm des
ribedabove, as well as other, potentially more robust meth-

ods (Elster and Neumaier, 1995; Huyer and Neumaier,2008), but these failed likely due to multimodality ofthe probability distribution. Figure 13 illustrates theinstability we en
ountered when attempting to �t theERGM1 model to the email data. The panels displayaverage degree k̄ (a) and average 
lustering 
oe�
ient
c̄ (b) in networks generated with various values of θL,with the other parameters kept 
onstant at the valueslisted in Table 5. For ea
h value of θL, 60 network re-alizations are shown (drawn from MCMC 
hains withburn-in 5 × 107 steps, and 5 realizations taken fromea
h 
hain at intervals of 107). Be
ause θL 
ontrols thenumber of random links, an in
rease in θL generally in-
reases average degree and de
reases average 
lustering.However, at roughly θL = −6.961 we observe a suddentransition into a mu
h denser, less 
lustered network.
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