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As  a consequence  of  the  rising  interest  in longitudinal  social  networks and their analysis, there is also

an  increasing  demand  for tools to visualize  them.  We  argue  that similar adaptations  of state-of-the-

art  graph-drawing  methods can be used to  visualize  both, longitudinal networks and predictions of

stochastic  actor-oriented  models (SAOMs),  the  most prominent  approach  for analyzing  such  networks.

The  proposed  methods  are illustrated  on a longitudinal  network  of  acquaintanceship  among  university

freshmen.

1. Introduction

With the ever-increasing availability of time-varying data and
the diffusion of advanced modeling methods, research on lon-
gitudinal network analysis is widening tremendously. This is
especially true for the interest in dependencies among tie dynam-
ics and actor attributes, and more concretely the co-evolution
of networks and behavior. Since the temporal dimension consti-
tutes an additional, qualitatively different level of  complexity, the
demands on visualization tools are  even higher than they are any-
way in static network analysis (Bender-deMoll and McFarland,
2006).

Social network visualization is a field of  growing interest in
itself (Klovdahl, 1981; Freeman, 2000; Brandes et al., 2006), and
partly so because very different approaches are  suitable for specific
use cases. For the present case, we assume to have longitu-
dinal network data given in the form of panel data, i.e., as a
time-ordered sequence of  interrelated network observations that
possibly differ in actor composition, structure, and attributes. In
social sciences, this is the most common form of longitudinal
network data today, and often due to data collection in waves
or aggregation of dyadic events over time intervals. The latter is
frequently done to allow for the application of the same meth-
ods that are common for static networks, and various forms

� Research partially supported by DFG under grants Br 2158/3-2 (as part of 05-

ECRP-026)  and GRK 1042.
∗ Corresponding author. Tel.: +49 7531 88 4433; fax:  +49 7531 88 3577.

E-mail  address: Ulrik.Brandes@uni-konstanz.de (U. Brandes).

of aggregation are  described in Bender-deMoll and McFarland
(2006).

We here define our problem area as that of visualizing a given
sequence of snapshots of an evolving social network (rather than,
say, an  unordered collection of networks, an  event stream, or
a process taking place on a network). The task is further lim-
ited to producing a  corresponding sequence of diagrams which
may or may  not serve as the basis of  an  animation (rather
than, say, a merged view of  the entire evolution). The char-
acterizing trade-off in  this situation is between the individual
quality of each snapshot and the persistence of  features over
the sequence (Brandes and Wagner, 1997). In other words, each
diagram should be a good representation of  the corresponding
cross-sectional network, and at the same time, a mental map of
the structure should be preserved as much as possible to relate
the individual frames with less cognitive effort (Misue et al.,
1995).

The motivation behind this task is to facilitate visual explo-
ration of longitudinal network data in a generic way. By using
a specific methodology, however, analysts take a  specific per-
spective that is generally in need of targeted visualization
designs. As a concrete example, we here focus on the most
prominent approach to longitudinal social network analysis,
stochastic actor-oriented modeling (Snijders, 2005; Snijders et al.,
2010b), and show that with little adaptation, the same visu-
alization techniques can be applied to reveal such a model’s
predictions and interrelate them with the actual observa-
tion. Our approach is likely to generalize to other models as
well.

The remainder of  this article is organized into three main
parts. Since the crucial technical challenge in network visualization
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is to find a suitable layout for the underlying graph struc-
ture, we start by providing background on layout algorithms
for static graphs in Section 2, and outline a method known as
stress minimization that is central to our approaches. In Sec-
tion 3, we review the dynamic graph drawing problem, and
propose specific instantiations of  stress minimization designed
for visual exploration of dynamic graphs. In the third part, we
introduce two  targeted visualization approaches for stochastic
actor-oriented models (SAOMs) in Section 5,  after recalling the for-
mal basics of SAOMs in  Section 4.  The first of  these approaches
shall help assess congruence of  simulations and observations
w.r.t. their underlying graph structure, whereas the second one
is to point to inhomogeneities across actors, if any. We  con-
clude with a brief discussion that includes directions for future
work.

1.1. Running example

We  use a longitudinal network of acquaintanceship among uni-
versity students as a running example. The data is courtesy of  Britta
Renner and Manja Vollmann (Department of Psychology, Univer-
sity of Konstanz) and was  collected in 15 waves between October
2008 and February 2009.

Students provided, among many other data, their current per-
ceived level of acquaintanceship with each other on  a  scale from
1 (lowest) to 7 (highest). We  dichotomized each observation
using 5 as a threshold. Of the 78 freshmen majoring in Psy-
chology, only nine did not participate in an initial screening,
never answered any questionnaire, or never made a  nomination
resp. were never nominated at a level above the thresh-
old.

The example networks thus consist of acquaintance-
ship  nominations among 69 students (18 male, 51 female)
that form a connected component when aggregated over all
waves.

The data constitutes a realistic scenario in which our methods
may be applied, but is used here solely for illustrative purposes.
No attempt at justifying models or  drawing conclusions will  be
made.

2. Graph drawing methods for static general graphs

Social network visualization can draw on  two major streams
of research, information visualization of networks (Herman
et al., 2000) and graph drawing (Di Battista et al., 1999;
Kaufmann and Wagner, 2001). Roughly speaking, the focus
in information visualization is on visualization design, navi-
gation, and interactivity, whereas properties and construction
of geometric representations are more central to graph draw-
ing.

We here restrict our scope to the most common graph-
ical representation for social networks, node-link diagrams
(referred to as sociograms in  Moreno, 1953), in which actor-
representing vertices are depicted as points (or, more precisely,
graphical elements described by a single position), and tie-
representing edges are depicted as lines linking their endpoints.
We will not, in general, make the distinction between actors,
nodes, vertices, and points, and between ties, links, edges, and
lines.

The central task in creating node-link diagrams is to determine
positions for its elements, referred to as the diagram’s layout in
the following. This is because positional differences are the most
accurately perceived graphical attributes (Cleveland and McGill,
1984), and layout with complex dependencies is the most challeng-
ing problem algorithmically. If the layout is of low quality, even the

best graphical design (in terms of using other graphical attributes
such as shape, color, size, etc.) or interaction mechanisms can only
attenuate the problems of  poor legibility and interpretation arti-
facts.

While graph structure is represented completely in plain node-
link diagrams, the other attributes of  a network can be incorporated
by varying graphical attributes as mentioned above. Clearly, these
choices are more dependent on the data and context, and in general
easier to implement.

2.1.  Graph layout

In  addition to distinct vertex positions to avoid ambiguity,
the following objectives are  commonly considered relevant for
application-independent layout (Bertin, 1983; Purchase et  al.,
1997).

• Edges  should be of more or  less the same length.
• Vertices  should be distributed well over the drawing area.
• The number of meaningless edge crossings should be kept small.
• Symmetries in graph structure should be visible in geometric

symmetries.

For  specific applications and purposes, there may  be many more
criteria to observe. For most of  them, optimization is computa-
tionally intractable even in isolation, at least for general graphs.
Since, in addition, the various criteria are  frequently contradictory,
general-purpose graph-drawing algorithms are usually heuristic in
nature.

Even though social networks exhibit some general tendencies
such as sparseness and local clustering, they do not constitute a
formally boundable class of graphs that allows for specific opti-
mization algorithms. Due to their general applicability, conceptual
simplicity, wide availability, and ability to produce satisfactory
results in general, the most popular class of  methods used for
social network layout are force-directed or  energy-based methods
(Brandes, 2001), colloquially known as spring embedders (Eades,
1984).

The most widely available, and often only, layout algorithm in
common software tools for social network analysis is the spring
embedder variant of  Fruchterman and Reingold (1991). It  is a force-
directed method in which a graph is likened to a physical system
of repelling objects (the vertices) and springs of a given length
(the edges) binding adjacent vertices together. Vertices are iter-
atively repositioned based on the forces exerted on them, so that
the system moves toward a force equilibrium. The approach is easy
to implement and yields acceptable results for small graphs, and
it can be tuned for specific purposes by introducing additional or
alternative forces.

There  is,  however, clear experimental evidence (Brandes and
Pich, 2009) that this and related force-directed methods do not
scale well to larger graphs, both in  terms of quality and efficiency.
It is almost ironic that a current variant of the earliest computer-
implemented method for drawing social networks (Kruskal and
Seery, 1980, already applied in the late 60s), turns out to be far
superior.

This favorable approach, known as stress minimization, is an
instance of a family of  dimension-reduction methods referred to as
multidimensional scaling (see, e.g., Cox and Cox, 2001). It is based on
an objective function called stress (Kruskal and Wish, 1978) and was
re-popularized in  graph drawing by Gansner et al. (2004). Details
are given next, but it  should be noted that the same objective func-
tion was  also used in the spring embedder of Kamada and Kawai
(1988), although with an inferior minimization method.
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2.2. Stress minimization

We  next describe the workhorse of  our approach, stress min-
imization, in detail. Let G = (V, E) be an undirected graph defined
by a set V of n vertices, and a set E of m edges. Given a matrix D
of vertex dissimilarities ıij,  i, j  ∈ V, the purpose of  stress minimiza-
tion is to determine positions pi = 〈xi, yi〉 ∈ R

2 for every vertex i  ∈ V
such that the Euclidean distances in the plane resemble the given
dissimilarities as closely as possible, i.e.,

ıij ≈ ‖pi − pj‖,

where || · || denotes the Euclidean norm. For  any given layout P = (p1,
. . .,  pn) this is quantified using a parameterized stress function
stress(P),

stress(P) =
∑
i<j

ωij(ıij − ‖pi − pj‖)2, (1)

where  W = (ωij)i,j ∈  V
is a weight matrix whose entries determine

the contribution of each pair i, j ∈ V. Since stress is defined as the
weighted sum of squared distance-representation errors, the objec-
tive is to find a layout of minimum stress.

In graph drawing, graph-theoretic distances (i.e., lengths of
shortest paths) are  a plausible choice for dissimilarities (Kamada
and Kawai, 1988; Gansner et al.,  2004). The stress term of each
dyad then corresponds to the squared error of representing a
shortest path as a  straight line with unit length edges. Because
these distances are clearly not realizable for any non-trivial graph,
weights ωij = ı−2

ij
discount representation errors for distant pairs,

thus emphasizing local accuracy.
Since no closed form is known to compute a layout with min-

imum stress directly, the approach appears to share some of  the

drawbacks of  other force-directed methods. In particular, itera-
tive stress reduction in general only yields a  local minimum which
may be far from an optimal layout. The experiments of  Brandes
and Pich (2009) suggest, however, that  low-stress layouts can be
obtained routinely and efficiently using a two-step process: In
the first step, an initial layout is determined using classical scal-
ing (Torgerson, 1952), the initial, spectral-decomposition variant of
multidimensional scaling that  has an essentially unique solution in
which large distances are represented well, and that can be approx-
imated very quickly (Brandes and Pich, 2007). In the second step,
the representation of small distances is improved by  iteratively and
monotonically reducing the stress using an optimization technique
called majorization (de  Leeuw, 1977) that can be implemented by
a simple, localized process moving one vertex at a time and con-
sidering only a  sparse version of  the stress function. See Gansner et
al. (2004) for details.

The  kind of  results obtained is illustrated in Fig. 1, using four
observations from our running example.

We will  not elaborate on  algorithmic issues any further, but
would like to emphasize that stress minimization is reasonably
easy to implement, and yields much better results than other
force-directed methods (Brandes and Pich, 2009), including multi-
level approaches (Walshaw, 2001; Gajer et al.,  2004; Hachul
and Jünger, 2004). At  the same time the method is very flexi-
ble, because there are several degrees of freedom that  allow for
sophisticated layout modeling. We  may  alter the given network’s
structure resp. stress terms, admissible positions, dissimilarities,
and weights to incorporate hard and weak constraints (see, e.g.,
Dwyer et al., 2008; Gansner and Hu, 2008; Brandes and Pich,
2011).

Indeed, this will  be our approach for both, dynamic layout and
visual model assessment, as described below.

(a) (b)

(c) (d)

Fig. 1. Four observations of an acquaintanceship network laid out using stress minimization. Red circles represent female students, whereas blue triangles represent males.

If  an acquaintanceship tie is reciprocated, it  is represented by a thicker line segment, otherwise an arrow indicates the direction of nomination. Some vertices are indexed

for  later reference. (a) Wave 6,  (b) Wave 7,  (c) Wave 13 and (d) Wave 14. (For interpretation of the references to color in  this figure legend, the reader is referred to the web

version  of the article.)
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Fig. 2. Knowledge of future changes can inform the choice between otherwise

equally  good layouts. (a) Unfortunate and (b) fore-sighted.

3. Dynamic network visualization

While  producing layouts of  single networks can already be
challenging, determining coherent layouts for several observations
of a longitudinal network is even more difficult (Branke, 2001).
This is because, in addition to the criterion of faithfully display-
ing structural properties, the sequence of  layouts should convey
the evolution of the network.

The  latter is facilitated by maintaining an  observer’s mental
map (Misue et al., 1995; Saffrey and Purchase, 2008; Purchase
and Samra, 2008). The goal is to ease comparison between a state
and its predecessor by largely retaining those parts of a draw-
ing in which little structural change occurred, so that the time a
viewer spends on familiarizing with the drawing is not wasted.
Since layout algorithms for the static, single-graph case are  based
solely on the current graph’s structure, they have to be modified to
strike the right balance between structural changes and positional
stability.

Two scenarios need to be distinguished, because they differ in
the amount of information available when a layout is determined.
Either, the entire sequence of graphs is known in advance, i.e.,
before any layout is required (generally referred to as offline sce-
nario, graphs are given together), or  future graphs are unknown at
the time that an intermediate state is to be laid out (online scenario,
graphs are presented to the algorithm one at a time). In an online
scenario, it is more difficult to maintain dynamic stability, because
future changes are not known at the time that vertices have to be
placed.

Let us illustrate this phenomenon by the small example in Fig. 2
consisting of a 4-star in the first observation, and an additional
tie between the two  gray vertices in second observation. In an
online scenario, there is no preference for any of the two  lay-
outs of the first observation, whereas in an offline scenario we  can
actually choose the one that will lead to better quality and less
movement.

We will take advantage of the fact that the sequence of  graphs
that constitute a longitudinal social network is usually known in
advance, and therefore assume to be in an  offline scenario for the
remainder of this paper.

The  simplest (and most common) approaches to take stabil-
ity into account are based on  variants of the spring embedders
of Fruchterman and Reingold (1991) or  Kamada and Kawai
(1988), in which the iterative computation for each graph in the
sequence is initialized with the preceding layout (Bender-deMoll
and McFarland, 2006; Huang et al.,  1998; Geipel, 2007; Groh et  al.,
2009). An implicit assumption is that consecutive graphs are  simi-
lar in general, so that the initial layout is not too  far from a locally
optimal one. The method is therefore easy to implement, more effi-
cient than computing a layout from scratch, and applicable in both
on- and offline scenarios. Note also that both algorithms repeat-
edly move one vertex at a time to improve the current layout,
thereby creating trajectories from the initial to the final position.
These may  be useful for animation. In practice, however, linear

or  sinusoidal coordinate interpolation offer better control and are
more commonly used to determine such trajectories. More sophis-
ticated transition methods are  described, for instance, in Friedrich
and Eades (2002); Friedrich and Houle (2002); Nesbitt and Friedrich
(2002).

Inspite of  the convenient properties enumerated so far, the
approach is rather problematic, because it does not address sta-
bility in a controlled way  and may  hence result in  excessive and
unnecessary movement of vertices. Moreover, by failing to make
use of the existing knowledge about the future in offline scenarios,
the approach is biased towards earlier configurations, and there-
fore prone to suffer from poor local minima precisely as already
illustrated in Fig. 2. Hence, layout quality tends to degrade over the
course of  the sequence.

Among  the first to address stability directly were Böhringer and
Paulisch (1990), and North (1996) provides a generic problem state-
ment. The trade-off between readability and stability is formalized
in Brandes and Wagner (1997) and a similar principle for offline
scenarios is proposed in Diehl and Görg (2002). Current proposals
generally take one of the following three approaches.

Aggregation. All graphs in the sequence are aggregated into a single
graph  that has one vertex for each actor. The position of  each indi-
vidual  vertex instance in the sequence is determined from a  layout
of  the aggregated graph. This approach is used, e.g., in Brandes
and  Corman (2003), Dwyer and Gallagher (2004), and Moody et al.
(2005).
Linking. All graphs in the sequence are combined into a single graph
that has one vertex for each occurrence of an  actor, and an edge
is  created between vertices representing the same actor in  con-
secutive graphs. A layout of  this graph directly yields positions for
all vertex instances in the sequence. This approach is used, e.g., in
Dwyer and Gallagher (2004), Erten et al. (2004), and Dwyer et al.
(2006).
Anchoring. Using auxiliary edges, vertices are  connected to immo-
bile  copies fixed to a desired location which may  be, for instance,
the  previous position in an online scenario, or a reference position
in  an offline scenario. This approach is used, e.g., in Lyons et al.
(1998),  Brandes and Wagner (1997), and Frishman and Tal (2008).

Since the method advocated here is a combination of aggrega-
tion and anchoring, we describe in more detail how these can be
instantiated in  a stress-minimization framework.

3.1. Aggregation

Maximum stability is obtained when a vertex maintains its posi-
tion throughout the entire sequence of  diagrams. This is called the
flip book approach in  Moody et  al. (2005). We  argue that suitable
positions can be obtained by  applying stress minimization to an
aggregation of the input sequence.

Given a sequence G(1) = (V, E(1)), .  .  .,  G(T) = (V, E(T))  of T graphs
with  corresponding dissimilarities D(t),  1 ≤ t ≤ T, we  are to deter-
mine layouts P(1), . .  ., P(T) such that a  vertex is placed at the same
position throughout. In other words, we  are looking for one layout
P for the vertices in V and let P(t) = P  at all times t = 1, .  .  .,  T.

We combine all shortest path information into a single stress
function using the mean shortest path distance per dyad, and use
the same position variables pi for each instance i(t) of the same
actor i:

stress (P) =
∑
i<j

ωij(ı̄ij − ‖pi − pj‖)
2
,  (2)
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where D̄ = (ı̄ij)i,j  ∈ V
, ı̄ij:= 1

T

∑T
t=1

ı(t)
ij

, contains the mean shortest-

path distances, and

ωij = 1

ı̄2
ij

· 1

1 + var(ıij)
,

where var(ıij):= 1
T

∑T
t=1

(ı(t)
ij

− ı̄ij)
2

is the variance of distances

within a dyad across all observations. Thus, representation accu-
racy of dyads that are connected via short paths most of  the time
is emphasized. By  additionally scaling with the variance, prior-
ity is given to structures that are relatively stable throughout the
sequence.

Since, technically, the aggregate stress function consists of the
same type of terms as before, we can also use the same algorithms
for its minimization: layout computation is initialized by classical
scaling of mean distances in the aggregated graph, i.e., a graph with
all vertices and an edge between two  vertices if this edge exists
in any of the observations. Subsequently, stress (P) is reduced via
majorization.

We require that the aggregated graph is connected, otherwise
the data is split into connected components, and layouts are cal-
culated separately for each of  them. Note  that it  may  still be the
case that some individual networks of a sequence contain multi-
ple disconnected components, resulting in infinite distances and
undefined weights. Being in an  offline scenario, other observations
can be used to fill in gaps as follows. An infinite distance in a
dyad is replaced by interpolating between the two finite distances
observed previously and next for this dyad, and by adding a  small
constant, say 1, to emphasize temporary disconnectedness. Let t−

ij

be the most recent and t+
ij

be the next observation in which actors

i and j have finite distance ı
(t−

ij
)

ij
and ı

(t+
ij

)

ij
. Then the interpolated

distance for dyad {i, j} is

ı(t)
ij

= (1 − ˇ(t)
ij

)ı
(t−

ij
)

ij
+ ˇ(t)

ij
ı

(t+
ij

)

ij
+ 1,

where ˇ(t)
ij

= (t − t−
ij

)/(t+
ij

− t−
ij

). In the special cases that  there is no

last or next finite distance, we do not interpolate, but use the one
existing finite distances distance plus the same constant. Although
unlikely, it may  happen that a dyad has infinite distances at all
times, even if the aggregated graph is connected. In this case, a
sufficiently large distance � with a small weight ˝  is used. We
suggest �

√
n and  ̋ = 1/n with n the number of vertices. This is in

analogy to the height and width of an equally spaced grid with n
points.

The resulting aggregate layout for our running example is given
in Fig. 3, and Fig. 4 contains samples from the corresponding
sequence of diagrams.

The  relatively stable major groups, i.e., the female groups around
Actor A, and above Actor B, the male group around Actor E, and the
mixed group involving Actor D and Actor F, are discernible. Due
to perfect stability, occurrences of the same actor are easily inden-
tified in each of the subfigures of Fig. 4.  However, a comparison
with the layouts obtained by regular stress minimization shown in
Fig. 1 reveals that this extreme stability comes at the price of  less
desirable individual layouts:

• Subconfigurations  may  appear to be placed oddly at times. An
example  is the group around Actor A in  Waves 13 and 14, where
it  would be expected to lie closer to the group to which it con-
nects  through Actor B. Its position leads to unnecessary long links
representing the strong ties to Actor B  that have been established
by  then. These also create much clutter in the group belonging to
Actor F. See Fig. 1(d) for comparison.

Fig. 3. Global layout obtained by  aggregation with mean distances. An edge is drawn

if two vertices are adjacent in any graph of the input sequence.

• The  almost bipartite structure of the group around Actor A  that
could  be observed in Fig. 1(d) is hardly recognizable.

• Actor  C starts out being connected to an actor at the very bot-
tom,  but then links up with an actor further up. Since this new
neighbor is far away from the first neighbor, any reasonable con-
stant  position can only result in  either an awkward or a long link
connecting  Actor C.

• Actor  D and Actor E exhibit a  very volatile connection, resulting
in  corresponding changes of geometric distances between them
in  Fig. 1. Although this volatility can be observed in the aggregate
layout, it might be easily missed if the actors were located in
denser regions.

These qualitative examples are corroborated by quantitative
measurement; for  instances, stress of the layout of  Wave 6 and
Wave 7 as measured by Eq. (1) is almost twice as high as in  the  cor-
responding layouts of Fig. 1, and more than thrice as high for Wave
13 and Wave 14. Because of the complex dependencies between
structural characteristics, change, and relative positions, a compre-
hensive quantitative evaluation is beyond the scope of this work,
though.

The above examples nevertheless illustrate that fixed positions
are helpful in building a  mental map  of the overall configuration,
but that it  is desirable to allow for at least small deviations to rep-
resent better the specific configurations at individual time points.

3.2.  Anchoring

The  main idea of the Bayesian approach to online dynamic graph
drawing (Brandes and Wagner, 1997) is an  explicit modeling of the
trade-off between layout quality as measured by an objective func-
tion, and layout stability with respect to the previous drawing as
measured by a difference metric (Bridgeman and Tamassia, 2000).
A conceptually similar, though computationally more demanding
approach using instability thresholds for  offline scenarios is pro-
posed in Diehl and Görg (2002). Our approach here is a direct
translation of the former, and a computationally more efficient
variant of  the latter.

Concretely,  we use the aggregation approach of  Section 3.1 to
obtain a reference layout that serves as a  baseline for representing
stable overall structures, and thereby facilitates the formation of a
persistent mental map. For each individual graph in the sequence
we do,  however, allow deviations from reference positions if they
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(a) (b)

(c) (d)

Fig. 4. Four observations of the acquaintanceship network using aggregation layout. While stability is perfect, there are inherent drawbacks as exemplified by labeled vertices

(see  main text). (a) Wave 6,  (b) Wave 7,  (c) Wave 13 and (d) Wave 14.

lead to improved representation of momentary structures. A stress
function quantifying this compromise is

stress˛ (P(t)) = (1 − ˛) ·
∑

i<j
ω(t)

ij

(
ı(t)

ij
−

∥∥∥p(t)
i

− p(t)
j

∥∥∥)2

︸ ︷︷  ︸
individual layout quality

+  ̨ ·
∑

i
�(t)

i

∥∥∥p(t)
i

− pi

∥∥∥2

︸  ︷︷ ︸
stability

,

where P = (pi)i  ∈ V denotes the reference layout determined as

described in the previous section, and weights �(t)
i

allow for inter-
vertex variation in deviation tolerance.

The stability term thus corresponds to a pointwise penalty for
deviations from the reference layout, and the parameter 0 ≤  ̨ ≤ 1
provides explicit control of  the trade-off between quality (original
stress) and stability. Note that minimizing stress˛ for  ̨ = 0 corre-
sponds to regular stress minimization without control for stability,
and  ̨ = 1 corresponds to the aggregation method, since no devia-
tion from the reference layout is tolerated.

Besides modeling stability explicitly as a layout objective, two
additional measures are taken. First, we initialize individual layout
computation with the reference layout for the first observation, and
with the layout of the preceding observation for subsequent ones.
Assuming that consecutive observations are structurally similar,
stress minimization is expected to reach a similar local minimum as
for the preceding observation. Hence, ambiguities will  be resolved
in favor of the preceding layout if deviations from the reference
layout must occur due to structural changes. For the same reason

we  may  also expect that only few iterations are needed to com-
pute a  layout. Second, we postprocess the layout thus obtained
using Procrustes rotation (Sibson, 1978), i.e., by applying an  affine
transformation that minimizes the sum of squared deviations from
reference positions without changing relative distances.

For  now, we use constant stability weights �(t)
i

:=1  for all  i and t.
More sophisticated choices, however, may  be useful to compensate
for cases with highly varying degrees or localized structural change.
Another potential use of stability weights is as normalizing factors,
such that the quality and stability part in stress˛ are  on equal scales,
and thus, parameter  ̨ can be interpreted more easily in between its
extreme values. More technical and user-oriented experimentation
is needed, though, to quantify dependencies on  these parameters.

All  15 networks of our running example are shown in Fig. 5, now
laid out using moderate anchoring with reference positions taken
from the aggregate layout of Fig. 3.  Although more effort is needed
to trace vertices from one layout to the next, major substructures
remain stable and the individual quality of layouts has improved
notably.

This is confirmed when considering the issues we had with con-
stant layout in the previous section. The groups of Actors A and B
move towards each other when they start being connected (Waves
11–15). The near-bipartite structure of the group involving Actor
A in  Wave 14 is apparent. Movement highlights the changing affil-
iations of Actors C and the volatile connection between Actor D
and Actor E. While it  is more difficult to locate them in individ-
ual layouts, deviations from their reference position are actually
meaningful and therefore considered desirable.

Finally, we want to demonstrate the benefits of using offline
information. Compare the results of anchoring at reference



297

(a)

(b) (c)

(d) (e)

Fig. 5. All waves of  the acquaintanceship network drawn by anchoring with aggregate layout as a  reference (stability at  ̨ =  0.15). (a) Wave 1, (b)  Wave 3, (c) Wave 2, (d)

Wave  4, (e) Wave 5,  (f) Wave 7,  (g) Wave 6,  (h) Wave 8,  (i)  Wave 9, (j) Wave 10, (k) Wave 11, (l) Wave 13, (m)  Wave 12, (n) Wave 14 and (o) Wave 15.

positions from an  aggregation layout (Fig. 5)  to an online
approach based on initialization with the preceding layout and
no control for stability (Fig. 6). Note that the latter is simi-
lar to the online approach provided by the SoNIA1 software
tool (Bender-deMoll and McFarland, 2006), since the method
employed there is conceptually the same, as is the basic objec-
tive function, stress, when using the Kamada-Kawai option
(MultiCompKK).

Both approaches result in  a similar configuration for Wave 10.
In Wave 11, the group of  Actor A establishes lasting connections to

1 http://www.stanford.edu/group/sonia/.

the groups of Actor B and momentary connections to the group of
Actor E, forcing the groups to move towards each other. The online
approach results in a  positioning of  the group of  Actor A below the
group of Actor F in  Waves 11 and 12. However, with the dissolution
of the momentary connections in Wave 13, those groups are forced
to flip around each other, creating excessive movement between
observations.

Anchoring with reference positions from an aggregation layout
exploits offline information to avoid the need for such flips, and
thus eliminates some movement that indicates structural changes
inappropriately. Observe that there is much less difference in  the
configuration of substructures than suggested by the large move-
ments in  the online scenario.
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(f) (g)

(h) (i)

(j) (k)

(�) (m)

(n) (o)

Fig. 5. (Continued).
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(a) (b)

(c) (d)

Fig. 6. Waves 10–13 of our running example drawn by a  common online approach. Substructures are similar, but the offline method (Fig. 5) avoids the need for flipping

subgroups  such as the ones associated with Actors A and F from Wave 12 to 13. (a) Wave 10, (b) Wave 11, (c)  Wave 13 and (d) Wave 12.

4. Stochastic actor-oriented models

Today, stochastic actor-oriented models (SAOMs) (see, e.g.,
Snijders, 2005, 2001) are the primary tool for the analysis of longi-
tudinal social networks. Given panel data, i.e., sequences of network
observations at discrete time points, as input, it  is supposed that an
unobserved evolution process took place inbetween consecutive
states. The process model is composed of  network-specific rules
such as reciprocity, triadic closure, or homophily, and these rules
are referred to as network effects. The aim of an analysis is to identify
network effects that  explain the observed evolution.

We briefly introduce the model in  its simplest form, with only
two consecutive network observations. For a detailed introduc-
tion and extended actor-oriented models see Snijders et al. (2010b,
2007) and Steglich et  al. (2010).

Let V = {1, . . .,  n} denote the fixed set of actors, and AV the set of
all adjacency matrices over V, i.e., for a matrix A ∈ AV we have entry
aij = 1 if there is a tie from i  to j,  and aij = 0 otherwise. Note that  we
are dealing with directed graphs from now on. The two  observed
networks are denoted by A(pre), A(post) ∈ AV .

The evolution from A(pre) to A(post) is regarded as a stochas-
tic sequence of elementary changes, called micro-steps, that are
performed consecutively by randomly chosen actors. An actor is
allowed to either create a single new outgoing tie, delete a single
existing outgoing tie, or not change any tie at all. When an actor is
designated to perform the next micro-step, probabilities of all  fea-
sible micro-steps are determined by the current network structure
A(cur) and do not depend on previous states. These model assump-
tions are realized in a continuous-time Markov process on state
space AV that is starting from the first observation, A(pre).  The tran-
sition probability from the current state A(cur) to a possible next
state A is positive only if the two networks differ by at most one tie

aij for which i  is the actor designated to perfom the next micro-step.
Since actors are  assumed to strive for improving their position in
the network, the transition probability from A(cur) to A depends on
the position enhancement achieved by changing to aij rather than
any other feasible option.

The  assessment of an actor i’s position in a network A is accord-
ing to an objective function fi : AV → R  that  is assumed to be of  the
form:

fi(�;  A) =
K∑

k=1

�k · ski(A), (3)

where  each (sk1,  . .  .,  skn)T, 1 ≤ k ≤ K, is a vector of  statistics repre-
senting network effects, and �  = (�1, . . . ,  �K ) ∈ R

K are associated
model  parameters. The latter are fitted to the observed data,
assuming that actors strive to maximize their objective function.
Uncertainty stemming from the potential influence of chance and
other unknown factors is usually represented by a random term
added to the objective function, but is not important for the purpose
of this paper.

Specifically, statistics ski(A) count the number of occurrences
of configurations in A that actor i  is part of, and thus represent the
k th network effect. The selection of network effects is referred
to as the model specification. Some common statistics are the
number of

outgoing ties: s1i(A)  =
∑n

j=1
aij

reciprocated ties: s2i(A)  =
∑n

j=1
aijaji

transitive ties: s3i(A)  =
∑n

j=1
aij · maxl /=  j,i(ailalj)

actors at distance two: s4i(A)  =
∑n

j=1
(1  − aij) ·  maxl /=  j,i(ailalj)

transitive  triplets: s5i(A)  =
∑n

j=1

∑n

l=1
aijailalj

3-cycles: s6i(A)  =
∑n

j=1

∑n

l=1
aijajlali
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Such statistics indicate local rules of  network evolution. Note
that the entire formulation implies a rather strong assumption,
namely that actors are homogenous in the sense that the same rules
are working for them in the same way.

For illustration, consider three actors i, j1, j2 with i intending to
connect with either j1 or  j2. Assume that the network positions of  j1
and j2 are equivalent, except that there exists a tie  from j1 to i,  but
not from j2. In this setting, a positive reciprocity parameter (i.e., a
positive weight �2 for the above s2i) implies that i  is more likely to
connect with j1 than with j2.  A negative parameter would imply the
opposite. In the following, we identify a  model with its parameters
�.

Given a model � and an  initial network A(pre),  the evolution
predicted by � can be simulated via a sequence of micro-steps
conforming to the above rules. We  denote such a sequence by
S(�, A(pre)). One possible condition for terminating the simulation
is that the current network state A(cur) differs from A(pre) in  the
same number of dyads as A(post). The probability that  a network
A ∈ AV is the final state of a simulation S(�, A(pre)) depends on �, so
that � induces a probability distribution over all  networks in  AV

conditional on A(pre).
Among several methods for fitting � to observed data (Snijders,

2001; Snijders et al., 2010a; Koskinen and Snijders, 2007), the one
most commonly used is an instance of  the Method of Moments
(Snijders, 2001).2 Parameters are  determined to match statistics:

sk(A(post)):=
n∑

i=1

ski(A
(post)), 1 ≤ k ≤ K, (4)

of  the second observation A(post) as closely as possible to their
expected values in predicted networks. Since the model is too com-
plicated to determine expected values precisely, they are estimated
from simulations. Therefore, the aim is finding parameters �  that
satisfy the moment equations

E�[Sk] = sk(A(post)), 1  ≤ k  ≤ K, (5)

where  Sk is a random variable for the value of sk in a  network
resulting from a simulation S(�, A(pre)).

5. Diagnostic visualization

Based  on the view that a  SAOM �  induces a probability distri-
bution over AV , we say that �’s predictions fit the observed data if
A(post) is highly probable under the distribution implied by �, i.e., if
it is likely that A(post) is the result of  simulations S(�, A(pre)).

There are several potential causes for poor representation of
data. The main issue is model mis-specification, i.e., the inclusion
of effects that are not present in the data or exclusion of effects
that actually drive the evolution process. Inappropriate specifica-
tion is often evidenced by parameter estimates that exhibit large
standard errors or, in extreme cases, by non-convergence of  the
iterative estimation process. A problem that is even more difficult
to cope with is inhomogeneity across actors, because it is hidden
in the aggregated statistics (4). The fact that parameters � do not
depend on individual actors, but are estimated in order to fit the
average behavior of all actors by satisfying the moment equation
(5), basically suggests that all  actors follow the same rules, except
for differences implied by covariates. In many cases, this restrictive
assumption is unjustified and leads to poor models. However, poor
fit caused by inhomogeneity is often not apparent from estimates
and their standard errors because parameters inferred from the
aggregate quantities in (5) do not necessarily exhibit a high level

2 An implementation is available in the R  package RSiena, see http://cran.r-

project.org/web/packages/RSiena/.

of uncertainty, even if occurrences of statistics are  distributed very
inhomogeneously across actors.

In this section, we  introduce methods that allow for visual
exploration of  model predictions and comparison with observed
data. The first method reveals a global impression of model pre-
dictions that can be compared with the observed data in order to
detect regions or structural patterns that are poorly represented.
The second method is especially designed for assessing actor-
inhomogeneity. Contrary to the first method, where the focus is
on the global structure of connections, the second method consid-
ers local statistics in the neighborhood of individual actors. These
graphical methods support model interpretation and can provide
guidance in  proper effect selection in  addition to the significance
tests (Schweinberger, submitted for publication) already integrated
into the Siena program (Ripley and Snijders, 2011).

5.1. Overall fit

Our  first goal is a graphical representation of  the predictions
made by a model. To  assess how well such predictions and the
data that was  actually observed align, the representation shall be
comparable to related visualizations of the observed data. What,
however, is an  appropriate graphical representation for a  distribu-
tion of  networks? And how could it  be displayed whether a network
is typical for a given distribution or  not?

Since the actual distribution is computationally intractable, we
start by sampling from it.  Let  A(1), .  .  . , A(R) ∈  AV be a set of net-
work  samples resulting from R  simulations S(�, A(pre)). In order to
reveal shared characteristics of these samples, such as clustering,
we follow the idea of the stress minimization approach described in
Section 3.1  where, too, information on structural features of several
networks is aggregated into a single layout.

Even in  the context of networks arising from uncoordinated
myopic decisions of independently acting actors, the following
arguments substantiate why  an aggregate layout approach may  be
appropriate. Local actor decisions indirectly depend on each other,
since previous dynamics formed the structure that subsequent
changes depend on. Therefore, actor-oriented models determine
not only local dynamics, but also the global evolution of  network
characteristics. Purely local effects such as, for instance, reciproca-
tion and transitive closure, thus reinforce existing global features
such as segmentations into cohesive substructures and structural
holes. Since the given observation A(pre) seeds an initial global struc-
ture, it  is plausible that a model can not only predict occurrences
of structural patterns but also their topological distribution.

In  analogy to the stress in Eq. (2), we  therefore define a stress
function stresssim based on  shortest-path distances between each
pair of  vertices in all  simulated networks simultaneously. Observe
that it  does not matter that  simulation runs do not have a meaning-
ful ordering as the observations do. Because they are determined
by the same principles, comparison of  such drawings with a  lay-
out of  A(post) based on  the regular stress function yields insight into
structural similarities or differences.

Let ı(1)
ij

, . . . ,  ı(R)
ij

denote the lengths of undirected shortest paths

between vertices i and j  in the graphs of A(1), . . .,  A(R).  If i and j
are in different connected components of  A(r),  we replace the con-

ventional infinite distance by ı(r)
ij

= n,  so that all distance between

distinct vertices are in the range {1,  . . ., n}. Similarly to the aggre-
gated stress function (2), we define a stress function based on
samples A(1),  . . ., A(R) by

stresssim (P) =
∑
i<j

ωij(ı̄ij − ‖pi − pj‖)
2
,  (6)
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(a) (b)

(c) (d)

Fig. 7. How to read layouts based on model predictions (see text). (a) Longitudinal network data, (b) equally probable outcome, (c) layout using observed distances and (d)

layout  using expected distances.

where ı̄ij:= 1
R

∑R
r=1

ı(r)
ij

denotes the sample mean of simulated dis-

tances between vertices i  and j. As in  Section 2.2, local accuracy
should be emphasized by reducing the impact of distant dyads {i,
j} identified by high sample means ı̄ij . Our application also requires
additional emphasis on the influence of highly confirmed distances

indicated by small sample variances s2(ıij):= 1
R−1

∑R
r=1

(ı(r)
ij

− ı̄ij)
2
.

We therefore propose to use weights

ωij:=
1

(1 + s2(ıij))ı̄
2
ij

,

where the newly introduced factor 1/(1 + s2(ıij)) increases the bias
towards faithful representation of local structures, since dyads with
higher average distances usually exhibit larger standard deviations.

Minimization of stresssim yields a layout in which vertices that
are likely (unlikely) to be connected by a short path are  close
together (far apart). Note that (6) does not include any data of
the second observation A(post), but only information resulting from
model-based simulations starting from A(pre). However, if all  sam-
pled networks A(r) were identical to A(post), stresssim would reduce
to the basic stress function of A(post) for static stress minimiza-
tion as introduced in Section 2.2. The layout of  A(post) based on
stresssim would then be equal to the layout based on  graph-theoretic
distances. Therefore, in case of excellent and detailed model pre-
dictions, both methods would yield essentially the same layout of
A(post). In particular, a drawing of  A(post) based on  stresssim would
exhibit short edges, and large distances between pairs of uncon-
nected vertices. Long edges, on the other hand, appear where
graph-theoretic distances are small in the observation A(post), but
not in the samples A(1), .  .  .,  A(R).

We stress that the assessment of model predictions should be
in line with the inferential goal of  SAOMs. This is not the prediction
of individual ties, but the characterization of  local processes by a
limited number of  network effects. Consider, for instance, the lon-
gitudinal network of Fig. 7(a) together with a  model �̄ consisting
of  only two effects, outgoing ties and reciprocated ties. In
this setting, it is equally probable that a  simulation S(�̄,  A(pre))  ends
up in A(post) or in  network A depicted in Fig. 7(b). Therefore, simula-
tions resulting in A do not necessarily invalidate the model even if A
differs from A(post) in one third of all  possible ties. Knowledge about
poorly predicted ties may  well be important for model evaluation,
though, because it may  inform the selection of effects.

To illustrate how our approach can be used for this kind of
assessment, let us  compare a layout of  A(post) based on  observed
shortest-path distances in Fig. 7(c) with a layout of  expected

shortest-path distances in Fig. 7(d). Comparing both layouts, we
recognize that the reciprocated edges connecting the two gray ver-
tices in  Fig. 7(d) are longer than other reciprocated edges in the
same graph as well as corresponding edges in Fig. 7(c). Moreover,
compared to their positions in Fig. 7(c), the white vertex and the
black vertex are closer in Fig. 7(d). The fact  that both pairs are
equidistant in Fig. 7(d) implies that, although only one pair is con-
nected in A(post), both connections are equally probable under the
model �̄.  As already stated, this does not necessarily translate into
poor model-fit, but that  the model fails to predict specific connec-
tions between these actors reliably. If context calls for more detailed
explanations of  observed relations, this may  be seen as a hint at  the
inclusion of  other effects, possibly based on  actor covariates.

To facilitate comparison between layouts for A(post) accord-
ing the observed (stress) and expected (stresssim)  distances, both
computations are  initialized with positions from a layout of A(pre)

according to stress. While this ensures a certain degree of similarity,
we refrain from adding stability via anchoring, because this would
interfere with our reading of the simulation result. Instead, layouts
are aligned using Procrustes rotation, which does not alter relative
distances.

We apply the method to the sixth and thirteenth observation
of our running example. Note however that in case A(pre) is dis-
connected, connections between different components are hardly
predictable by a SAOM. As a consequence, the positioning of  sepa-
rate components can be quite arbitrary and therefore misleading.
Since this is particularly true for singleton components, we omit the
five isolated actors of Wave 6, but continue to refer to the reduced
data as Waves 6 and 13.

The  data was  subjected to the three models listed in Table 1,
with Wave 6 as the initial and Wave 13 as the target observa-
tion. The three models are increasingly complex. While Model 1 is
elementary and dyadic, the additional effects of Model 2 generate
triadic closure and thus the formation and reinforcement of  clus-
ters. Model 3 is a  further refinement representing the formation of
local hierarchies (if  signs are as in our example).

The layout in Fig. 8(a) serves as initialization for visualizing
model predictions by minimizing the modified stress function
stresssim. The resulting layout of Wave 13 based on  simulations of
Model 2 is depicted in Fig. 9(a). To  allow direct comparison, Wave 13
laid out according to stress is shown once more in Fig. 9(b). Layouts
have been aligned by  Procrustes rotation.

Informally speaking, the clustering in  the layouts of  Fig. 9 is quite
similar. The cohesive group of female students including Actor Y  is
easily identified in  both. Other groups such as the males around
Actor Q and Actor S, the females at the top  left, or the mixed
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Table 1

Analyzed models with parameters � estimated using the RSiena package (Ripley and Snijders, 2011) for A(pre) = Wave 6 and A(post) = Wave 13 (ignoring isolates of  Wave 6).

Network effect Model 1 Model 2 Model 3

�  (S.E.) �  (S.E.) � (S.E.)

outgoing ties −1.61 (0.10) −1.95 (0.23) −2.16 (0.23)

reciprocated 2.64 (0.20) 1.96 (0.22) 2.60 (0.29)

transitive ties 1.37 (0.24) 1.05 (0.26)

actors at distance 2 −0.26 (0.06) −0.22  (0.06)

transitive triplets 0.36 (0.09)

3-cycles −0.65 (0.16)

group next to Actor U can be matched as well. However, from their
poor representation in Fig. 9(a) we can conclude that several ties
between groups as  well as ties connecting marginal vertices like V
or T with the center of the network are not predicted well by the
model.

Another salient disparity is the location of  Actor W  who  has
a bridging position between two groups in Fig. 9(b), but is close
to only one group in  Fig. 9(a) This indicates that the model per-
forms badly in predicting the creation of ties between W and the
group at the top left. Note that there were no such connections in
Wave 6. The position of  Q can be explained in a similar way.

A  weakness of this approach is that it  is not always obvious
whether a poor layout, indicated by long edges and close uncon-
nected vertices, is caused by poor model predictions or  by desired
distances that are just difficult to realize in a two-dimensional
drawing.  Therefore, Fig. 10 shows two  complementary diagrams
that are meant to improve interpretability of the layout from
Fig. 9(a).

Fig.  10(a) displays sample means ı̄ij of simulated graph-
theoretic distances between all dyads. E.g., the position of R in
Fig. 9(a) close to the above female group suggests that connec-
tions between this group and R  are likely. But in Fig. 10(a), the two
more suspicious edges incident to R  reveal that its  position is rather

caused  by the realization of desired distances to vertices below it.
Note that peripheral vertices such as V or  T,  exhibit large average
graph-theoretic distances to all other vertices.

Additional information on  model predictions is obtained by  con-
sidering for each pair of vertices i and j  the probability �ij that edge
aij exists in a simulated network A. This probability can be esti-
mated by counting the number of simulated networks in which i
and j are  adjacent, i.e.,

�ij:=
1

R

R∑
r=1

a(r)
ij

.

Even though our previous considerations implied that assess-
ment of model predictions must not be based solely on individual

dyads, the elementary comparison of entries a(post)
ij

with the pre-

dicted probabilities �ij can still be indicative of the plausibility of a
model, where especially the coincidence of  high values of �ij with

absent ties a(post)
ij

points at poor predictions. Moreover, correspon-

dence of  tie probabilities with distances between vertices in the
layout implied by stresssim is another indicator for assumptions on
model predictions.

(a) (b)

Fig. 8. Stress minimization layouts of Wave 6 and Wave 13 based on graph-theoretic distances. Vertices that are isolated in Wave 6 are omitted in both networks. (a) Wave

6  and (b) Wave 13.



303

(a)

(b)

Fig. 9. Comparison between layouts of Wave 13 based on simulated and observed

distances.  The layout in (a) results from modifying Fig. 8(a) by minimizing stresssim

based on Model 2. The layout in  (b) is determined by using regular stress minimiza-

tion based on graph-theoretic distances. (a) Layout based on simulations of Model

2  and (b) layout based on graph-theoretic distances.

Fig. 10(b) displays tie probabilities �ij implied by Model 2. In
general, it indicates that  most edges are  very improbable, and that
most of the highly probable edges are within groups that  existed
previously while edges between groups are rather unlikely with
few exceptions of moderate probability. This is indeed what we
would expect from a model in  which existing groups are  rein-
forced by positive triadic-closure and reciprocity parameters, and
a negative density and distance-2 parameter.

The basic structures in Fig. 10(b) are, as expected, very similar to
those in Fig. 10(a). But there are also differences such as the mod-
erate probabilities of connections between Actor X and two  others,
which are visible in  Fig. 10(b) but not in Fig. 10(a). Apparently, X
is isolated in many simulated networks so that the average graph-
theoretic distances to the two  other actors, and so the Euclidean
distances in the layout, are large, even though direct connections
are fairly probable. Due to this shortcoming, our method may  not be
suitable for extremely sparse networks or for longitudinal data with
great differences between consecutive observations. Our experi-
ences so far suggest that a Jaccard index (see Snijders et  al., 2010b)
higher than 0.5 is a reasonable threshold.

Finally, we use our method to compare the three models listed in
Table 1. Fig. 11 shows for each model the layout determined in the
same way  as in Fig. 9(a). Compared to Fig. 11(b) and (c), where the
layouts reveal several clusters of vertices, vertices in Fig. 11(a) are
homogeneously distributed. This indicates that  the effects included
in Model 1 are not sufficient to predict the observed clustering that,
on the other hand, is clearly identifiable in the predictions of Model

(a)

(b)

Fig. 10. Sample means of shortest paths and tie probabilities implied by simulations

of  Model 2. Color intensities and widths of edges increase with their probability of

existence �ij in (b). In (a) they increase with the inverse of the expected shortest

path  1/ı̄ij between connected vertices.

2 and Model 3.  The additional effects included in Model 3 rein-
force the basic structure already implied by  Model 2, but achieve
no remarkable improvement. In conclusion, Model 2 appears to
strike the best balance between fit and parsimony.

5.2. Inhomogeneity

From  analyzing the overall configuration predicted by a model,
we now shift focus to individual actors. The methods below
facilitate model diagnostics in general, and validation of  actor
homogeneity assumptions in  particular. Thereby, they may  support
improvement of  a model specification.

Stochastic actor-oriented models are estimated in order to
obtain simulated networks that resemble second observation A(post)

in terms of aggregated statistics sk defined in Eq. (4). Considering,
e.g., the outgoing ties effect, simulated networks should con-
tain the same number of ties  as A(post).  Whether these ties are
homogeneously distributed over the entire network or clustered
around some hubs, however, is not differentiated by the summa-
rizing moment Eq. (5). One way  to deal with inhomogeneities is
the inclusion of additional network effects such as popularity or
similarity effects. As a prerequisite, however, the analyst must first
become aware of  them.
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(a) (b)

(c)

Fig. 11. Layouts of Wave 13 based on simulated networks predicted by (a) Model 1,  (b) Model 2, and (c) Model 3.

In the context of exponential-family random graph models
(ERGMs), Hunter et  al. (2008) addresses the problem of  poten-
tial inhomogeneity by  comparing distributions of statistics (e.g.,
the degree distribution) of simulated and observed networks. In
contrast to ERGMs, however, where simulations start from a ran-
dom network and are made to converge to a stationary distribution,
SAOMs start from a fixed initial network A(pre), from which a finite
number of micro-steps leads to the resulting simulated network.
Consequently, actors are distinguishable by their position and the
structure of their environment in  A(pre). This justifies, in  fact, the
assessment of model predictions on the local level of individuals,
as an alternative to the global analysis of distributions of  statis-
tics. To identify actors or groups of actors deviating from model
predictions, we  turn to the fit of  statistics in  the neighborhoods of
individual actors.

Let  � denote a model based on  objective functions fi =
∑K

k=1
�kski

and let A(1), . . . , A(R) ∈ AV be network samples resulting from R sim-
ulations S(�, A(pre)). As in Section 5.1, these sampled networks are
regarded as representative for model predictions. For each actor,
we determine sample means

s̄ki = 1

R

R∑
r=1

ski(A
(r))

of statistics associated with the effects included in the model. To
assess model predictions for individual actors, we are interested
in deviations of these sample means from observed values. Differ-
ences

�ki:=ski(A
(post)) − s̄ki

indicate deficiencies of model predictions for actor i  in terms of
the network effect sk.  While differences are comparable across
actors, they are not comparable across effects, because the  latter
operate on variable scales. Therefore, relative deviations �̃ki are
determined by dividing �ki by estimated standard deviations of
corresponding statistics in the entire network, i.e.,

�̃ki:=
�ki√
vark

with

vark = 1

R

R∑
r=1

(
n∑

i=1

(ski(A
(r)) − s̄ki)

)2

.

This normalization is chosen in analogy to the t-statistics used for
checking the convergence of  the parameter estimation algorithm
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Fig. 12. Wave 13 of the acquaintanceship network with vertex sizes indicating

sums  of absolute deviations of simulated and observed statistics associated with

the effects included in Model 2. The larger a  vertex, the larger its lack of fit.

(see Ripley and Snijders, 2011), which equal the sums
∑n

i=1
�̃ki of

respective relative deviations.
As a heuristic summary measure for the quality of  model predic-

tions for actor i, we here  use the sum of absolute values of relative
deviations |�̃ki|  of all considered statistics,

‖�̃i‖1:=
K∑

k=1

|�̃ki|,

although other definitions such as a generalized Mahalanobis dis-
tance incorporating covariances between effects are conceivable as
well.

Fig. 12 shows Wave 13 of  the acquaintanceship network with
vertex areas proportional to the associated values ‖�̃i‖1 resulting
from Model 2 (see Table 1). Recall that these represent differences of
four effects, outgoing ties (ot),  reciprocated ties (rt), tran-
sitive ties (tt), and actors at distance 2  (ad2), between
the actual statistics in  Wave 13 and those in simulations starting
from Wave 6.

This  helps with comparing the quality of  predictions across
actors and detecting individuals or  groups whose behavior is partic-
ularly deviant from model predictions. In Fig. 12, Z is most salient.
But also the bridging vertices Y, W,  and T are subject to a mismatch
between simulated and observed statistics. From a global view-
point, vertices of the cohesive group around Z  and, in attenuated
form, vertices of the group next to U exhibit particularly high devi-
ations. However, the  causes for the observed inhomogeneities and
therewith possible model improvements are not apparent from this
visualization since it  does not point to the effects that are respon-
sible for poor prediction. This motivates the extension of  the above
idea to separate visualizations for different effects with sizes of
vertices proportional to their relative deviation �̃ki and colors of
vertices indicating the direction of deviation, i.e., whether effects
are over- or underestimated by  model predictions.

Applied to effects not yet included in the model, such diagrams
may indicate whether they are  sufficiently represented by already
included effects or  whether they should be included themselves.
For effects considered in the model, it  is expected that the sum of
deviations over all actors satisfies

n∑
i=0

�̃ki ≈ 0, (7)

since parameters �  are  estimated to satisfy Eq. (5). But deviations
of single actors or subgroups can compensate each other mutually,
such that (7) can be true even though individual deviations are
large. Inhomogeneities thus require detailed inspection as provided
in our visualizations.

Moreover, there may  be actors whose behavior with respect to
some effect is hardly determined by the model such that deviations
from observed values are  caused by uncertainty rather than poor
prediction. For other actors the implied probability distribution
may admit only slight variations of  statistics such that deviations
from observed values indeed contradict the model predictions. The
degree of uncertainty is generally indicated by  sample standard
deviations of respective statistics. The ratio �ki/ssdki, where

ssdki =

√√√√ 1

R  − 1

R∑
i=1

(ski(A(r))  − s̄ki)
2

is the sample standard deviation of  local statistics, indicates
whether it is likely that observed statistics are  sampled from the
model-implied probability distribution. High values indicate con-
tradictions with model predictions, whereas low values can either
result from fitting predictions that yield low values of �ki, or from
indefinite predictions that yield high values of ssdki.

Figs. 13 and 14 show Wave 13 with graphical vertex attributes
representing the quality of  model predictions for individual actors
regarding the four effects ot, rt, tt, and ad2. Visualizations in left
columns illustrate results obtained from Model 1. Right columns
contain results of Model 2.  Areas of vertices are proportional to
absolute values of relative deviations �̃ki. Color indicates the sign
of �̃ki, i.e., whether occurrences of effect-related configurations are
under- (blue) or  overestimated (red) by model predictions. Color
intensity depicts the ratio �ki/ssdki of deviation divided by stan-
dard deviation, so that intensely red- or blue-colored vertices hint
at contradictions with model predictions. Light colors are either
caused by small deviations �ki or by large standard deviations ssdki,
where the two  causes can be distinguished by the size of vertices.
Vertices are white if the absolute value of deviation is lower than
the standard deviation. Note that a light-colored vertex does not
necessarily indicate a  correct prediction but, depending on its  size,
rather indefinite predictions about the associated actor.

Figs. 13b and d, and 14b and d, which represent Model 2,  allow to
distinguish effects responsible for remarkable deviations in Fig. 12.
While all effects contribute to the deviations of  strikingly promi-
nent Actors Z  and T  by  underestimating their activity, W is only
underestimated in terms of effects ot, tt, and ad2, but not in terms
of rt. Likewise, effect ad2 does not contribute to the overestimation
of Y.

The balanced coloring in the graphs representing Model 2
implies that (7) approximately holds for all effects.3 Regarding
Model 1, the same applies to Fig. 13(a) and (c) representing effects
ot and rt. For these effects, which are included in both models,
differences between the two  models are hardly perceivable (see
Fig. 13). For tt  and ad2, in contrast, the two  models yield widely
differing results (see  Fig. 14). Visualizations obtained from Model
1, which includes neither of the two  effects, are highly imbalanced.
Compared to visualizations of  Model 2,  shifts to the extreme range
of the color scale are noted. According to the algebraic signs of
estimates in Model 2, the dominant blue in  Fig. 14(a) indicates
that the observed data contains considerably more transitive ties
than Model 1 predicts, whereas the dominant red in Fig. 14(c) indi-

3 Actually, the graphs exhibit a few more red than blue vertices but most blue

vertices  are slightly larger. Hence, absolute values of  positive deviations are larger

so that the higher number of negative deviations is still balanced.
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Fig. 13. Goodness-of-fit of Model 1 and Model 2 in  terms of inhomogeneity analyzed for individual network effects. The framed boxes in  each diagram indicate the relation

between  vertex sizes and deviations �ki .  The color-scale represents values �ki/ssdki . (a) Model 1: outgoing ties (ot),
∑

i
�ki =  0.30,

√
vark = 10.41; (b)

Model  2: outgoing ties (ot),
∑

i
�ki = 1.45,

√
vark =  10.85; (c)  Model 1: reciprocated ties (rt),

∑
i
�ki = 0.49,

√
vark = 11.53; (d) Model 2: reciprocated ties (rt),

∑
i
�ki =

0.60,
√
vark = 12.41. (For interpretation of  the references to color in this figure legend, the reader is referred to the  web  version of  the article.)

cates an overestimation of the number of indirect neighbors. It  is
remarkable that many vertices indeed have an intense coloring but
their moderate sizes indicate at the same time only small relative
deviations �̃ki. Thus, model predictions for these actors must be
quite definite which results in high values �ki/ssdki due to minor
standard deviations.

A  closer look at the visualizations reveals that Model 2 outper-
forms Model 1 not only in terms of tt  and ad2 but also in terms of
ot and rt. Especially, predictions for actors with considerably more
incoming than outgoing ties in both observations such as U, S,  or
X are improved. This is in line with the parameter estimates of the
two models. Actor S, for example, has six incoming but no  outgoing
ties in Wave 6 and Wave 13, which results in an objective function
value of zero. In Model 1, this value is increased by 1.03 for S, if an
incoming tie is reciprocated. Hence, reciprocation is likely, and this
leads to an overestimation of  ot and rt. In Model 2, any new tie
that S builds decreases his objective function because of  the nega-
tive parameter estimate for ad2. Since no  newly created tie would
be a transitive tie but most would increase the number of indirect
neighbors, the observed behavior of  S gets more likely under Model
2, as conveyed in the visualizations.

The  apparent improvement of  model predictions after inclusion
of tt and ad2 implies that these effects are  not represented indi-
rectly in Model 1. This is further substantiated by  the fact that for
ot and rt model predictions are  hardly affected by the addition of
the two  other effects. Obviously, correlations between the effects
are only moderate, so that it seems advisable to include tt  and ad2
in the model. A similar comparison between Model 2 and Model
3 reveals that the additional inclusion of the effects transitive

triplets  and 3-cycles yields only slightly improved predictions
for a few actors.

6.  Discussion

We  have presented methods for explorative and diagnostic visu-
alization of longitudinal social networks.

Explorative visualization of  longitudinal social networks was
treated as an  offline dynamic graph-drawing problem, and a
corresponding instantiation of the generic stress-minimization
framework  for graph layout was  proposed. Using anchoring at ref-
erence positions from a  layout of the aggregate graph, intermediate
layouts produced by our method represent a compromise between
individual layout quality and persistence of an overall organization.

In summary, this method serves to visually explore the evo-
lution of a dynamic network. Aggregation facilitates getting an
overview of global structure, whereas anchoring provides explicit
control over the  balance of readability and stability, and therefore
allows to put emphasis on the specifics of individual networks in
the sequence. It should be noted, though, that the approach is based
on the implicit assumption that there actually exists a relatively
constant global organization.

Directions  for future work therefore include the development
of variant approaches for other scenarios by taking advantage of
the flexibility of stress minimization. Also, more experimentation
is needed to guide tuning of  involved parameters by considering
the type of structural change present in  the longitudinal network
at hand.
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(a) (b)

(c) (d)

ikΔikΔ
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Fig. 14. Goodness-of-fit of Model 1 and Model 2 in terms of inhomogeneity analyzed for individual network effects. The framed boxes in  each diagram indicate the relation

between  vertex sizes and deviations �ki . The color-scale represents values �ki/ssdki .  (a) Model 1: transitive ties (tt),
∑

i
�ki = −79.80,

√
vark =  12.85;

(b)  Model 2: transitive ties (tt),
∑

i
�ki = 1.48,

√
vark =  13.03; (c)  Model 1: actors at distance 2 (ad2),

∑
i
�ki =  362.87,

√
vark = 58.36; (d) Model 2: actors at distance 2

(ad2),
∑

i
�ki = 1.40,

√
vark = 54.61. (For interpretation of  the references to color in this figure legend, the reader is referred to the web  version of  the  article.)

In the modeling-related part  of the paper, we have shown that
layouts representing predictions from stochastic actor-oriented
models can be obtained by aggregating over a set of  simulated
networks rather than a  sequence of  observations. By  combining
all information on  dyadic predictions into one layout, an impres-
sion of the predicted global structure is conveyed. Our approach
does assume that simulation results exhibit a certain degree of
similarity in terms of  their global structure, although this is not
directly ensured by the model’s inferential goal of  identifying local
processes. We  argued, however, that conditioned on the initial
structure in the first observation and because of dependencies of
dynamics on previous changes, local processes often do yield glob-
ally similar patterns. This may  no longer hold if observations differ
in, say, more than half of the dyads, but this would also be a problem
for the models themselves.

Our  second diagnostic method focuses on the correspondence
of predictions and observations on  the actor level by  visualizing
discrepancies between simulated and observed local statistics. The
aim is to either evaluate homogeneity assumptions or  to detect

outliers  or  groups of actors with deviant behavior in order to ana-
lyze their shared characteristics. The latter may indirectly suggest
model alterations, and one particular use-case is to experiment
with additional effects not yet included in a model. Note that,
because of  the  Markov property of  SAOMs, both diagnostic methods
extend to more than two observations.

The visualization methods presented here are to facilitate visual
exploration of data and models. Clearly, experimentation and fur-
ther refinement will be necessary to better assess their utility. The
inherent flexibility of the basic layout engine, stress minimization,
may carry over to related visualization problems, and we plan to
look at exponential-family random graph models (ERGM; see, e.g.,
Snijders et al.,  2006) in particular.

Most  of  the methods described here are already available within
visone,4 a software tool for network analysis and visualization, and
more will be added.

4 http://www.visone.info/.
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