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Extrapolative Simulation of Neighborhood Networks based on Population Spatial 

Distribution:  Do they Predict Crime? 

Abstract 

Objectives:  Previous criminological scholarship has posited that network ties among 

neighborhood residents may impact crime rates, but has done little to consider the specific ways 

in which network structure may enhance or inhibit criminal activity.  A lack of data on social ties 

has arguably led to this state of affairs.  We propose to avoid this limitation by demonstrating a 

novel approach of extrapolatively simulating network ties and constructing structural network 

measures to assess their effect on neighborhood crime rates.   

Methods:  We first spatially locate the households of a city into their constituent blocks.  Then, 

we employ spatial interaction functions based on prior empirical work and simulate a network of 

social ties among these residents.  From this simulated network, we compute network statistics 

that more appropriately capture the notions of cohesion and information diffusion that underlie 

theories of networks and crime.   

Results:  We show that these network statistics are robust predictors of the levels of crime in five 

separate cities (above standard controls) at the very micro geographic level of blocks and block 

groups.   

Conclusions:  We conclude by considering extensions of the approach that account for 

homophily in the formation of network ties.   

 

Keywords:  neighborhoods, crime, social networks, spatial effects, simulation 
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Extrapolative Simulation of Neighborhood Networks based on Population Spatial 

Distribution:  Do they Predict Crime? 

 

A recurrent theme in the ecological study of crime is the theorized importance of social 

networks among residents for crime reduction.  These theories are generally built on the premise 

that the social interactions among residents allow them to band together to provide informal 

social control that can help to reduce the level of crime in a neighborhood (Bursik 1988; 

Sampson and Groves 1989; Shaw and McKay 1942).  It is sometimes posited that the structure 

of network ties leads to neighborhood cohesion and a willingness to provide informal social 

control in response to deviant behavior.   

 Although some theories have pointed to the possible importance of social networks for 

impacting the ecology of crime, prior research has given little consideration in to the actual 

structure of such networks.  This is arguably in a large part due to data limitations.  Nonetheless, 

the consequence is that little consideration is given to the specific structural characteristics that 

enable phenomena such as cohesion or collective efficacy (the sense that one’s fellow residents 

are willing and able to act towards the common interest) to arise (Sampson, Raudenbush, and 

Earls 1997).  Instead, studies typically measure some approximation of the number of ties in the 

neighborhood.  However, this ignores the rich tradition in the social network literature of 

assessing how various network structural characteristics impact such phenomena as information 

flow and cohesion—both important in various criminological theories of neighborhood crime.  

There is thus substantial potential to advance understanding of neighborhood crime processes by 

better exploiting the large body of knowledge in this area.  Indeed, a few studies in the 

neighborhoods and crime literature have attempted to create proxies of the network structure by 
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measuring the reported strength of ties under the hypothesis that the presence of more weak ties 

is indicative of a more expansive network (Bellair 1997).  Our study extends this literature by 

constructing explicit measures of the network structure.   

The lack of available empirical data regarding these questions is due to the formidable 

data and cost challenges:  assessing many network properties of theoretical interest requires a 

census of all persons in the city, as well as the spatial distribution of all of their ties, and 

therefore typical sampling-based survey strategies are not appropriate.  Clearly, this is 

impractical for researchers.   

The present study addresses this challenge with a novel approach:  we extrapolatively 

simulate networks from census and other data sources, and employ properties of the simulated 

networks to make empirical predictions regarding crime rates.  Recognizing that the existing 

criminological literature implicitly focuses almost exclusively on one social network measure 

(mean degree) in studying the effect of networks on crime rates, we will consider several social 

network measures that capture mechanisms predicted by criminological theory.  Although our 

approach may appear somewhat unconventional at first glance, we argue below that numerous 

prior studies in the neighborhood and crime literature have implicitly used a very simple 

“simulation” model of social tie choice, and then considered only the network measure of density 

in testing the effect on crime rates.   

Although accounting for all of the processes that generate social ties within a community 

is a potential future direction for the method we employ, we view the present study as a proof of 

concept.  That is, our approach is that of an intellective model, rather than an emulative model 

(Carley 2002; Carley 2009), as we build a very simple model and show its behavior in these 

settings rather than attempting to build a model that incorporates all information known about 
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neighborhood networks.  We therefore specify a relatively simple tie formation model to 

demonstrate the utility of the approach.  Given that prior criminological theory has only 

peripherally considered the role of propinquity in determining the structure of social ties (and 

therefore has underappreciated its importance), in this study we will focus explicitly on the 

influence of spatial distance on tie probability.  We therefore build on prior research by Butts and 

colleagues (Butts, Acton, Hipp, and Nagle 2011) that assessed the extent to which simulating 

spatial networks based on a simple distance decay function could provide predictions about the 

macro structure of network ties in a community; here, we assess whether this network structure 

can also be used to explain the more micro phenomenon of crime events.  Although this is a 

simplification of the true tie process, propinquity is nonetheless a well-known powerful 

mechanism for tie formation, and our simulations extrapolated from interaction and population 

data thus plausibly reflect the general contours of real urban networks.  As we show, even this 

very broad approximation is sufficiently powerful to provide robust results for crime event 

prediction in five US cities, and therefore is an effective proof of concept of this general 

approach. Future work can extend this model, and the strategy in general, in various directions. 

Crime in neighborhoods 

The role of social ties in reducing crime 

Although there are several key ecological theories of crime, each positing various 

mechanisms through which neighborhood demographics affect criminal behavior, a common 

theme running through many of these theories is the putative role of the network of social ties 

among residents.  For example, routine activity theory (Cohen and Felson 1979) posits that the 

presence of guardians can reduce the incidence of crime, suggesting that residents in 

neighborhoods can play an important role in combating crime.  Similarly, social disorganization 
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theory posits that social ties are important for enabling residents to employ informal social 

control to reduce the amount of crime in their neighborhoods (Bursik 1988; Sampson and Groves 

1989; Shaw and McKay 1942).  In some tests of this theory, it is posited that the mere presence 

of more positive social ties on average for the residents of a neighborhood (which is essentially 

mean degree) will in and of itself increase cohesion and therefore informal social control 

(without regard to the distribution of those ties, nor their configuration) (Bursik 1988; Sampson 

and Groves 1989; Warner and Rountree 1997).  The importance of resident social networks was 

also discussed by Sampson (2006), who argued that social ties among residents may be a 

necessary precondition for the formation of collective efficacy in neighborhoods, which also 

impacts crime rates.   

In these existing theoretical models of how neighborhood networks might impact crime, 

it is often posited that, A) certain characteristics of the residents in a neighborhood affect the 

formation of social ties, and B) these social ties enable the provision of informal social control, 

which, C) would then reduce the level of crime.  Rarely do studies attempt to assess this entire 

model:  instead, some studies focus on path A and try to predict the prevalence of ties among 

residents of the neighborhood (Bellair 1997; Campbell and Lee 1992; Sampson 1988; Sampson 

1991; Woldoff 2002).  These include studies outside of the criminology literature.  Numerous 

studies in the social disorganization literature assess the effect of certain neighborhood structural 

characteristics—racial/ethnic heterogeneity, residential instability, and concentrated 

disadvantage--on crime rates (Hipp 2007b; Peterson, Krivo, and Harris 2000; Warner and Pierce 

1993).  Such studies are assessing the total effect of such structural characteristics on crime 

assuming that they indeed affect network ties (path A) and that network ties then affect informal 

social control (path B) which then reduces crime (path C).  Of course, if paths B and C are 
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indeed accurate, but other structural characteristics also affect the formation of network ties (path 

A) other than those specified by social disorganization theory, then these other structural 

characteristics would also impact crime rates through such an indirect route.  Our study, on the 

other hand, focuses on the combined paths B and C.   

It is important to emphasize that although studies have focused on how crime is impacted 

by the characteristics of ties such as their strength (Sampson 2004), their frequency (Bellair 

1997), or the race (Warner and Rountree 1997) or gender of those with more ties (Rountree and 

Warner 1999), studies rarely consider the structure of the overall network.  That is, which 

specific structural network characteristics might be important for fostering informal social 

control behavior?  The few studies in the criminological literature that attempt to “directly” 

measure the networks of residents typically ask respondents how many neighbors they know, and 

then compute the mean among residents in the neighborhood (which is, in fact, mean degree) 

(Rountree and Warner 1999; Warner and Rountree 1997).  These studies are implicitly testing 

the total effect of paths B and C.  Studies that test path B—whether social networks affect 

informal social control behavior—generally focus on a measure of mean degree (Bellair and 

Browning 2010; Warner 2007).  We argue that there is little reason to suspect that mean degree 

is the only, or even the most appropriate, possible network measure that would be of importance 

for neighborhood crime rates.  For example, there is a distinction between a) private social 

control (i.e., the activities of families on their members to sanction behavior); b) parochial social 

control (typically control activity conducted within a neighborhood); and c) public social control 

(i.e., obtaining resources from the larger community to address problems in the local 

neighborhood) (Bursik and Grasmick 1993).  These different conceptualizations point to the 

importance of the larger network structure for impacting crime control, and some theorizing has 
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pointed to the possible importance of broader social network ties (Bellair 1997).  We suggest that 

the lack of empirical data on complete networks among residents in cities has limited 

development of understanding the impact of the entire network structure.   

In thinking about the role of social networks among residents, it is useful to begin with 

the question of why social ties might reduce the amount of crime in neighborhoods.  We suggest 

that there are at least two mechanisms through which they might operate:  1) by increasing 

cohesion (both within the neighborhood, and across neighborhoods); and 2) by transmitting 

information.  Each of these has implications for which structure of social ties is most beneficial 

to crime reduction.  We consider each of these in turn.   

Scholars in the social network literature have developed a number of structural measures 

intended to capture the degree of cohesion within a particular network, or a subgroup of a larger 

network.  We focus here on three such measures that are each built on a different underlying 

theoretical model.  One approach focuses on the number of ties among members of a defined 

subgroup, and therefore the average number of ingroup ties by members of the network or group 

(within group mean degree) is one measure of cohesion (Wasserman and Faust 1994).
1
  Thus, 

groups with higher average number of ties among members are considered more cohesive.   

A second approach uses the density of within-group ties as a measure of cohesion.  Thus, 

the proportion of ties that exist out of all possible ties that might exist within a defined subgroup 

(Blau 1977; Lakon, Godette, and Hipp 2007).  This measure changes the denominator from 

population (for mean degree) to, essentially, population squared.  Thus, this captures not the 

number of ties per person, but rather the proportion of all possible ties, and as such expresses the 

notion that cohesion depends not only on group members to whom one is tied, but also those to 

                                                 
1
 Moody and White (2003) created a measure that explicitly defined cohesion based on the notion of the 

vulnerability of the group to the removal of one or a few of the actors.   
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whom one is not tied.  Note that this differs from mean degree in that mean degree must increase 

with population size in order for density to be maintained: if mean degree is roughly fixed, 

increasing population will force density to decline.  Under the spatial model, increasing 

population proportionately with the same geographical distribution maintains approximate 

density (instead increasing mean degree).   

A third approach is to measure cohesion based on the ratio of within-group ties to out-

group ties.  Thus, network scholars frequently measure the cohesion of a subgroup based on the 

degree to which social ties are within group rather than across group (e.g. the LS sets of Luccio 

and Sami 1969).  Whereas network researchers frequently consider endogenous notions of 

"group" in this regard, this same principle of internal versus external contact can also be applied 

to groups induced by exogenous characteristics (such as membership in a physical 

neighborhood).  For instance, Krackhardt and Stern (1988) introduced a measure of cohesion 

known as the E-I index, which measures the extent to which ties associated with a pre-defined 

group are concentrated on in-group versus out-group members.  By measuring the "inwardness" 

versus "outwardness" of a group's ties, Krackhardt and Stern were able to predict differences in 

the performance of organizational units subjected to adverse conditions.  Under strain, highly 

inward-focused groups rallied internally, but were unable to cooperate with others to advance 

their collective interest; by contrast, more outwardly focused groups were better able to sustain 

cooperation with other units, and to thereby regain lost performance.   

Moving beyond these three measures of cohesion for neighborhoods which might 

enhance parochial control (Hunter 1995; Taylor 1997), measures capturing the linkage of ties 

into the broader community may be required to capture the potential for public control (e.g., 

political action, influence over the policing process, coordination with other neighborhoods) 
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(Bellair 2000; Bursik and Grasmick 1993; Hunter 1995).  A network measure that arguably 

captures such cohesion with the larger community is the average k-core (Seidman 1983) number.  

k-cores are defined as sets of vertices such that every member of the set is adjacent to at least k 

other members of the set.
2
  An important property of k-cores is that they are locally cohesive: 

although cores need not be connected, every member of a high-order core belongs to a locally 

cohesive set.  For k>1, these sets necessarily contain spanning cycles, and are thus robust to the 

loss of edges or vertices.
3
  Those belonging to high-order cores have a dramatically enhanced 

chance of being able to reach some local set of individuals relative to those belonging to low-

order cores.  The average core number in a given population thus serves as a natural proxy of the 

extent to which members of the population are typically part of such robustly connected 

subgroups.   

Beyond capturing cohesion, networks can also transmit information between residents.  

Information regarding criminal activity is a necessary precondition for residents to get involved 

in improving the neighborhood:  clearly, residents must be aware of neighborhood problems in 

order to mobilize to address them.  There is some evidence that networks might facilitate 

information flow about burglaries in neighborhoods (Warner and Rountree 1997).  Not only does 

information about problems flow through interpersonal networks, but so too does information 

about fellow residents’ willingness to engage in problem-solving behavior.  The sense of 

collective efficacy derived from the knowledge that one's fellow residents are willing and able to 

act towards the common interest is arguably necessary to encourage residents to engage in 

behavior that otherwise may not benefit themselves directly (Sampson, Raudenbush, and Earls 

                                                 
2
 A k-core is a maximal group of actors in which all are tied to at least k other actors in the core.  Larger values of k 

imply smaller groups, but with more connections.   
3
 To define these network terms:  vertices are the persons in the sample; adjacent refers to the presence of a tie; 

spanning cycles are a cycle through a set of vertices (e.g., person A is tied to person B is tied to person C, etc).   
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1997).     

There are numerous measures that capture the potential of a network to transmit 

information in the most efficient manner.  The literature measuring diffusion potential has 

focused on the structure of the network (Moody 2002; Valente 1995; Valente and Davis 1999).  

A key insight from this perspective is that the capacity for information to flow throughout the 

network is potentially limited and unequally distributed across network members.  In some 

network structures, information can flow easily to a large number of persons.  On the other hand, 

some network structures inhibit the flow of information across groups, instead constraining it 

within particular subgroups.  One approach considers how information randomly introduced into 

the network then can flow throughout the network given a particular structure (Butts 2010).   

It is important to consider the geographic scale at which these networks likely affect 

cohesion and information flow (Hipp 2007a).  The geographic scale at which cohesion operates 

is typically not very clearly specified in theories.  Nonetheless, we argue that cohesion likely 

operates at a relatively small geographic scale.  The fact that the density of ties among residents 

drops dramatically with increasing distance between residents suggests that a small unit such as a 

block might be most appropriate (Grannis 2009).  We thus expect network cohesion measures to 

exhibit their strongest effects for small units such as blocks, and to be weaker for larger 

geographic aggregations.   

Modeling social tie formation 

A theoretical question is how social ties are formed in neighborhoods (path A from the 

earlier model described).  Social network theory posits that homophily and propinquity are two 

key processes driving the formation of social ties.  The notion of homophily—that is, the 

preference to form ties with others who are similar to oneself—is pervasive in the social network 
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literature (for a nice review, see McPherson, Smith-Lovin, and Cook 2001).  Homophily can be 

induced by various social statuses, including race/ethnicity, economic resources, marital status, 

religious affiliation, the presence of children, etc.  Thus, persons who are similar on these various 

characteristics are more likely to form and retain social ties.  When considering the role of 

homophily, social disorganization theory focuses almost exclusively on the importance of 

homophily based on race/ethnicity (Sampson and Groves 1989; Veysey and Messner 1999).  In 

practice, researchers often simply include a measure of racial/ethnic heterogeneity in the 

neighborhood and test whether it affects the crime rate, with the implicit, or sometimes explicit, 

mechanism being these social ties (Hipp 2007b; Roncek and Maier 1991; Sampson and Groves 

1989; Warner and Rountree 1997).  However, a consequence of ignoring the more general 

principle of social distance is that ecological studies of crime rarely consider other social 

dimensions beyond race/ethnicity.  Exceptions are recent work considering the social distance 

engendered by economic inequality (Hipp and Perrin 2009), and a few studies testing whether 

the presence of economic inequality in neighborhoods is associated with higher crime rates 

(Crutchfield 1989; Hipp 2007b; Messner and Tardiff 1986).  Another exception is a study 

measuring social distance simultaneously along a number of socio-demographic dimensions for 

the residents in a micro-neighborhood, and assessing the effect of this social distance on 

collective perceptions of disorder and crime (Hipp 2010).   

A small but growing body of research in the social networks literature studies the effect 

of propinquity by focusing on the functional form of the spatial distribution of social ties of 

residents.  This literature has shown a strong effect of spatial proximity on tie formation and that 

this effect can be captured by a distance decay function.  This propinquity effect was 

demonstrated on the formation of ties in micro-areas in two early studies (Caplow and Forman 
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1950; Festinger, Schachter, and Back 1950), as well as more recent studies (Grannis 2009; Hipp 

and Perrin 2009).  Although these studies focused on the network of ties among residents in 

relatively small geographic areas that are the size of neighborhoods or smaller and showed the 

greater likelihood of tie formation to those physically nearby, scholars have generalized these 

ideas and posited a distance decay function to capture the spatial distribution of ties over a much 

larger area (Butts Forthcoming).   

Criminological scholars have not considered the consequences of a distance decay 

function for neighborhood network ties.  Instead, the consideration of propinquity is generally 

limited to testing for a contextual effect in which higher overall neighborhood residential 

stability affects tie formation (Logan and Spitze 1994; Sampson 1988; Sampson 1991; Warner 

and Rountree 1997): this assumes that physical closeness leads to greater tie formation over time.  

Studies often test whether such residential stability is related to crime rates, under the assumption 

that it works through the mechanism of increased social ties (Bellair 2000; McNulty and 

Holloway 2000; Warner and Pierce 1993).   

The current study 

The present study builds upon prior research by Butts and colleagues (Butts, Acton, Hipp, 

and Nagle 2011) that adopted a similar simulation approach to derive macro predictions about 

the structure of community social networks.  Butts et al developed a model of tie choice as a 

function of the spatial distance between residents based on the insight that social ties are 

inhibited by spatial distance between residents.  This insight comes from the geography literature 

(see, e.g., Tobler 1970).  Using a spatial interaction function that explicitly incorporates a 

distance decay, the social ties expected based on this model are simulated by using the actual 

geography of the households in the cities.  We highlight that recent work by Butts (2010) has 
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shown that models based on distance effects alone can be quite robust to omitted tie formation 

mechanisms such as triad closure bias, even for complex phenomena such as diffusion potential. 

Using the same spatial interaction functions to simulate the networks, we extend this approach to 

five new cities.  Importantly, we create measures of the structural properties of these networks 

and use them to predict the more micro consequence of actual crime rates in neighborhoods.   

Our approach is unique in that we explicitly simulate the network of ties among residents.  

From the simulated network, we do not simply compute the mean degree of ties in a 

neighborhood, but instead construct several additional theoretically informed social network 

measures from these simulated networks that address the issues of cohesion and information 

flow that we identified above.  We then employ these network measures to the prediction of 

crime rates in five U.S. cities.  As we show, the network properties from the simulated networks 

are indeed able to predict the incidence of crime, above and beyond standard controls.  Our 

findings thus provide both a novel vindication of the utility of our measures, and an elaboration 

that more completely addresses the connection between network structure and crime. 

The present study adopts a relatively simple model of tie formation, and only focuses on 

impact of propinquity on tie formation; it can therefore be viewed as a “proof of concept” study.  

It is useful to assess if these network structures can predict a “real-world” phenomenon such as 

crime location.  If using such a simple model of tie formation based on only physical distance 

can provide useful results, this implies that adding greater sophistication to the tie formation 

model will only improve the predictability of the model.  Although it would seem natural to 

include homophily effects in the tie choice model, it should be emphasized that there is very little 

empirical evidence regarding the actual values of any homophily parameters that might be used 

for a simulation.  Properly estimating such parameters requires information on both actual tie 
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choice, as well as the total choice set (e.g., who lives nearby).  Existing literature almost never 

provides such estimates.  Thus, introducing such covariates into the simulation would require 

adopting an unsatisfactory number of assumptions to come up with values for these covariates.  

In the present study, we instead followed the common strategy of simply including measures of 

racial/ethnic heterogeneity and inequality as crude proxies for homophily.  Although it is also the 

case that various physical characteristics might impact the formation of social ties between 

residents (i.e., physical boundaries such as highways and rivers; the actual pattern of streets in a 

neighborhood), there is little evidence of the actual magnitude of such effects.  Although we 

refer to the “network” among residents, it is well-known that numerous networks could be 

defined within a neighborhood based on various definitions of ties.  Ties could be defined based 

on relatively strong or weak criteria, and the resulting network would differ based on these 

choices.  However, better empirical evidence on what brings about strong versus weak ties in 

neighborhoods would be necessary to build a plausible simulation model.  Our study is meant to 

demonstrate the utility of our approach, and we leave such complications for future research.    

Data and Methods 

Data  

 This study focuses on five cities for which we have data on the actual occurrence of 

reported crime events (“point data”).  This allows us to place crime events from 2000-02 into the 

very small geographic container of blocks to capture possible micro-geography effects (Hipp 

2007a; Weisburd, Bernasco, and Bruinsma 2009).  We also aggregate to block groups to test 

more meso processes.  The cities are Buffalo, Cincinnati, Cleveland, Sacramento, and Tucson.  

These cities provide variability across region of the country (3 eastern and 2 southwestern) and 

relative population density.  We combine census data information on the location of households 
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in the blocks of these cities, along with GIS techniques to locate these blocks across the 

geography of the cities.  The Census data provides information on the number of households in a 

block, along with the number of persons in each household.  A limitation is that the upper bound 

category contains households of 9 or more persons, inducing a degree of uncertainty regarding 

the number of persons in these units; we place the extra persons randomly throughout the block.   

 With this information on the number of households in a block we generate points for 

these households and their members based on two different assumptions (since we do not have 

information on the actual location of the housing units).  Under the first model, we assume a 

uniform micro-distribution; this implies a maximum entropy solution in which households are 

placed uniformly at random in the block.  Under the second model, we assume a quasi-random 

micro-distribution; this implies a near-minimal entropy solution, in which households are placed 

in an extremely even manner using a low-discrepancy sequence (specifically, a two-dimensional 

Halton sequence).  There is evidence that both approaches provide a reasonable approximation; 

given that the uniform approach appears to perform slightly better, we use it in all models 

(Almquist and Butts 2012).   

To simulate the social networks, we need to employ a particular spatial interaction 

function (SIF) to model the geographic distribution of ties.  The research in this area is sparse, 

making it difficult to know the functional form of the spatial effect of distance on tie formation.  

We estimated two different SIF’s.  The first we refer to as the “Festinger” SIF, as it is based on 

the Festinger, Schachter, and Back (1950) study in 1950 viewing the spatial distribution of a 

social friendship relation.  This function is locally somewhat sparse, with a fairly long tail.  This 

is of the general power law form with the SIF declining approximately with distance (d) raised to 

-2.8.  We also utilized a second SIF based on the Freeman et al. (1988) study of a face-to-face 
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interaction relation: this function is a locally dense relation that attenuates very quickly with 

distance, as the SIF declines approximately with d raised to -6.4.  Given that the general pattern 

of results were similar using both of these point placement patterns, and both of the SIF’s, for 

brevity we present only those from the Festinger SIF using the quasi-random point distribution.  

A more complete description of the point placement and the simulation is provided in the 

Technical Appendix.   

Dependent variables 

 Our outcome variables are counts of violent crime and property crime over the 2000-02 

period.  We combine aggravated assaults, robberies, and homicides into the count of violent 

crime.  We combine burglaries, motor vehicle thefts, and larcenies into the property crime count.  

We estimated ancillary models with these crime types disaggregated and the pattern of results 

was similar to that presented here for these two aggregated measures.  We therefore only present 

the violent and property crime models.   

Independent variables 

 We included several network population distribution measures intended to capture the 

theoretical ideas described above.  We included three social network measures that adopt 

different approaches to capture cohesion within the neighborhood.  First, following prior 

research, we include mean degree.  This is simply the average number of social ties for persons 

in the neighborhood.  Second, we include a measure of tie density, given that this is frequently 

used as a measure of cohesion (Wasserman and Faust 1994).  This measure divides the number 

of social ties in the neighborhood by the number of possible ties (which is p(p-1)/2, where p = 

population), and represents a theoretical model in which neighbors to whom one is untied 

negatively affect cohesion.  The third measure captures the extent to which ties are local:  the 
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proportion of ties that are within the geographic unit (measured at three geographic units:  

within the block, within the block group, and within the tract).  We use these three units given 

that there is uncertainty of the proper unit that captures a “neighborhood”:  blocks capture very 

local processes, block groups capture the meso processes of neighborhoods as we measure them 

here, whereas tracts are larger and prior research has often used them to measure 

“neighborhoods”.  Larger values indicate a higher proportion of ties within the geographic unit.   

 We also created a measure to capture cohesion not bounded within the neighborhood.  

This measure of k-cores is the average of k
i
 within the neighborhood, where k

i
 is the order of the 

highest k-core to which the ith resident in the neighborhood belongs.  A resident with a high core 

number belongs to relatively well-connected sets, while those with low core numbers belong to 

subgroups that are easily divided by the removal of nodes or edges; thus larger values for this 

measure indicate that residents are well-connected in the entire network of the city.  Note that 

these k-cores are not constrained to the local neighborhood, but might also reach out into the 

broader community.   

 We created a measure of diffusion potential that likely captures a network structure that 

enhances the transmission of information.  This measure was suggested by Butts (2010), and it 

captures the average size of the component to which each resident in the neighborhood belongs.  

This is measured as the maximum number of persons who could be reached by a signal 

introduced to an individual in the network; the expectation of this maximum is a natural measure 

of the diffusion potential of a network, with higher values indicating networks in which, on 

average, more members can be reached by randomly arriving information or resources.   

 To minimize the possibility of obtaining spurious results, we included several socio-

demographic measures that are commonly included as predictors of crime rates in 
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neighborhoods.  This first set of variables was included in models at all three geographic units of 

analysis.  We take into account the racial/ethnic composition with measures of the percent 

African American and Latino.  We also account for racial/ethnic heterogeneity with a measure of 

the Herfindahl index of five racial/ethnic groupings (white, African American, Latino, Asian, 

and other race), which takes the following form:   

(1)      



J

j

jGH
1

2
1  

where G represents the proportion of the population of ethnic group j out of J ethnic groups.  To 

account for the presence of vacant units that might increase crime, we included a variable of the 

percent occupied units in the neighborhood.  Given that homeowners may be more invested in 

the neighborhood and therefore engage in more crime-fighting behavior, we included a measure 

of the percentage of units that are owned.  We included a measure of population density, in part 

because some criminologists suggest that high density areas will have more crime, and in part to 

test whether population density operates as a rough proxy for our network measures (given that 

the network is simulated based on the propinquity of ties).  For the block-level models we 

constructed a measure of the percent single parent households (given that of the measures often 

included in an index of concentrated disadvantage, this is the only one available for blocks).   

 In the models for block groups, we were able to account for measures that are not 

available at the block level.  Specifically, instead of the single parent household measure, we 

created a measure of concentrated disadvantage by combining four variables through principal 

components analysis:  median household income, percent at or below 125% of the poverty level, 

percent single parent households, and the unemployment rate.  We also included a measure of 
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income inequality in the neighborhood (based on the Gini coefficient).
4
   

 Table 1 displays the summary statistics for the network measures in the five cities broken 

out for blocks and block groups.
5
  As can be seen, the cities range in population density from 

those of the older, denser cities in the east of Buffalo, Cincinnati, and Cleveland, to the newer, 

more sprawling cities of the west in Sacramento and Tucson.  Tucson is a particularly sprawling 

city.  We see that mean degree is highest in Buffalo and Cleveland, and lowest in Tucson.  

However, diffusion potential follows a different pattern, as it is highest in Cleveland and Tucson, 

but lowest in Cincinnati.  When viewing the proportion of ties within a geographic unit, the 

values are highest in the two low density cities (Sacramento and Tucson) and lowest in 

Cleveland.  Thus, we can see that, in line with insights from urban sociologists, the idiosyncratic 

features of each urban environment are expected to produce regional network structures with 

rather different properties.   

<<<Table 1 about here>>> 

It is worth noting that even though our social networks are constructed entirely based on 

the principle of propinquity, the correlation between population density and our various network 

measures in general is not excessive.  Only the measures of mean degree and k-cores are 

somewhat highly correlated with population density, and then only when aggregated to block 

                                                 
4
 To account for the binned nature of the data, we use the prln04.exe program provided by Francois Nielsen at the 

following website:  http://www.unc.edu/~nielsen/data/data.htm.  This program accounts for binning by utilizing the 

Pareto-linear procedure Aigner, Dennis J. and Arthur S. Goldberger. 1970. "Estimation of Pareto's Law from 

Grouped Observations." Journal of the American Statistical Association 65:712-723, Kakwani, N. C. and N. Podder. 

1976. "Efficient Estimation of the Lorenz Curve and Associated Inequality Measures From Grouped Observations." 

Econometrica 44:137-148., which Nielsen and Alderson adapted from the U.S. Census Bureau strategy Nielsen, 

Francois and Arthur S. Alderson. 1997. "The Kuznets Curve and the Great U-Turn: Income Inequality in U.S. 

Counties, 1970 to 1990." American Sociological Review 62:12-33.. 
5
 Although we only display the results from the Festinger SIF using the quasi-random point placement, we briefly 

note that in the summary statistics, the “Festinger” SIF yields much larger personal networks than does the 

“Freeman” SIF, which is by design.  The strong decay of the Freeman SIF results in much fewer social ties.  On the 

other hand, the difference between using the quasi versus the uniform placement of household points has a much 

smaller impact on the size of these networks.   

 

http://www.unc.edu/~nielsen/data/data.htm
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groups.  For example, mean degree is correlated with population density .79 in block groups (but 

just .34 in blocks).  The measure of tie density and the various measures of proportion within-

geographic area ties have very little correlation with population density.  The summary statistics 

for the outcome variables and control variables are presented in Table 2.  The concentrated 

disadvantage factor score was created using the entire U.S., and thus these cities are nearly 1 

standard deviation above the mean in disadvantage.   

<<<Table 2 about here>>> 

Methods 

 Given that our outcome variables are counts, we estimated negative binomial regression 

models (allowing us to account for overdispersion in these counts).  To account for the varying 

size of the geographic units, we include the logged population size as an offset variable with a 

coefficient constrained to 1; this effectively transforms our outcome into a crime rate measure.  

We estimated fixed effects for the cities by including indicator variables for each city (with only 

five cities, a multilevel approach is not feasible).
6
   

 It is important to take into account the possibility that effects may differ based on the 

level of aggregation for ecological studies of crime (Hipp 2007a).  We therefore estimated 

models from our five cities for two geographic units of analysis:  blocks and block groups.  For 

all models, we included all of the control variables described above.  We first adopted a strategy 

of including our various network variables one at a time in models.  After the initial models with 

these measures included separately, we estimated a model that included several network 

measures simultaneously, based on those shown to be important in the initial models.   

Results 

                                                 
6
 We also estimated models on each of the five cities separately to assess the robustness of the findings.  In general, 

the pattern of results was quite robust over the cities, and we comment on this robustness throughout the results 

section.   
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Aggregating network measures to blocks  

 We turn first to the results for our network measures of cohesion.  Mean degree does a 

good job explaining the location of crime when aggregating to blocks (the coefficient presented 

in the cell in the first row and column of Table 3 represents the coefficient from the violent crime 

models with block-level aggregations, when including all control variables).  A one standard 

deviation increase in mean degree within a block reduces the violent crime rate 17.4% on 

average (exp(-.065*2.94=.826)) and the property crime rate 23.6% (exp(-.092*2.94=.764)).
7
   

<<<Table 3 about here>>> 

 There is, however, little evidence that tie density reduces crime rates, despite its 

importance in other social network contexts.  Tie density actually is associated with higher levels 

of violent and property crime (row 2 in Table 3), as a one standard deviation in tie density 

increases violent crime 18.7% and property crime 8.6%.  Thus, whereas computing the number 

of ties as a proportion of persons (mean degree) shows evidence of lowering property and violent 

crime rates, computing them as a proportion of possible ties (tie density) results in higher 

property and violent crime rates.  We thus infer that it is the geographic concentration of 

population that is more conducive to crime, holding constant the number of ties per person.  Ties 

can be a resource for cohesion, but they must compete against the increasing opportunities for 

predation that arise within large, closely packed populations.   

Arguably, the strongest effects are seen for the measures capturing cohesion as the 

proportion of ties within the local unit.  In row 3 in Table 3, we see that in blocks in which 

resident ties are disproportionately to others in the same block there are much lower levels of 

violent crime, even when controlling for the typical measures included in ecological analyses of 

                                                 
7
 The effect was quite robust across cities, as it was significant in all five cities in the property crime models, and in 

four of the five cities in the violent crime models (the only exception was Cincinnati).   
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crime.  A one standard deviation increase in the proportion of ties within-block decreases the 

violent crime rate 20.6% on average.  The effects are equally strong if we compute the tendency 

for local ties among block members but instead define the “in-group” to be either other residents 

in the same block group or tract (rows 4 and 5).  We also see a strong protective effect on 

property crime rates when a higher proportion of ties are within-block.  A one standard deviation 

increase in the proportion of ties within-block decreases the property crime rate 13.1% on 

average.  When defining in-group ties based on the block group or the tract as the unit, a one 

standard deviation increase in the proportion of such ties reduce property crime rates nearly 20% 

(rows 4 and 5).   

 Turning to the measure capturing cohesion not bounded by the block, we see that higher 

values on the k-core measure (showing more robust local connectivity) are associated with lower 

crime rates (row 6).  A one standard deviation increase in the measure is associated with 10% 

less violent crime on average and 19% less property crime.   

Although the diffusion potential variable—meant to capture information flow—also has a 

negative effect on crime rates, it exhibits a weaker effect compared to the other network 

measures.  A one standard deviation increase in the diffusion potential variable is associated with 

8% less violent crime and 16% less property crime (row 7).  This measure was a less consistent 

predictor in the models estimated on the cities one at a time.       

Aggregating network measures to block groups 

We next tested whether these network measures show similar effects when aggregated to 

the larger geographic unit of block groups rather than blocks.  These results are presented in 

columns 3 and 4 of Table 3.  The effect of the mean degree measure has now changed 

considerably.  In row 1, mean degree measured at the block group is now associated with higher 
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levels of violent and property crime.  A one standard deviation increase in mean degree in the 

block group is associated with 15% more violent crime and 8% more property crime, on 

average.
8
  Tie density continues to show a positive effect on these crime types at this larger 

aggregation, as a one standard deviation increase in tie density is associated with 17% more 

violent crime and 11% more property crime. 

On the other hand, the measures of cohesion based on the proportion of within-group ties 

continue to exhibit robust negative relationships with crime rates.  A one standard deviation 

increase in the proportion of ties within the same block group reduces the violent crime rate 

17.6% on average.  Furthermore, the clustering of ties within the blocks contained within the 

block group also reduces the violent crime rate an equal amount (row 3 in Table 4), whereas the 

clustering within the tract reduces it 10.8%.  The story is similar, although somewhat weaker in 

the property crime models, as a one standard deviation increase in the proportion of within block 

ties among residents reduces property crime 9.6%, whereas a similar increase of within block 

group or within tract ties decreases it 15% and 7.6% respectively.   

 For the measure of cohesion not bounded at the neighborhood unit, the k-core measure 

now has a modest positive relationship with crime rates.  The measure of information flow—the 

diffusion potential measure—now shows very little evidence that it captures areas with lower 

crime rates (row 7).   

Including the network measures simultaneously:  Aggregating network measures to blocks  

 We next turn to models including several of our network measures simultaneously.  

Along with the control variables, we included mean degree, the proportion of within area ties 

                                                 
8
 It is interesting to note that this measure actually shows a modest negative effect on these crime rates in models 

estimated without the population density measure included.  Although criminologists are mixed on the importance 

of including population density in such ecological models, we include it here to assess the extent to which our 

network measures based only on a spatial interaction can be approximated by population density.   
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based on three geographic units (blocks, block groups, and tracts), and the diffusion measure.  

We were not able to include the measures of mean K-Cores and mean degree simultaneously in 

the model due to their very high degree of correlation (which ranged from .85 to .98 over various 

aggregation levels in various cities).
9
   

The results of these models demonstrate that most of our findings when including the 

network measures separately hold up when including them simultaneously as seen in Table 4.  

The effect of block level mean degree is even more robust here when controlling for the 

proportion of within block ties, as well as these other measures.  A one standard deviation 

increase in mean degree in the block is associated with 26% and 29% lower violent and property 

crime rates respectively, on average, holding constant the other measures in the model.   

<<<Table 4 about here>>> 

 In these same models we also directly compared the effect of measuring the proportion of 

internal ties based on these three geographic definitions: blocks, block groups and tracts.  We see 

that it is not just within-block ties that matter, but also within-block group and within-tract ties.  

A one standard deviation increase in the proportion of ties within the same block is associated on 

average with 22% less violent crime and 17% less property crime, whereas a one standard 

deviation increase in within-block group or within-tract ties reduce violent or property crime 

between 10 and 12%.  Thus, we see that the presence of a higher proportion of more localized 

ties has a strong negative effect on the amount of violent crime, even when controlling for these 

other network measures, as well as the standard ecological measures that predict rates of crime.  

Furthermore, these in-group ties show a nesting effect in which there are additive effects for 

within block, block group, and tract ties in the same model:  thus, a neighborhood that 

experiences a one standard deviation increase in the proportion of ties within the same block, the 

                                                 
9
 The other variables in the model showed no evidence of collinearity, as all variance inflation factors were below 4.   
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same block group, and the same tract will experience 33% less property crime and 38% less 

violent crime.   

 The diffusion measure continues to show a negative effect on violent and property crime 

rates in the block models, although the effects are somewhat weaker than the models that did not 

simultaneously account for the other network measures.  A one standard deviation increase in the 

diffusion potential measure is associated with 14.4% less violent crime and 15.9% less property 

crime.   

Including the network measures simultaneously:  Aggregating network measures to block groups 

 Turning to the models aggregating our measures to block groups, we again see that the 

only robust network measures are those capturing the importance of more localized ties.  For 

both violent and property crime, the presence of more within-block group ties, and the presence 

of more intra-block ties within the block group, reduce crime rates.  A one standard deviation 

increase in within-block ties reduces violent crime 13.8% and property crime 5.3%, whereas a 

one standard deviation increase in within-block group ties decreases violent crime 9.8% and 

property crime 13.6%.
10

  There is essentially no effect of mean degree in the block group in these 

models controlling for the other network measures.  And whereas the diffusion potential measure 

does not impact violent crime, a one standard deviation increase in this measure reduces property 

crime 11.6%, when accounting for these other network measures.   

 It is important to emphasize how much the fit of these models is improved by including 

these network measures.  Compared to models only containing the standard demographic 

                                                 
10

 Viewing the models separately by city, it appears that whether within-block or within-block group ties is more 

important varies over city.  For example, for the violent crime models, the presence of more intra-block ties within 

block groups is most important for reducing violent crime rates for all of the cities except for the city with the lowest 

population density (Tucson).  For Tucson, it is instead the presence of more within block group ties that reduces 

violent crime rates.  In the property crime models, although the presence of more within block group ties is most 

important for reducing property crime rates in Buffalo and Tucson, it is the presence of within block ties that are 

most important in the other three cities.   
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measures used in many criminological studies, adding these network measures to our full models 

improved the pseudo R
2
 in the models aggregated to blocks 49% in the violent crime model and 

91% in the property crime model (bottom row of Table 4).  The model fit improvement was 

somewhat more modest in the models aggregated to block groups, as the pseudo R
2
 was 

improved 13.5% for both crime types.   

Conclusion 

This study began by positing that important insights can be obtained by combining 

information on the actual geographic distribution of households in a community with the 

tendency of social ties to form based on spatial distance, and simulating the resultant social 

network of ties among residents.  Even when specifying a very simple social interaction function 

in which residents form ties entirely based on propinquity, we showed that certain social network 

measures of cohesion show a strong negative relationship with the level of crime in the 

neighborhood.  Of course, we do not know for certain whether such ties actually exist in these 

neighborhoods, and certainly the simulation would be wrong for some neighborhoods as it is a 

probabilistic model that captures general tendencies towards formation of social ties (although, 

as shown by Butts (2003; 2010), the baseline effects modeled here are extremely powerful 

predictors of structural properties under quite general conditions, and there is thus good reason to 

expect the models to be fairly robust).  Despite those caveats, we observe that it would be 

difficult to explain away the predictive power of the network model without invoking some 

systematic bias that caused lower rates of crime to occur in the neighborhoods in which we also 

inaccurately simulated more cohesive networks.  We know of no bias that would produce such 

results.  Indeed, the robustness of the ability of putative network characteristics to predict crime 

above and beyond statistical controls -- and without requiring information on idiosyncratic 
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cultural or other characteristics of neighborhoods – are consistent with structural theories of 

crime inhibition.  Although founded on the simple insight that the geographic distribution of 

persons can affect the formation of social ties—which may then affect crime rates—these strong 

and systematic results suggest exciting new theoretical possibilities for criminologists by 

incorporating more sophisticated models of tie formation.  Including our social network 

measures considerably improved the model fit for both property and violent crime over both 

levels of aggregation.   

 Considering the three categories of effects examined here, we found that our measures of 

local cohesion from the simulated network showed a clear and interpretable pattern of results.  

Our results using these simulated ties showed that, although mean degree is consequential, the 

proportion of within-area ties was even more important for explaining areas with lower rates of 

crime.  Furthermore, the importance of within-area ties generally held across the varying sized 

geographic units (blocks and block groups).  This finding from the simulated networks implies 

that if studies were actually able to collect information on the full network of ties within a larger 

community, the presence of a higher proportion of these local ties would be important for 

detecting higher levels of perceived cohesion.  Note that Sampson and Groves (1989) measured 

something similar in a sample based survey as they asked about the proportion of ties that are 

nearby.  On the other hand, although tie density is a useful measure of cohesion in other contexts, 

it was not an important predictor of crime in these simulated networks.   

 There was also some evidence that our measure of cohesion across geographic units (k-

cores) was associated with lower crime rates.  Thus, blocks containing more persons linked into 

larger cores in the city generally had lower violent and property crime rates.  This is consistent 

with the hypothesis that the provision of public control, as obtained from these far flung 
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networks, is important for reducing crime in the local neighborhood (Bellair 1997).  This effect 

was only robust when aggregating to blocks, and was not present when aggregating to the larger 

units of block groups.  Nonetheless, this measure was too highly correlated with mean degree for 

us to include it in the models containing multiple network measures.   

 The network measure we constructed to capture information flow showed a strong 

negative effect on crime rates in the models aggregated to small units (blocks), but a weaker 

effect in models aggregated to block groups.  These were encouraging findings, but it is also 

possible that there are alternative network measures that would better facilitate the type of 

information flow that is important for crime fighting.  Ours was simply an initial exploration into 

this approach, and leaves open the need for additional consideration of possible measures that 

might capture such external information.  For example, one approach might compute the average 

number of blocks each resident in a block is linked to.  This would assume that multiple ties to 

an external block would be redundant, and therefore the presence of a single tie to an external 

block would provide the necessary information.  A twist on this would be to use the block as the 

unit of analysis, and compute the total number of external blocks the block is tied to (defined as 

any tie between a resident on the block and a resident in an external block).  Here, the possible 

flow of information from an external block would enter the awareness of the block, and then 

could be transmitted among the block members.  This might even imply an interaction between 

the presence of such external ties to blocks, and the density of within-area ties (which would be 

useful for then transmitting this information to fellow block members).  Clearly, more theoretical 

consideration needs to be given to how social ties might convey useful information.   

 An important finding of the present study was that most of the observed effects were 

strongest when aggregating these simulated network measures to the very small geographic unit 
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of blocks.  This implies that these are very micro-level processes (roughly on the order of a city 

block).  When aggregating these measures to larger units, the relationships among variables 

frequently appeared considerably weaker or nonexistent.  In particular, we note that the 

theoretical rationale given for these network effects -- processes such as the formation of 

cohesion -- is founded on phenomena that take place at small spatial scales.  The coincidence of 

our effect strength pattern with the theorized effect scale further strengthens the argument that 

such micro-level mechanisms are indeed at work here.  Although it is possible that other types of 

network features are predictive at these larger scales, such features would have to be motivated 

by theories other than those currently considered within the criminological literature.  Of course, 

the fact that our control variables also appeared to perform much better when disaggregated to 

smaller units suggests that many of these ecological processes may operate at much smaller 

geographic units than is often posited in the criminology literature, suggesting the importance of 

carefully considering the appropriate unit of analysis (Hipp 2007a; Weisburd, Bernasco, and 

Bruinsma 2009).   

It is worth pointing out that our results were also robust to two different point pattern 

placements and two different spatial interaction functions.  That is, given that we only knew the 

number of housing units within blocks, and not their actual spatial location, we utilized two 

different approaches to placing these housing units in space.  Likewise, although very little is 

known about the actual spatial interaction functions (SIF) of residents, we used two different 

SIFs from published research.  The fact that our results were robust to these various 

specifications suggests that these may not be fragile findings, but may in fact be robust to various 

additional SIFs that we might specify.  Nonetheless, future research will need to assess the 

degree to which this is indeed the case.  For example, the spatial interaction function would 
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likely be different depending on the strength of the tie being measured.   

Although we have highlighted some interesting possibilities in this line of research 

simulating networks based on structural properties, we emphasize that this is only an initial step 

in an exciting new line of research.  An obvious next step is to incorporate homophily effects.  

Most prominent would be to take into account the fact that social tie formation is inhibited by 

racial/ethnic difference, economic difference, and age differences (Kalmijn and Vermunt 2007).  

Incorporating these covariate effects into the simulated networks would allow taking into 

account social distance, as well as physical distance (and various boundary effects from rivers 

and highways), for the formation of networks (Butts and Carley 2000; Hipp and Perrin 2009).  A 

challenge to this additional direction is that there is little empirical evidence regarding the actual 

values of the parameters for such effects.  Another limitation of this study was the focus on just 

five cities.  Assessing whether simulated networks on additional cities behaved similarly for 

neighborhood crime rates would be useful.  Nonetheless, it is worth emphasizing that our 

network measures generally did just as well, and frequently much better, than the typical 

measures included in models predicting the ecological distribution of crime.  Furthermore, we 

also estimated the model separately on the five cities, and generally found quite robust results.   

Another direction for future research would be to take into account that such networks 

not only inhibit crime, but that potential offenders are also part of the network.  Criminologists 

have noted this possibility, speculating that the cohesion enabled by a network can also constrain 

activity by residents to the extent that they know family members of offenders (Browning, 

Feinberg, and Dietz 2004; Pattillo 1998).  Even more provocative is the possibility that 

informationally "transparent" neighborhoods actually facilitate criminal activity, just as they 

facilitate its discovery.  For instance, knowing when a neighbor will be out of town 
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simultaneously makes it easier to know when to watch for signs of trouble, and to identify the 

best time to break into his or her house.  These considerations suggest the need to extend this 

simulation approach by incorporating information on potential offenders into the simulated 

networks.  This also further suggests the need for more theoretical development in this area.   

 In conclusion, we believe our study has demonstrated an exciting new way for 

criminologists to think about how to integrate more formalized measures of social networks into 

studies of the ecological distribution of crime in cities.  Rather than simply asking whether more 

social ties exist in a neighborhood, we have suggested that it is useful to consider the actual 

structure of the network of a community.  The challenges of such data collection have arguably 

stunted any theoretical development in this direction.  Our novel approach of specifying social 

networks from various propinquity preferences and the actual spatial distribution of households 

in the city, and then calculating various network structural measures based on the resultant social 

network suggests an exciting new direction for researchers.  Future work incorporating other 

characteristics of tie formation and dissolution—including homophily preferences, as well as 

how mobility decisions affect the spatial distribution of ties—as well as other network structural 

measures that might capture important neighborhood characteristics, will allow further 

development of this approach.     
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Tables 

 

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Blocks

Tie density 0.122 0.218 0.219 0.515 0.178 0.390 0.126 0.202 0.138 0.230

Mean degree 7.238 3.358 5.940 3.241 7.337 3.250 5.748 2.606 4.649 2.195

Proportion ties within block 0.490 0.147 0.483 0.194 0.444 0.153 0.491 0.153 0.499 0.166

Proportion ties within block group 0.768 0.139 0.791 0.155 0.760 0.144 0.852 0.132 0.829 0.136

Proportion ties within tract 0.911 0.112 0.889 0.130 0.859 0.136 0.931 0.101 0.924 0.105

K-cores 4.284 1.680 3.549 1.664 4.377 1.629 3.434 1.329 2.845 1.139

Diffusion potential 21.235 7.572 10.661 4.709 44.790 6.565 23.865 9.242 39.550 9.418

Population density (in 1,000's) 4.699 4.535 5.282 55.868 4.326 5.061 3.801 21.327 2.669 4.448

N 2,279 2,254 4,155 3,872 4,361

Table 1.  Summary statistics for the network measures in five cities, using the quasi Festinger point pattern

Buffalo Cincinnati Cleveland Sacramento Tucson
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Block groups

Tie density 0.016 0.037 0.013 0.057 0.014 0.050 0.011 0.057 0.006 0.004

Mean degree 7.658 2.842 6.236 2.881 8.005 2.817 6.102 2.539 5.315 2.116

Proportion ties within block 0.539 0.102 0.596 0.131 0.508 0.110 0.579 0.130 0.594 0.116

Proportion ties within block group 0.764 0.096 0.797 0.101 0.755 0.100 0.852 0.084 0.825 0.080

Proportion ties within tract 0.912 0.071 0.892 0.085 0.864 0.094 0.939 0.053 0.924 0.059

K-cores 4.226 1.498 3.500 1.400 4.432 1.454 3.325 1.179 2.896 0.896

Diffusion potential 20.909 7.323 10.927 4.143 44.432 6.050 22.984 9.494 40.044 6.129

Population density (in 1,000's) 4.256 2.931 3.172 2.517 3.908 1.837 2.826 1.385 2.239 1.086

N 389 314 519 313 383

Note: population density measured in 1,000's of persons per square mile  
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Mean SD Mean SD

Outcome variables

Violent crime events 2.74 5.91 26.12 27.48

Property crime events 15.80 37.17 151.87 142.97

Network variables

Tie density 0.093 0.068 0.009 0.008

Mean degree 6.49 2.94 6.90 2.81

Proportion ties within block 0.50 0.13 0.49 0.10

Proportion ties within block group 0.81 0.13 0.78 0.10

Proportion ties within tract 0.91 0.10 0.90 0.08

K-cores 3.84 1.49 3.80 1.41

Diffusion potential 31.67 14.04 30.09 14.22

Independent variables

Population density (in 1,000's) 0.43 2.55 0.41 0.41

Percent black 25.99 34.70 31.12 36.23

Percent Latino 16.88 22.32 13.96 19.23

Racial/ethnic heterogeneity 0.36 0.22 0.37 0.22

Percent single parent households 20.27 15.86

Concentrated disadvantage 0.92 1.21

Inequality (Gini) 42.33 7.67

Percent occupied units 91.51 9.53 88.90 9.19

Percent owners 57.25 28.52 49.08 24.06

N

Note: Cities are Buffalo, Cincinnati, Cleveland, Sacramento, and Tucson

Blocks Block groups

Table 2.  Summary statistics of variables used in the analyses at two units 

of analysis:  blocks and block groups
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(1) Mean degree -0.065 *** -0.092 *** 0.050 *** 0.027 *

-(13.48) -(29.89) (3.54) (2.53)

(2) Tie density 2.539 *** 1.217 *** 19.660 *** 13.558 ***

(15.27) (10.34) (5.70) (4.61)

(3) Proportion of ties within block -1.738 *** -1.057 *** -1.852 *** -0.970 ***

-(21.86) -(19.35) -(11.98) -(7.60)

(4) Proportion of ties within block group -2.033 *** -1.682 *** -2.072 *** -1.637 ***

-(22.66) -(27.24) -(10.28) -(9.77)

(5) Proportion of ties within tract -2.266 *** -1.913 *** -1.425 *** -0.980 ***

-(21.49) -(25.60) -(5.56) -(4.56)

(6) K-cores -0.071 *** -0.141 *** 0.105 *** 0.036 *

-(6.86) -(22.53) (4.31) (1.97)

(7) Diffusion potential -0.006 *** -0.013 *** 0.007 * -0.002  

-(3.41) -(10.08) (2.27) -(0.63)

Blocks

Table 3.  Models with violent or property crime as the outcomes, city fixed effects models.  Units of analysis are 

blocks and block groups.  Effects of various network measures

*** p < .001(two-tail test), ** p < .01(two-tail test), * p < .05 (two-tail test).  T-values in parentheses.  All models 

include all control variables described in the text for a particular unit of analysis, an intercept, and indicators for 

all but one cities.  Logged population size is used as an offset variable in each negative binomial regression.

Violent 

crime

Property 

crime

Violent 

crime

Property 

crime

Block groups
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Diffusion potential -0.011 *** -0.012 *** -0.004  -0.009 ***

-(6.40) -(10.30) -(1.42) -(3.42)

Mean degree -0.102 *** -0.117 *** -0.002  -0.003  

-(21.75) -(36.56) -(0.11) -(0.26)

Proportion ties within block -1.857 *** -1.371 *** -1.423 *** -0.521 **

-(19.52) -(20.93) -(6.90) -(2.99)

Proportion ties within block group -0.884 *** -0.977 *** -1.046 *** -1.483 ***

-(7.53) -(12.20) -(3.70) -(6.19)

Proportion ties within tract -1.144 *** -0.942 *** -0.005  0.283  

-(9.14) -(10.66) -(0.02) (1.10)

Percent black 0.008 *** 0.001 *** 0.005 *** -0.001  

(20.21) (4.46) (7.93) -(1.36)

Percent Latino 0.012 *** 0.005 *** 0.006 *** -0.001  

(20.31) (11.16) (5.32) -(0.68)

Racial/ethnic heterogeneity 0.631 *** 0.445 *** 0.004 *** 0.002 *

(10.67) (11.00) (4.64) (2.02)

Blocks Block groups

Violent crime

Property 

crime

Table 4.  Models with violent or property crime as the outcomes.  Units of analysis are blocks and block groups.  Including network 

measures simultaneously in the model.  

Violent crime

Property 

crime
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Percent single parent households / concentrated disadvantage 0.008 *** 0.003 *** 0.256 *** 0.057 **

(9.14) (4.95) (11.03) (2.92)

Inequality (Gini) 0.001  0.003  

(0.25) (1.33)

Percent occupied units -0.019 *** -0.011 *** -0.022 *** -0.017 ***

-(15.85) -(12.58) -(9.48) -(8.90)

Percent owners -0.014 *** -0.011 *** -0.009 *** -0.010 ***

-(31.13) -(34.13) -(8.20) -(11.13)

Population density (in 1,000's) -0.067 ** -0.050 *** -1.048 *** -1.101 ***

-(2.88) -(3.74) -(5.69) -(7.82)

Intercept 1.447 *** 3.243 *** 0.098  2.432 ***

(8.61) (27.01) (0.27) (7.92)

N 16,824 16,824 1,905 1,905

Pseudo R-square 0.076 0.052 0.079 0.043

Pseudo R-square (model with no network measures) 0.051 0.027 0.070 0.038

Percentage increase in variance explained for model with 

network variables compared to model without network 

variables 49.2% 91.5% 13.5% 13.5%

*** p < .001(two-tail test), ** p < .01(two-tail test), * p < .05 (two-tail test).  T-values in parentheses.  All models include indicators 

for all but one cities.  Logged population size is used as an offset variable in each negative binomial regression.  
 



Crime and simulated networks 

 1  

 

Technical Appendix 

 

We refer to the spatial distribution of individuals within blocks as the population 

microdistribution. To simulate the microdistribution, we utilized two competing models 

representing the extreme cases of a range of potential point processes. The first (the uniform) 

assumes a maximum entropy solution, in which households (or isolated individuals) are placed 

uniformly at random subject to known geographical constraints. The second (the quasi-random) 

assumes a near-minimal entropy solution, in which households are placed in an extremely even, 

grid-like manner using a low-discrepancy sequence (specifically, a two-dimensional Halton 

sequence).  By examining the impact of these extreme cases on social structure, we can thus infer 

the likely range of possibilities which could be occupied by processes having intermediate 

behavior. For both models, we account for ground-level congestion with a simple artificial 

elevation model to simulate multi-story residential structures in densely populated blocks.  

Specifically, households whose ground position would place them within a 10m radius of k 

previously placed households are given a vertical elevation of 4k meters; thus, intuitively, 

artificial elevation arises as population density grows, stacking new households on old ones. We 

treat arrival order as random.  Finally, within-household proximity is maintained by requiring 

household size to satisfy the known marginals within each block, and then placing individuals at 

their household locations (jittering randomly within a 5m radius to avoid exact overlap). 

While many choices of SIF are possible, we employ two specific functions obtained in 

prior work by Butts (2002) based on analyses of existing data sources.  We take these as 

plausible examples of the types of SIFs one is likely to see from proximate relations such as 

those from which the functions were derived.  The network is simulated as: 
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where Y is the (random) graph adjacency matrix, D is a matrix of inter-vertex distances, B is the 

Bernoulli probably mass function (pmf), and  is the spatial interaction function (SIF) taking 

distances into the [0; 1] interval (parameterized by real vector ).  The SIF provides the marginal 

probability of a tie between two randomly selected individuals at some given distance.  Butts 

(2006a) has shown that the spatial Bernoulli graphs can be written as a special case of a more 

general curved exponential family of graph distributions.  Given its simple interpretation and 

theoretical leverage, we employ the spatial Bernoulli framework here.   

In computing distances for purposes of the SIF, we employ the Euclidean distances 

between individual surface positions in the projected geometry, plus a small correction to 

account for the effects of the built environment (where applicable). Specifically, differences in 

artificial elevation are added to the base Euclidean distance for those within 25m of one another, 

while the sums of individuals' artificial elevation distances are added for pairs whose surface 

positions differ by more than 25m. This simulates a basic feature of travel within the built 

environment, namely movement within a building for those who are otherwise proximate, versus 

movement to ground level, over to the second position, and up for those with distant surface 

locations. While one could employ more complex schemes (including explicit adjustment for 

roadways, local obstructions, etc.), this would require more detailed knowledge of household 

position, built environment, and other aspects of local geography than were available for our test 

regions. As a practical matter, experimentation with reasonable alternatives to the approach 

employed here did not produce substantively different results. By way of explanation, it should 

be noted that different notions of distance tend to be very strongly correlated, even at fairly small 
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scales. For instance, a comparison of Euclidean distances for the cases used here with Manhattan 

distances (the so-called city block metric sometimes suggested as an alternative for urban 

environments) produced a median correlation of approximately 0.99 under both uniform and 

quasi-random microdistribution models; even considering only very proximate points (within 

100m of each other in Euclidean space), the median correlation is still approximately 0.98 for 

both microdistribution models. While the impact of alternative distance models on network 

structure at smaller spatial scales is an interesting and potentially productive target for further 

research, our experiments suggest that the results reported here are not sensitive to reasonable 

variations in how distance is defined. 

 




