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Betweenness  centrality  is generally  regarded  as  a  measure  of others’  dependence  on a given  node,  and

therefore  as a measure  of potential  control.  Closeness  centrality  is  usually  interpreted  either  as a mea-

sure  of  access  efficiency  or of independence  from  potential  control  by  intermediaries.  Betweenness  and

closeness  are  commonly  assumed  to be  related  for  two  reasons:  first,  because  of their  conceptual  duality

with  respect  to  dependency,  and  second,  because  both  are  defined  in terms  of shortest  paths.

We  show  that  the  first  of these  ideas  –  the  duality – is  not  only  true  in a general  conceptual  sense  but

also  in precise  mathematical  terms.  This  becomes  apparent  when  the  two  indices  are  expressed  in terms

of  a  shared  dyadic  dependency  relation.  We  also  show  that  the  second  idea  – the  shortest  paths  – is  false

because  it is  not  preserved  when  the  indices  are  generalized  using  the  standard  definition  of shortest

paths  in valued  graphs.  This  unveils  that  closeness-as-independence  is  in fact  different  from  closeness-

as-efficiency,  and  we propose  a  variant  notion  of distance  that  maintains  the  duality  of closeness-as-

independence  with  betweenness  also  on valued  relations.

1. Introduction

A  number of attempts have been made to  bring order to
the universe of centrality measures, including Sabidussi (1966),
Koschützki et al. (2005), and Borgatti and Everett (2006). By far  the
most influential of these has been Freeman (1979). Since the publi-
cation of that paper, degree, closeness and betweenness centrality
have been regarded as prototypical measures that capture most
important aspects of centrality. The only other measure as well-
known as these is eigenvector centrality (Bonacich, 1972), along
with its variants (Bonacich, 1987; Brin and Page, 1998).

In  this paper, we  focus on closeness and betweenness, which
are based on an underlying concept of something flowing through
a network along optimal paths. Consistent with the imagery used in
Freeman’s seminal paper, we assume the ties in our networks can be
viewed as communication channels, although it should be clear that
our results apply to any kind of network for which flows, geodesics,
closeness, and betweenness have meaningful interpretations.

Betweenness is generally employed with the understanding that
it captures the potential for control of communication between
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actors. For closeness, Freeman (1979) actually outlines two dif-
ferent possible interpretations: either as independence from such
control by others (closeness as independence) or as a  measure of
access or efficiency (closeness as efficiency). Here we focus on the
interpretation of independence as it is  referred to  in many empir-
ical studies such as Brass (1984), Rowley (1997), and Powell et  al.
(1996).

Freeman (1980) shows that the interpretive duality of  close-
ness and betweenness as measures of independence and control is
quantitatively justified. It  has been widely overlooked, though, that
this justification is  established via  a  shared underlying dependency
relation. Instead, it is often stated that the measures are related
because both are defined in terms of geodesics. We will argue that
this view is  rather misleading, and that closeness-as-independence
and  closeness-as-efficiency are actually two different concepts that
happen to agree on non-valued networks. The common generaliza-
tion of closeness to valued networks is in line with the efficiency
interpretation only. We  therefore propose new generalizations
of closeness to  directed, disconnected, and valued networks that
maintain the independence interpretation and thus the duality
with (common generalizations of) betweenness.

We start by defining necessary terminology and introducing
the basic concept of a dependency cube in Section 2. The rela-
tions between dependencies and the dual indices of closeness and
betweenness are derived in  Section 3, leading to our re-definition of
closeness-as-independence in  Section 2.1. In Sections 5 and 6,  we
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show how this generalizes to  directed and valued networks while
maintaining the duality with betweenness. We  conclude in  Section
7.

2. Preliminaries

We  assume that networks are represented as graphs and use
standard terminology such as found in  Bollobás (1998) or Diestel
(2010).

An (undirected) graph G  =  (V, E) consists of a set V of vertices

(also called nodes) representing actors and a set E ⊆
(

V
2

)
of (undi-

rected) edges (also called links) representing ties between actors.
An edge is thus an unordered pair of vertices representing a  sym-
metric relationship. If there exists an edge e = {u, v}  ∈ E, we say that
u and V are adjacent and that u and V are  incident to e.  We will use
n = |V| for the number of vertices and m = |E| for the number of edges
of a graph.

A  path from a sender s ∈ V to  a  receiver r ∈ V, or (s, r)-path for short,
is an alternating sequence of vertices and edges that starts with s,
ends with r, and in which every vertex is incident to both the edges
that come before and after it in the sequence. A graph is connected,
if every pair of vertices is linked by a path.

In this and the following section, all graphs are assumed to
be undirected and connected. The definitions will be  extended to
directed and valued graphs in  Sections 5 and 6, where we  also
consider disconnected graphs.

2.1. Distance and closeness centrality

Closeness centrality, as the name suggests, is  an index defined in
terms of a distance. Let the length of an (s,  r)-path be the number of
edges contained in it.  We define the (shortest − path)distance, dist(s,
r), of s, r ∈ V as the minimum length of any (s, r)-path. Recall that
we consider only connected graphs for now and observe that dist(s,
s) = 0 for all s ∈ V.

The distance matrix D =  (dist(s, r))s,r∈V of an undirected graph is
symmetric, so that the total distance, dist(v), of a  vertex v ∈ V is
obtained as either the row and column sums

dist(v) =
∑
r∈V

dist(v, r) =
∑
s∈V

dist(s, v).

The larger the associated distance sum, the farther a  vertex is from
the others, which is  why a vertex is  considered more central, in
terms of closeness, if its associated value is smaller (Sabidussi,
1966).

Because of this reversal in  ranking, closeness centrality of a vertex
s ∈ V is usually defined as the inverse of the total (or, equivalently,
average) distance (Bavelas, 1950; Beauchamp, 1965),

cC (s) =
[∑

r∈V

dist(s, r)

]−1

= dist(s)−1,

but sometimes also by  subtraction from an upper bound on the
maximum distance (Valente and Foreman, 1998).

2.2. Dependency and betweenness centrality

Betweenness centrality is  based on the idea that brokering
positions between others provide the opportunity to  intercept or
influence their communication. Again, the assumption is that com-
munication is happening along shortest paths.

Denote by �(s, r) the number of shortest (s, r)-paths, and let �(s,
r|b) be the number of shortest (s, r)-paths passing through some
brokering vertex b ∈ V \  {s, r}. For consistency, let  �(s, s) =  1,  and �(s,

r|b) = 0 if b ∈ {s, r}.  If all shortest paths are equally likely to be chosen,

the ratio ı(s, b, r) = �(s,r|b)
�(s,r)

gives the probability that b is involved

in the indirect communication of s with r.  The term ı(s, b,  r) is well-
defined because �(s, r) >  0 (for now, we assume connected graphs)
and referred to as the dependency of a  sender s  and a receiver r on
a broker b.  From the broker’s perspective it represents the degree
of control that b has over the communication from s to r.

Betweenness  centrality is  defined as the total dependency of com-
municating pairs on a broker b ∈ V,

cB(b) =
∑
s,r∈V

ı(s, b, r),

and thus corresponds to b’s overall potential for control.
In  the next section we recall and extend a largely unknown result

of Freeman (1980) showing that the dependencies give rise to a
dyadic relation that relates closeness and betweenness quantita-
tively.

3. Dyadic dependencies and duality

The dependencies defined above form a  three-way tensor, i.e., a
generalized matrix � = (ı(s, b, r))s,b,r∈V,  the dependency cube. It  has
first been considered explicitly by Borgatti and Bonacich (1989),
who referred to it as the geodesic cube. The cube assumes the role
of a repository of elementary information about all communication
triples consisting of a sender, a  receiver, and a  potential broker in
between. If all n3 entries are required, a  straightforward algorithm
of Batagelj (1994) can used to  determine them in time O(n3).

The  above definition of betweenness corresponds to  a summa-
tion over the (s, r)-plane in the dependency cube, and a  number of
other interesting quantities and insights can be obtained by sum-
ming over other subsets of elements of �. These are detailed next
and summarized in  Fig. 1.

First observe that any summation of dependencies ı(s, b, r)  over
either the senders, brokers, or  receivers yields a valued, asymmet-
ric and dyadic relation. It relates either brokers and receivers, or
senders and receivers, or senders and brokers in  a  square matrix
and thus defines a  valued network.

Consider, for example, the dependencies ı(s, b,  ·) of senders s
on brokers b obtained from summation over all receivers. These
can be interpreted as quantifying how likely it is that b is involved
in a communication originating at s and directed at any r,  i.e., to
which extent s depends on b in  sending to the rest of the network
by the efficient paths. These one-sided dependencies1 thus form a
new  asymmetric and valued relation between senders and brokers
derived from the original adjacency relation. Since

cB(b) =
∑
s,r∈V

ı(s, b, r) =
∑
s∈V

ı(s, b, ·  ),

betweenness centrality can also be interpreted as indegree in the
derived network. It thus quantifies the extent to which senders
depend on b. It  is interesting to note that, for a  given sender s,
one-sided dependencies ı(s, b,  ·) can be  computed by accumulating
dependencies on brokers farther away from s, so that it is compu-
tationally more efficient to determine them directly rather than by
explicitly determining all entries of � and subsequent summation
(Brandes, 2001).

Similarly, marginals ı(· , b,  r) can be interpreted as the
dependencies of receivers r  on gatekeepers b to let incoming infor-
mation through. By symmetry, betweenness in the original graph

1 Freeman (1980) uses the term pair-dependencies which we avoid as it is  prone

to  misinterpretation in our more general context.
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Fig. 1. Marginals of the dependency cube. 

corresponds to outdegree in the graph defined by the valued rela­
tion 8(- , b, r). 

A key observation is that the third matrix of marginals 8(s, ·. 
r), the dependency of each pairs, ron the rest of the network, is 
almost identical to the matrix of shortest-path distances (recall 
that we are considering non-valued networks for now). This was 
already observed in Freeman (1980), Borgatti and Bonacich (1989), 
and independently in Buche I (2009, Lemma 4.5.1 ). We include a 
straightforward proof illustrated in Fig. 2. 

lemma 1. In a connected grapl!, 8(s, ·• r) Q dist(s. r) - 1 for all 
s =/=rEV. 

Proof. At every distance i Q 1, ... , dist(s, r) - 1 from s, each shortest 
path from s tor passes through exactly one broker b. so that for s =1= r 
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Fig. 2. The fractions "~;/~1 of shortest (s. r)-paths passing through those vertices 

b that have the same distance from s add up to 1, so that 8(s. ·, r)= l:•ev8(s, b. 
r) =dist(s. r) - 1. 

we have 

8(s, ·, r) = L::&(s, b, r) 
beV 

d!sr(s,r)-1 

2:::: 
1=1 
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This observation leads to two interesting insights: the quan­
titative duality of closeness and betweenness, and the reason 
for the alternative interpretations of closeness-as-efficiency and 
closeness-as-independence. 

Closeness and betweenness centrality are dual to each other 
conceptually. While one quantifies the independence from control 
of others, the other quantifies the potential control over (com­
munication between) others. The following lemma shows that the 
relation is not only conceptual but holds quantitatively. 

Corollary 2. In a connected grapl!, l:bevSCs. b, ·) - cc{s)- 1 - (n - 1 ). 

Proof. Using Lemma 1, we get l:bev8(s, b, ·) QS(s, ·, ·)- l:rev8(s, 
·,r)Q l:revldist(s, r) -1]Qcc(s)-1 - (n -1 ). D 

Closeness and betweenness are thus dual in the sense that they 
are obtained as (the inverse of) row and column sums (i.e., outde­
gree and indegree) oftl1e dependency relation 8(s, b, ·), 

cs(b) = L::&(s, b, ·) and cc(s)- 1 = (n -1 ) + L::&(s, b, · ). 

Backed by formal arguments we can therefore state that between­
ness is in exactly the same sense a measure of control, or the 
dependency of others on an actor, as closeness is a measure of 
independence, or the lack of dependency on others. As exempli­
fied in Fig. 3, both are directly related via the dependency relation 
8(s, b, ·) = Erev "~(D~l, for which inverse closeness corresponds 
to weighted outdegree (up to a constant) and betweenness to 
weighted indegree. 

Moreover, as demonstrated by the examples in Fig. 4, the rank­
ings obtained from these dual notions may coincide but may also 
be quite different from each other. 

While no deep mathematics are involved,and despite an explicit 
derivation in Freeman (1980), this relationship has been largely 
overlooked. We deem it important, however, because it adds strong 
support for the interpretation duality that empirical researchers 
have been relying on, and even more so because it has important 
consequences for the generalization of closeness to unconnected, 
directed, and valued networks as discussed in the subsequent sec­
tions. 
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Fig. 3. In connected undirected graphs, inverse closeness and betweenness are the row and column sums of the asymmetric dependency relation ı(s, b, ·)  =
∑

rı(s, b, r).

4. Interpretation and adjustment of closeness centrality

For  the interpretation of closeness centrality we focus on
total distances, dist(s) =  cC(s)−1, because the sole purpose of taking
inverses is to reverse the order of values and this could be achieved
in any of a number of ways.

An interpretation obtained directly from its definition is  one of
efficiently reaching others:

“. . . a point is central to the degree that the distances associ-
ated with all its geodesics are minimum. Short distances mean
fewer  message transmissions, shorter times and lower costs.”
(Freeman,  1979, p. 225)

As discussed in more detail in  Section 6, this is  the interpretation
on which common generalizations of closeness to valued networks
are based.

It  appears, however, that the interpretation of closeness as being
dual to the potential for control associated with betweenness,

“. . . a point is viewed as central to the extent that it can avoid
the  control potential of others.” (Freeman, 1979, p. 224)

is the more prominent (see, e.g., Brass, 1984; Rowley, 1997; Powell
et al., 1996). Since dyadic dependencies add  up to shortest path

distance  minus one, they actually correspond to  the number of
intermediaries on a  shortest path. The higher this number, the more
dependent an actor is  on others. From the point of view of the inde-
pendence interpretation, the row sums in  the matrix of ı(s, b,  ·) thus
reflect the intended meaning even better than the distances.

It  will prove useful beyond the elimination of  constants to  define
the following variant of closeness centrality.

Definition 3. For a graph G = (V, E), closeness-as-independence is
defined via

c′
C (s)−1 = ı(s, ·  , ·  )

for  all s ∈ V.

Clearly, when compared to cC(s), this does not affect the ranking
of vertices in a connected undirected graph because all values are
shifted equally by (n  − 1),

c′
C(s)−1 = ı(s, · , ·  )  =

∑
b∈V

ı(s,  b, ·  )

=  dist(s) −  (n  − 1) =  cC (s)−1 − (n  − 1).

Fig. 4. Actors that others depend on are not necessarily independent: darkness indicates betweenness whereas size indicates independence. In (b),  the independent actors

in  the middle are easier to avoid than the outer ones with the exception of the pendants.
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The modification does have, however, important consequences for
networks of valued relations, and also for directed and discon-
nected networks as  shown in the next section.

5. Reachability and disconnected networks

Closeness centrality is ill-defined on disconnected graphs
because some distances are undefined and it is  not clear how
to compare partial sums having different numbers of defined
distances. We will address this problem together with the general-
ization of the above results to networks of asymmetric relations.

A  graph G = (V, E) is  called directed, or digraph for short, if its
edges are defined as ordered rather than unordered pairs of ver-
tices. We  write (v, w) ∈ E ⊆ V × V or  v → w to distinguish directed

edges from undirected edges {v, w} ∈
(

V
2

)
.

A path is called directed, if each of its edges is directed from its
preceding to its succeeding vertex. If there exists a  directed (s,  r)-
path, r is said to be reachable from s. Reachability is  the reflexive and
transitive closure of adjacency and thus a reflexive and transitive,
but not necessarily symmetric, relation s → *r.  We  say that a  digraph
is strongly connected, if every vertex is reachable from every other
vertex.

The definition of closeness centrality generalizes to strongly
connected digraphs, although asymmetry now forces us to  decide
whether distances should be measured from or to the focal ver-
tex. For convenience, we will only consider closeness centrality in
terms of distances from a  vertex, the other case is symmetric.

For  digraphs that are not strongly connected, the number of
intermediaries an actor depends on is meaningful only in  relation
to the number of possible receivers that can actually be  reached.
For a digraph G = (V, E) let R(G) = |{(s, r)  ∈ V × V : s /=  r, s → *r}| be the
number of ordered non-loop pairs in the reachability relation. For
a vertex v ∈ V , we define R+(v) = |{r ∈ V : v→∗r}| to be the number
of reachable vertices and R−(v) = |{s  ∈ V : s→∗v}| to be the number
of reaching vertices, so that R(G) =

∑
s∈VR+(s) =

∑
r∈VR−(r). Further-

more, we let

W(G) =
∑

s,r∈V : s→∗r

dist(s, r)

be the sum of all defined distances. This sum is known as the Wiener
index (Wiener, 1947) and often used as a  network-level character-
istic. Note that characteristic path length (Watts and Strogatz, 1998),
one of the dimensions to assess whether a  network is considered a
small world, is defined as the average distance of any pair of ver-
tices, W(G)

R(G)
, and therefore yields simply a normalized version of the

Wiener index.
The  following result shows that the total (and thus also average)

closeness-as-independence and betweenness are equal, and that
they correspond to the Wiener index corrected for reachability.

Theorem 4. For a directed graph G  =  (V, E),∑
s∈V

c′
C(s)−1 = W(G) − R(G) =

∑
b∈V

cB(b).

Proof. Again, we express all quantities in terms of
three-way dependencies, and thus obtain

∑
s∈V c′

C(s)−1 =∑
s∈V

∑
b∈V ı(s, b, · ) = ∑

b∈V

∑
s∈V ı(s, b, ·  )  = ∑

b∈V cB(b), i.e.,
both totals, for closeness and betweenness, are equal to the total of
all dependencies

∑
s,b,r∈V ı(s, b, r)  =

∑
s /=  r∈V :  s→∗rdist(s, r) − 1 =

W(G)  − R(G). �

Closeness-as-independence and betweenness centrality are
thus partitions of the same total volume, which is  smaller for more

compact graphs. However, they divide this volume up in differ-
ent ways as described in  the previous section. This common scale
may also be  of interest in  a  comparative analysis of closeness and
betweenness in  terms of endogenous and exogenous centrality
(Everett and Borgatti, 2010).

For disconnected undirected graphs or non-strongly connected
digraphs, in  which the reachability relation is  not complete,
betweenness retains its interpretation as the total potential for con-
trol of shortest-path connections. From the would-be broker’s point
of  view, it may  not make a  difference whether a given pair can
connect via better paths that do  not  involve the broker, or cannot
connect at all: either way  the broker will not be  brokering between
them.

From the point of view of an actor avoiding dependence on bro-
kers, however, it may  in  fact make a  difference whether the same
number of intermediaries control the connections to many or  few
reachable receivers. In the absence of a substantive justification for
combining dependency with the number of reachable receivers,
closeness centrality should therefore be treated as a  bi-criterial
index, i.e., the two  values for the total number of intermediaries
and the number of reachable receivers should not be combined
into a  single quantity.

6.  Generalized distance and valued networks

During generalization to valued graphs the difference between
closeness and our variant closeness-as-independence becomes
most apparent. In  fact, the duality with betweenness is
maintained only by closeness-as-independence. This differ-
ence highlights the fact that the interpretations of close-
ness as either efficiency or independence are actually dis-
tinct indices that happen to coincide on non-valued net-
works.

Let a valued graph be defined as a  graph G = (V, E ; �) with edge
values � : E → R.  Such values typically have a  positive sign and rep-
resent a  distance or lag  in the connection between adjacent vertices,
so that the length of a  path in  a  valued graph is  generally defined
as the sum of the values of its edges (Flament, 1963). Note that
the definition of path length as the number of edges given in  Sec-
tion 2.1 is the special case in which all edges have a  length of  1.
Distances dist(s, r)  are  then defined as before, i.e., as the minimum
length of  any  (s, r)-path. While other values are possible and other
generalizations of shortest or best paths exist (e.g., Yang and Knoke,
2001; Opsahl et al., 2010), this appears to be the most frequently
employed.

From any generalization of path lengths to  valued graphs
we obtain straightforward generalizations of closeness and
betweenness. Since the dependencies ı(s, b,  r) are defined
as the fraction of optimal (s, r)-paths passing through b,
independent of the value associated with such paths, the
interpretation of betweenness is  preserved in  any such general-
ization.

The interpretation of closeness as indicating access efficiency
is also preserved as long as distances still represent an effort nec-
essary for the sender to  reach the receiver. This is  not necessarily
true, however, for the interpretation of closeness as indicating the
independence of an actor from others, because Lemma 1  no longer
holds. This is illustrated in Fig. 5.

The rationale behind the latter interpretation of closeness
was the independence from intermediaries. Intermediaries, how-
ever, feature in  the standard definition of closeness only because
their number corresponds to  the number of edges in  a path
minus one. It is thus rather by coincidence than by design
that distance and dependence almost agree in non-valued
graphs.
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Fig. 5. In this valued graph, dist(s, r)  =  6, and there are three shortest (s, r)-path with

2, 4, and 4 inner vertices for an  average of 3 1
3 = ı(s, ·  ,  r) intermediaries that s and r

depend on.

Our variant closeness-as-independence index, on the other
hand, preserves the duality with betweenness established above
for the case of non-valued networks. Recall that cB(b) =

∑
b∈Vı(s,

b, ·) and c′
C(s)−1 =

∑
s∈V ı(s, b, · ) in non-valued networks. Since

the interpretations of  ı(s, b, r) and thus ı(s, b, ·)  are  not affected
by generalization to valued networks, both betweenness and
closeness-as-independence generalize straightforwardly with the
other generalized quantities, and their duality as indegree and out-
degree is maintained.

With  a suitably defined distance, closeness-as-independence
can  still be regarded as the inverse of a  total distance as shown
in the following Lemma  1.

Lemma 5. In a valued graph G =  (V, E ; �), ı(s, ·  , r) equals the average
number of inner vertices in shortest (s, r)-paths for any s, r ∈ V.

Proof. For any pair of vertices s, r ∈ V,  ı(s, ·  , r) =
∑

b∈V
�(s,r|b)
�(s,r)

by

definition. Since every inner vertex b contributes 1 to each shortest
path it is contained in,

∑
b∈V�(s, r|b) is the total number of occur-

rences of inner vertices in  any shortest path, and division by the
number �(s, r) of shortest (s, r)-path yields the average. �

Therefore,  since c′
C(s) = ı(s, ·  , ·  ) =

∑
r∈V ı(s, ·  , r) by Definition

3, our adjustment of closeness to maintain the independence inter-
pretation can also be seen as replacing shortest-path distances
dist(s, r) with the average numbers of intermediaries ı(s, ·  ,  r)  on
shortest paths. Note that this also holds in non-valued networks
because all shortest (s, r)-paths have the same number dist(s, r) −  1
of inner vertices (Lemma  1).

Like betweenness and closeness-as-efficiency, our variant
closeness-as-independence index can be determined in  O(nm +
n2 log n) time because a  single-source shortest-paths computa-
tion from a sender s yields the dependencies ı(s, b, ·)  for all b ∈ V
(Brandes, 2001).

7. Discussion

We  have pointed out a formal duality between closeness and
betweenness centrality that, although known, has long been used
only in conceptual terms. The duality is expressed in terms of a
derived relation, the dyadic dependency of senders on brokers.
Betweenness and closeness are  in fact the weighted indegrees
and outdegrees in the network of this derived relation. Since total
betweenness and closeness in a  graph thus equal the total of the
dyadic dependencies, they also equal the sum of distances in  a
graph minus the number of reachable pairs.

Closeness and betweenness yield the same ranking on paths,
star graphs, cliques, and a number of other graphs. It will be inter-
esting to investigate by how much they can actually differ. We  gave
an example (a path of cliques of varying size) in which the rankings
are almost the reverse of  each other.

The  observed duality generalizes to  directed and non-connected
networks, no matter whether closeness is generalized by  introduc-
ing a finite distance for unreachable pairs or by considering total
distance and number of reachable vertices as a  two-dimensional
index. By reversing edge directions, it is easily confirmed that
the corresponding dependency of receivers on brokers corre-
sponds to closeness defined by distances to, rather than from, an
actor.

In valued networks it becomes apparent that the two  interpre-
tations of closeness centrality as efficiency and as independence
actually refer to  two  different concepts that happen to coin-
cide (up to  an additive constant) in  non-valued networks.
Duality is maintained in  valued networks only if the defini-
tion of closeness is adapted. By replacing the sum of distances
with a sum of dependencies, we effectively replace shortest-
path distance with the expected number of intermediaries on
a shortest path. Since this is in  line with the original moti-
vation for closeness centrality as an indicator of independence
(Freeman, 1979), we consider it a  strong argument for our
new variant in  cases where closeness is interpreted as indepen-
dence.

Finally, we note that the concept of dual centrality indices
applies more generally to all indices that are co-determined by an
asymmetric relation derived from the original network. Closeness
and betweenness are row  and column sums of dyadic depend-
encies, so indegree and outdegree on other relations are obvious
extensions. For certain derived relations, however, we also expect
meaningful dualities to arise from left and right singular vec-
tors.
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