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Abstract

Exponential Random Graph Models (ERGM) behave peculiar in large networks
with thousand(s) of actors (nodes). Standard models containing two-star or triangle
counts as statistics are often unstable leading to completely full or empty networks.
Moreover, numerical methods break down which makes it complicated to apply
ERGMs to large networks. In this paper we propose two strategies to circumvent
these obstacles. First, we fit a model to a subsampled network and secondly, we
show how linear statistics (like two-stars etc.) can be replaced by smooth functional
components. These two steps in combination allow to fit stable models to large
network data, which is illustrated by a data example including a residual analysis.
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1 Introduction

The analysis of network data is an emerging field in statistics. It is challenging both model-
wise and computationally. Recently, |Goldenberg et al.| (2010), [Hunter et al.| (2012)), and
Fienberg (2012) published comprehensive survey articles discussing new statistical ap-
proaches and developments in network data analysis. We also refer to the monograph of
Kolaczyk| (2009) for a general introduction to the field, or the recent book of |Lusher et al.
(2013), which focuses on a specific and widely used class of network models, so-called
Exponential Random Graph Models (ERGM).

In its most simple form a network consists of a set of n nodes (actors) which are potentially
linked with each other through edges. These edges between the actors are thereby the
focus of interest. Notationally a network can be expressed as a n x n (random) adjacency
matrix Y with entries Y;; = 1 if node 7 and j are connected, and Y;; = 0 otherwise. In
undirected networks one has Y;; = Y); while for directed links we have Y;; = 1 if a directed
edge goes from node ¢ to node j. For the sake of readability and notional simplicity we will
concentrate here on undirected networks. The term y denotes a concrete realisation of Y.

A common and powerful model for network data Y was proposed by [Frank and Strauss
(1986) as Exponential Random Graph Model (ERGM) taking the form

exp { £ 5i(y)6r
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P(Y =yl0) = <0 : (1)

t as vector of

with @ = (6o, ...,60,)" as parameter vector and s(y) = (so(y),. .., Sp(y))
statistics of the network. In equation (1)) the term x(0) denotes the normalizing constant,
that is

k(0) = > exp{6's(y)},

yey

where ) is the set of all networks and accordingly the sum is over 92(3) terms. It
is therefore numerically intractable, except for very small graphs. We denote with
soy) = i1 Yj~; Yij the baseline statistic giving the number of edges in the
(undirected) network, so that 6y serves as intercept. The interpretation of the remaining
parameters 6;, [ = 1,...,p, results through the corresponding conditional model for each
single edge Y;; given the remaining network Y'\Y;;, since

logit {P<Y;‘j = 1Y'\Yy; 9)} =0 + Zp:Aijsl(y)ela (2)
=1

where Ayisi(y) = si(y\yij, vij = 1) — si(y\vij, yi; = 0) is the so-called change statistics
which is obtained by flipping the edge between nodes ¢ and j from non-existent to existent.

Exponential Random Graph Models are numerically unstable, in particular if the number
of actors n gets large. Hence, for large networks one is faced with two relevant problems.

2



First, the model itself is notoriously unstable leading to either full or empty networks.
This issue is usually called degeneracy problem, see, for example, (Schweinberger, [2011)),
and (Chatterjee and Diaconis (2013). Secondly, the estimation is per se numerically de-
manding or even unfeasible since numerical simulation routines are too time consuming.
We aim to tackle both problems in this paper. First, we propose the use of stable statis-
tics which are derived as smooth, non-parametric curves. Secondly, instead of fitting the
model to the entire network we propose to draw samples from the network such that
estimation in each sample is numerically (very) easy. These two proposals allow to easily
analyse network data in large and sufficiently dense networks.

Schweinberger (2011) denotes network statistics (and the corresponding ERGM) as
unstable if the statistics is not at least of order O,(n). In fact he shows that any k-star
or triangle statistics is unstable leading to an odd behaviour of model . Effectively,
unstable networks are either complete (i.e. have all possible edges) or empty (i.e. all
nodes are unconnected) unless for a diminishing subspace of the parameter space for n
increasing. If n gets large it is therefore advisable to replace the statistics in model
by stable statistics of order O,(n). A first proposal in this direction are alternating star
and alternating triangle statistics as proposed in |Snijders et al. (2006), or geometrically
weighted statistics as proposed in the context of Curved Exponential Random Graph
Models, see |[Hunter and Handcock (2006). Hunter| (2007) shows that from a modelling
point of view the alternating statistics are equivalent to geometrically weighted degree or
geometrically weighted edgewise shared partners, respectively. Both approaches stabilize
the models but for the price of less intuitive interpretations of the parameter estimates. We
propose an alternative by making use of non-parametric models based and the technique of
smoothing (see, e.g., Ruppert et al., 2003)). The non-parametric model thereby maintains
the interpretability of the ERGM based on the conditional model . To motivate our
idea we start with the conditional model and replace the linear terms through non-
linear smooth components. This leads to the conditional non-parametric model

logit[B(¥, = UV\Y;)] = 60+ 3 mi(Aoi(w). ®)

where my(-) are smooth functions which need to be estimated from the data. Models
of type have been proposed in a simple regression framework as generalized additive
models, see, e.g., Hastie and Tibshirani (1990)), or Wood (2006), but apparently the
structure here is more complex as we are tackling network data. We additionally need to
postulate that functions m;(-) are monotone and bounded which in turn leads to stable
network statistics in the definition of [Schweinberger| (2011)). We make use of penalized
spline smoothing which also allows to accommodate constraints on the functional shape
leading to stable network models. In fact, assuming m,(-) to be monotone and bounded,
we may derive a non-parametric Exponential Random Graph Model from which takes
the form

=1 i 5>
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Apparently, model appears rather complex due to its semi-parametric structure and
estimation looks like a challenging task. We will argue, however, that smoothing tech-
niques can easily be applied and estimation becomes feasible by making use of sampling
strategies in networks leading to numerically simple likelihoods and in fact consistent
(though not efficient) estimates.

Estimation in Exponential Random Graph Models is cumbersome and numerically de-
manding as it requires simulation based routines. |Snijders (2002)) suggests the calculation
of 0k(6)/00 in the score equation resulting from using stochastic approximation.
Hunter and Handcock (2006) propose to use MCMC methods in order to obtain the max-
imum likelihood estimate. The approach is extended and improved in Hummel et al.
(2012). In a recent paper Caimo and Friel (2011)) develop a fully Bayesian estimation rou-
tine by incorporating the so-called exchange algorithm from Murray et al. (2006) which
circumvents the calculation or approximation of the normalisation constant for the price
of extended MCMC sampling. A general survey of available routines for fitting Exponen-
tial Random Graph Models is given in Hunter et al.| (2012). In fact, if the network is
large, MCMC based routines readily become numerically infeasible. As aforementioned,
we will therefore make use of subsampling the network data and fit the model to sub-
samples that allow for simple likelihoods. We follow ideas of Koskinen and Daraganova
(2013). In fact, for models with k-stars or triangles only, the edges follow a Markovian
independence structure by conditioning on parts of the network (see |[Frank and Strauss,
1986, or Whittaker, 2009). This is exemplified in a simple network with four nodes in
Figure |1 Conditioning on edges Y7, Y14, Yo3, and Y34 we find that Yi3 and Y54 are condi-
tionally independent, which can be denoted as Y13 I Yo, |Y'\{Y13, Ya4}. The idea is now
to make use of this independence property to fit model to a subsample of the network
while conditioning on the rest of the network. Hence, exemplary we sample edges Yi3
and Y24, and condition on Y'\{Yi3, Y24}. Due to the (conditional) independence structure
we can easily fit the conditional model with standard software for generalized linear
and non-parametric additive models. This will be demonstrated below. Apparently such
a strategy is not efficient if the network is small, but if the network is (very) large and
(sufficiently) dense, sampling appears as a plausible approach which also maintains nu-
merical feasibility.

The paper is organized as follows. In Section [2] we suggest to estimate large Exponential
Random Graph Models through subsampling of the network. In Section |3| we extend the
idea towards non-parametric models. Section {4 gives a data example demonstrating the
usability of the approach. Finally, a discussion completes the paper in Section [5]

All routines for fitting and analysing the models are written in R (R Core Team) 2016))
and will be made available as R package.
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Figure 1 Visualisation of the induced Markov independence graph (right) for a Exponential
Random Graph Model for a simple 4-node network (left).

2 Estimation through Subsampling

The general idea proposed in this section is that instead of fitting an ERGM to the
entire data, we fit a conditional model to appropriate subsamples of the data. Due
to conditional independence this allows for fast and easy computing. We start the
presentation with the classical (unstable) ERGM and assume model has statistics
like k-star and triangle effects only. That is statistics s;(-) in for instance has no
“4-cycles” of the form >, ;4 Yi;YjuYuYyu (or higher order cycles). Let us get more
specific. For simplicity of presentation let n, the number of nodes in the network, be
even. With D(n|2) we denote a decomposition of the set {1,...,n} into subsets of size 2,
e.g., D(n]2) ={(1,2),(3,4),...,(n—1,n)}. For A = (4,j) € D(n|2) we denote Y4 =Y};
and Y \Yp(2) = {Vij, (4,7) € D(n|2)}. Apparently D(n|2) has n/2 elements. We assume
now that the statistics s;(y) in (1) can be decomposed to
s) = X saYa, ¥\ype2)): (5)
AeD(n|2)

This holds for all k-stars and triangle statistics. It is not difficult to show that with
condition () density ([I]) can then be factorized to

P(Y=y)= II ha(ay\ypwp), (6)

AeD(n|2)

where h4(+) is some function depending on {ya, y\yp(nj2)}- The factorization (6] implies
that the edges with indices in D(n|2) are mutually independent conditional on the rest of
the network (see Whittaker, [2009)).
The conditional independence will be used to fit model not for the entire network
but for an appropriately chosen subnetwork. We therefore draw a sample of the
network Y by taking y, with A € D(n|2) as sampled binary observations accompanied
by Aas(y) = (Aasi(y),...,Aas,(y))" as corresponding change statistics with obvious
definition of Ays(+). The term A4s(y) plays the role of covariates and the conditional
model takes the form

p p
logit {]P)(YA = 1]As(y), 0)} =0 + ZAAsl(y)Ql =0y + leﬁl,
=1

=1 —



where z; denotes the change statistics Ags;(y) which is considered as covariate in the
logit model. Due to the induced conditional independence the likelihood for the sample
results to

Loi2)(8) = [T e P(Ya = 1As(y), 6), (7)

which is easily fitted using standard software for generalized linear models. Note that
is the true likelihood for the conditional subsample so that consistent estimates and
their variance estimates are easily available. This means, by taking the subsample of
edge variables Y, with A € D(n|2) and conditioning in the remaining graph we circum-
vent numerical estimation problems and remain in the classical generalized linear model
framework. It also implies that we can estimate @ consistently (for n increasing) by max-
imizing ED(n‘g) (0)
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Figure 2 Symmetric Latin Square with unique diagonal.

Apparently, we may draw different samples of edges leading to different estimates. This
means using different decomposition sets D(n|2) leads to different estimates. This leaves
us with the question how to combine the different estimates. We may either draw D(n|2)
randomly or make use of a combinatorial approach to cover the entire network Y;;. Let
therefore

P ={Di(n|2),k=1,...,n—1}

be a sequence of sets Dy (n|2) such that each index pair is exactly in one single set Dy (n|2).
That is for Y;; there exists exactly one set Dy(n|2) € P with (¢, 5) € Di(n|2). The n — 1
sets Dg(n|2) in P can be constructed using a symmetric Latin Square with a unique
diagonal (see, e.g., |Andersen and Hilton, 1980)E| For instance for n = 4 nodes Figure
2] shows a symmetric Latin Square. As we are focusing on undirected networks, where
the corresponding adjacency matrix is symmetric, we use only the upper diagonal of the
Latin Square. We may take the entries in the Latin Square as the sample number. For
instance, D;(n|2) results by taking the pairs with entries 1 in the upper triangle from the

LA description of a possible algorithm for the construction of such a symmetric Latin square with a
unique diagonal is available, e.g., from |Bogomolny| (2016]).



corresponding network adjacency matrix, i.e. (1,2),(3,4) and condition on the remaining
variables. Accordingly we proceed for entries 2 and 3 in the Latin Square. We denote with
;- the resulting estimate from sequence set Di(n|2). Note that each estimate 0o is
consistent but they are not mutually independent. With Y~ = {Y;; : (4,)) € Di(n|2)}
we easily get with the asymptotic properties of Maximum Likelihood estimates as n — oo
that

E(a<k>) = IEY\Y<k> (Ey<k> <a<k>‘Y\Y<k>>> — 0.

Moreover

Var(a<k>> = Ey\v,. <VarY<k> (§<k>|Y\Y<k>)>
+ Vary\y_,. (Ey<k> (a<kz>|Y\Y<k>))
— Eyv\y_,o (F£;€1> (0<k>)) ;

where Fop~ (9) denotes the (conditional) Fisher matrix corresponding to the likelihood
function . Apparently F<_,€1> <0<k>) is an unbiased estimate for Ey\y_, (F<_kl> (0<k>)).

Note that F <_,€1> <§<k>) can be obtained with any software package for fitting logistic

regression models. Hence an estimate for the variance is readily available.

3 Non-parametric Exponential Random Graph Mod-
els

3.1 Spline-Based Model

We have shown how an appropriate sample of the network allows for simple estimation
of the parameters. Apparently this is a recommendable approach only if n, the number
of nodes, is large. In this case, however, ERGMs become unstable if the change statistics
increase linearly in n. As shown in |Schweinberger (2011) this holds for almost all basic
models with 6, # 0 for [ > 0. In other words, even though we are able to estimate
the parameters as described before, the resulting network will be either full or empty as
n is becoming large. Stability is achieved if the network statistics are of order Op(n).
One intention is therefore to modify the statistics in the model such that they become
stable. This is done with non-parametric components so that the change statistics have
a bounded influence. To do so we make use of the non-parametric model where we
additionally postulate that the smooth functions m,(-) are monotone and bounded.

To estimate functions m;(-) we make use of penalized spline smoothing as discussed in
detail inRuppert et al.|(2003)), and Ruppert et al. (2009), see also Kauermann et al.| (2009).
The general idea is as follows. First, one replaces the unknown smooth function my(-) by
a spline basis which is flexible (i.e. high dimensional) enough to capture the underlying
true functional relation. As a second step a penalty or regularization is imposed on the
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unknown spline coefficients leading to a smooth and numerically stable fit. The third step
is to calibrate/estimate the amount of penalization, which is controlled by a smoothing
parameter. The original idea goes back to |O’Sullivan (1986) and was made popular by
the seminal paper of [Eilers and Marx (1996). We make use of the idea here, but amend
it towards the specific problem of non-stability occurring in large networks. As first step
we choose a basis B(x) = (By(z),..., Bg(z))" where 2 € Rt and the basis components
B,(x), for ¢ = 1,..., K, fulfill the following three properties:

2) B,(x) is monotone, and

3) B,(x) is bounded for z — oo.

A convenient choice are distribution functions on R*. Here we employ the exponential
distribution and set

By(z) =1 — exp(—,2), (8)

where v, are fixed scaling parameters. The set {v,..., vk} covers a wide range of possible
shapes as visualized in Figure . We now replace the unknown function m;(-) in model
by the spline representation

my(z;) = B(z)) ', (9)

with B(z) = (Bl(a:), e BK(x))t and u; = (w1, ..., uK)" as the coefficient vector. Note
that as long as the coefficients of u,; are finite we have constructed a bounded and hence
stable network statistics. Apparently we need additional constraints on wu; in order to
guarantee monotonicity. This implies for monotonically increasing functions that

B'(z)'w; >0, (10)

where B'(z) = (71 exp(—mT), ooy Vi exp(—va))t. This is a linear constraint on the
parameters, which for estimation is easily accommodated by quadratic programming.
For monotonically decreasing functions we use almost the same constraint. For
practical purposes we select the cutpoints of neighbouring basis functions &, with
Vo1 exp(—41&) = vrexp(—7-&) and set the constraints to B'(.)u; > 0 for
monotonically increasing functions (or to B'(§,.)u; < 0 for monotonically decreasing
functions), for r = 1,..., K — 1. Our experiences show a stable behaviour with this
setting.

3.2 Penalized Estimation

The second step is now to impose a penalty on the spline coefficients in order to achieve
smoothness and numerical stability. For a sample of the network as proposed in the
previous section, let £(6y, u) be the log-likelihood resulting from model in combination
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Exponential distribution with different rate parameters
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Figure 3 Visualisation of the cumulative distribution function of the exponential distribution
with different rate parameters v, as example of possible basis functions By(x).

with (), where u = (u'i, . ,ui,)t. For notational simplicity we omit the sampling index
in this subsection. We emphasize however that the likelihood and hence its estimate do
depend on the particular sample of the network. Bear in mind that w is high dimensional,
so that (ML) estimates are unstable and the resulting fits B(z)u; would be wiggled. We
therefore apply a ridge penalty leading to the penalized log-likelihood

ep(eo,u, A) :€<«90,u) - ;lf:lxlu;ul, (11)

where A = (A\q,... ,)\p)t are the penalty parameters. Apparently setting \; — oo leads
to my(-) = 0 while \; — 0 gives an unpenalized fit. It remains therefore to choose A
data driven balancing goodness of fit (A — 0) and parsimony of the model (minimal for
A — 00). These steps can be carried out with classical cross-validation (see, e.g., Eilers
and Marx [1996) or in a more sophisticated way by comprehending the penalty as normal
prior. In this case we follow a Bayesian view and assume w; ~ N (0, )\l_ll K) with Iy as
K dimensional unit matrix. Then J; is the reciprocal of the a priori variance of u;. The
connection between penalized estimation and its Bayesian view by imposing normal priors
is extensively motivated and discussed in [Ruppert et al.| (2003)). In fact the approach led
to a real breakthrough in smooth functional estimation as mirrored in the survey article
by |[Ruppert et al.| (2009). Note that the Bayesian approach in our setting here leads
to a generalized linear mixed model which is extensively discussed, e.g., in |Breslow and
Clayton (1993), see also McCulloch et al. (2008). In particular, assuming a normal prior
for coefficient vector u; we may consider the penalty \; as parameter which needs to be
estimated. To do so we make use of the procedure of [Schall (1991)) leading to the following
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formulae. With F (6, u) we denote the Fisher matrix of the conditional model ([2)). We
define the Fisher matrix in the penalized likelihood as

F(00,u,X) = F(0p,u) + diag(0, M I, ..., Al ). (12)

where diag(-) denotes a block diagonal matrix with the arguments as blocks. The part of
the Fisher matrix belonging to u is then

F(u,\) = F(u) + diag(M1x, ..., A\ ), (13)
with F(u) denoting the part of the Fisher matrix from the conditional model ([2|) belonging
to u. Following [Schall (1991) we can now estimate \; ' (iteratively) through

ujuy

where

() = [ (w )P 0)] .

and subscript [ means that we take only the submatrix matching to component wu;.
See |[Kauermann, (2005), or Krivobokova and Kauermann| (2007) for a derivation of the
estimate. Finally, the monotonicity constraint is taken into account by quadratic
programming which is available in R using the package quadprog (Turlach and Weingessel,
2013). The following algorithm describes the iterative procedure.

Algorithm 1: Fit non-parametric ERGM, i.e. estimate g = (90, ut>t and .
Preparation: Fit Standard GLM for

logit [P(¥; = 1¥\Y;;:0)] = o+ 3" Aysi()0)

=1

to determine effect directions. The smooth effect m,(-) is constrained to

(a) a monotonically increasing function if 6, > 0, and

(b) a monotonically decreasing function if ; < 0.

Matrix A is set up using the resulting monotonicity constraints according to (|10]).

Instead of maximizing ¢, (B , )\) =/, (B , )\) directly under the constraints from ((10)),

we use a Taylor expansion of

G(B.) ~ (B9N) 5, (89 0) (8- 89) + 5 (8- 89) H,(8,2) (8 - 8°),

where s,(-) denotes the penalized score function and H, the penalized Hessian.

Initiate starting values B, A ¢t =0, s = 0.
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Step 1: Use current value A® and iterate until convergence or until max. no. of
iterations t,.x is reached:

(i) Solve miny (—dtb + 1/2thb) for b = (B—B(t)) with constraint A'b > by,
where d = sp(,B(t), )\(s)), D= _Hp(ﬁ(t)’ )\) and by = —A'BD.
(ii) Update B = g® 4+,
(i) Set t = ¢+ 1.

Step 2: As long as maximum no. of iterations s,., or convergence is not reached:

i\t
(i) Use current value BY = (96t), (u(t)> ) and update to ATV element-wise
according to equation :

. .
Xl(sm:tr{[F (u(t)’)‘())F(U(t)’O)L}, forl=1,...,p.

(ii) Set s =s+ 1.
(iii) Set B = B® and t = 0 and start again with Step 1.

Additional Steps:

When during fitting one of the penalty parameter \; tends to infinity (in Step 2 (i))
we set the corresponding smooth effect my(+) to zero, i.e. my(-) = 0, and estimate the
remaining components in the model with the above procedure.

If in a later iteration than the first iteration solving Step 1 (i) fails (e.g., due to numeric
problems), we take the current values 3 ®) and check whether all of the estimated effects
my()®, 1 =1,...,p exceed a specified threshold in absolute value.

If not, i.e. at least one effect estimate is close to zero, we set the smallest smooth
effect to zero and continue.

3.3 Combining the Sample Estimates

Let us now bear in mind that the estimation described in the previous subsection holds
for one sample of the network. For each sample we obtain an estimate my - (x;) =
B(z;)u;<x~ with obvious definition for @;.;~. We now need to combine the sample
estimates which are mutually dependent. One possible approach for combining the sample
estimates would be to calculate a mean curve by just averaging the resulting parameter
estimates over all samples. We follow a different path here originating in functional data
analysis and compute a median curve. The median curve is more robust against outliers
than the mean curve. We employ the methods developed by Sun et al. (2012) which are
available in the R package fda (Ramsay et al., [2014). There is a huge number of options
available for computing functional depth, ranking curves accordingly, and determining a

11



median curve (see, e.g., Lopez-Pintado and Romo, [2009, and Mosler and Polyakoval, 2012).
We decided to use the approach of [Sun et al. (2012)) because it is quite fast even for a

large number of curves, which seems important in our case (we use the option "Both" from
the fbplot function fda, which first takes two curves for determining a band, and than
computes a modified band depth in order to break ties between curves). We compute a
joint median curve by sticking all estimated effects together. Computing marginal median
curves per effect would be possible as well.

4 Data Example

4.1 Linear Estimation through Subsampling

As data example we use the combined data from ten Facebook ego networks, which
has originally been collected by McAuley and Leskovec (2012) and is available from
the Stanford Large Network Dataset Collection (Leskovec and Krevl, 2014). Figure
shows a plot of the network graph. It is undirected and contains 88,234 edges (Facebook
friendships) between 4,039 nodes (actors). This amounts to a network density of roughly
0.01.

Figure 4 Visualisation of the combined Facebook data. Colouring and size represent nodal
degree (darker and bigger correpsonds to higher degree). Darkness and thickness of links
represents the no. of triangles, the link belongs to. The ten egos are highlighted with o label
indicating the node number, and coloured in orange instead of blue. Generated using stress

minimization layout in visone (Brandes and Wagner, |2004).
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We use data from the first 4,038 rows and columns of the network adjacency matrix’
and obtain 4,037 sample subsets Dy(n|2). To each of these subsets we fit a standard
logistic model with edges (as intercept), two-star, and triangle effect. We exclude subsets
from the analysis which contain less than three observations with y;; = 3 (this affects 56
data subsets). Figure |5/ shows pairwise scatterplots of the estimated coefficients. Extreme
results with an estimated intercept éedges < —10 (115 estimates) are excluded. The general
impression for the shown results is that the estimated triangle effect gtriangles is always
positive. The estimated two-star effect gtwo_stars is closer to zero with some positive and
some negative values. There is some negative correlation between the two parameters.
Table 1] displays a numerical summary of the results.
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Figure 5 GLM (edges, two-star, and triangle effect) results for the Facebook data. FExtreme

estimates with an estimated intercept gedges < —10 (115 estimates) are not shown.

Apparently, in a network of this size we are faced with degeneracy using a two-stars and
triangles as model statistics. We therefore do not put too much emphasis in the analysis of
the parametric model but go forward to a non-parametric approach in the next subsection.

2As the number of nodes in the network has to be even for construction of the Latin square.
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Table 1 GLM (edges, two-star, and triangle effect) results for the Facebook data. FExtreme
estimates with an estimated intercept Oeqges < —10 (115 estimates) are not considered.

Parameter mean est. median est. 5% quantile 95% quantile

Oedges —5.436 —5.425 —7.373 —3.687
Otwo-stars —0.012 —0.003 —0.054 0.006
Otriangles 0.207 0.174 0.063 0.483

4.2 Non-parametric Estimation through Subsampling

We stick to the Facebook data example and continue our analysis with a non-parametric
Exponential Random Graph Model as described in Section [3] We fit a model containing
the edge effect (as intercept), a smooth two-star effect, and a smooth triangle effect.

We exclude subsets from the analysis which contain less than 10 observations with y;; = 1,
because otherwise we do not have enough information for a stable estimation of the smooth
effects. This affects 577 out of 4, 037 data subsets. We use 20 exponential distributions as
basis functions for each smooth component, with parameters v, ranging between values
of 0.0005 and 1 as displayed in Figure [3] The maximum number if iterations is 20, which
is not reached for any of the fits. The convergence criterion is set to le—12 and for 83
samples the algorithm is aborted, which, e.g., may be caused by separability in these
subsets and resulting in non-identifiability. As described in the algorithm in the previous
section, the fitted model can simplify if the fitted \; goes to infinity. In this case the
corresponding functional fit m;(-) equals zero and the model is reduced. This implies
that the fitting algorithm itself conducts a model selection. In addition, effects can be
set to zero if numerical issues occur when solving the quadratic problem in Step I of the
algorithm and the current effect estimate m(-) is close to zero (we use a value of 0.005
for this criterion here). We therefore record the number of samples where the algorithm
converges to a simplified model. Let the different models be labelled as follows:

My : “two-star” + “triangle”
M : “triangle”
Ms : “two-star”

M, : intercept only

The notation means that model M, for instance, corresponds to a model where the non-
parametric smooth two-star effect is set to zero, while for model My both, two-star and
triangle effect are set to zero. Table [2| summarises the results numerically and shows the
number of samples for the converged models. There is a clear dominance for model M,
with intercept and smooth non-parametric triangle effect only.

Figure @ shows the resulting 3,377 estimates (subsets with convergence, or effect set to
zero), containing mean (solid blue lines) and median estimates (dashed orange lines). As
general impression we obtain a negative intercept, a positive triangle effect, and a two-star
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Table 2 Numeric summary of the model fitting results for the Facebook data. The non-
parametric ERGM contains edges, a smooth two-star, and a smooth triangle effect.

Total no. of samples available: 4,037
No. of samples with no fit (less than 10 times y = 1 in sample): 577
Model M;: 181
Model Ms: 3,189
Model Ms: 5
Model My: 2
No. of samples where max. no. iterations was reached: 0
No. of samples with other reason for non-convergence: 83

effect which is set to zero for most samples and fluctuates around zero in the remaining
cases. The median curve for the two-star effect is exactly zero.

To explore the validity of the model, we continue our analysis by computing Pearson
residuals for all observations
eij:;y”—li, fori=1,...,n, j=1,....,n, 1 # j,
i (1 — 7i5)
where 7;; is a prediction based on the obtained median (curve). As next step we calculate
the average Pearson residual for each node through

- 1
€; =

—n_lzeij, forizl,...,n.

J#i

Figure [7] shows the resulting node-specific average Pearson residuals. Bear in mind that
the residuals are not independent, as we are averaging over non-independent samples.
They should still have an expected value of zero. Figure [7] shows a clear structure. The
nodes with large average residuals €; are not surprising, as these are the ten egos from
the network construction. In the upper plot all ten egos are depicted with a red star.
They have more connections as one would expect from the model and therefore stick
out. Moreover, some nodes have rather negative Pearson residuals and these nodes can
be attributed to specific ego-nets. The lower plot in Figure [7] highlights two ego-nets
(for nodes 108 and 1913, these two egos are again depicted with a red star, the residuals
belonging to the ego-nets are black, the remaining ones grey) and they account for almost
all of these negative residuals. Our conclusion from this residual analysis is that for some
parts of the network the overall model seems too simplistic, while for others the outcome
appears to be reasonable.
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Estimates for intercept (3377 estimates)
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Figure 6 Non-parametric ERGM (edges, smooth two-star, and smooth triangle effect) results
for the Facebook data. 3,377 estimates with convergence or effects set to zero are shown. The
blue solid lines show the mean estimate; the orange dashed lines depict the median estimate.
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Mean Pearson residuals per node based on median ergam model
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Figure 7 Node-specific average Pearson residuals from non-parametric ERGM for the Facebook
data. Prediction for the residuals is based on the overall median model. The ten egos in the
network are denoted with a red star in the upper plot. The lower plot highlights to ego-nets
(for nodes nodes 108 and 1913). The two egos are denoted with a red star, the corresponding
members of their ego-networks are black, the remaining ones of the whole dataset grey.
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We continue our analysis and look at the ego-nets of node 108 (contains a majority
of nodes with negative average Pearson residual; consists of 1,045 nodes with 26, 750
edges), and of node 1,685 (consists of 792 nodes with 14,025 edges) separately. The egos
themselves are not part of the subnetworks as they are connected to every other vertex
in the corresponding subnetwork (by construction). The setup for the fit is the same as
before for the non-parametric ERGM. Figures[§] and [9] show the corresponding estimates.
Table [3] summarises the results. When comparing the results to the ones for the whole
dataset, the overall impression is similar, with a positive triangle effect, and a two-star
effect close to zero (or set to zero for most samples, and a zero median curve). The
intercept values are smaller in absolute value, which is not surprising as we are analysing
smaller networks (with a higher density).

Estimates for intercept (1043 estimates)
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Figure 8 Non-parametric ERGM (edges, smooth two-star, and smooth triangle effect) results
for ego-net of node 108 from the Facebook data. 1,043 estimates with convergence or effects set
to zero are shown. The blue solid lines show the mean estimate; the orange dashed lines depict
the median estimate.

Figure [10] shows the resulting nodes-specific average Pearson residuals for both ego-nets.
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Estimates for intercept (781 estimates)
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Figure 9 Non-parametric ERGM (edges, smooth two-star, and smooth triangle effect) results
for ego-net of node 1,685 from the Facebook data. 781 estimates with convergence, or effects set
to zero are shown. The blue solid lines show the mean estimate; the orange dashed lines depict
the median estimate.

The result looks more homogeneous than before, but for the ego-net of 108 we still see
that there are nodes in the network with a rather negative average Pearson residual, i.e.
they have fewer connections than the model would predict. This might be solved by
extending the modelling approach and include node-specific or dyadic covariates into the
model. This is of course easily possible in combination with the smooth effects but lies
beyond the scope of this paper.
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Table 3  Numeric summary of the model fitting results for ego-subnets of the Facebook data.
The non-parametric ERGM contains edges, a smooth two-star, and a smooth triangle effect.

Ego-net 108 1,685
Total no. of samples available: 1,043 791
No. of samples with no fit (less than 10 times y = 1 in sample): 132 65
Model M;: 0 10
Model Ms: 911 716
Model Ms: 0 0
Model My: 0 0
No. of samples where max. no. iterations was reached: 0 0
No. of samples with other reason for non-convergence: 0 0
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Mean Pearson residuals per node based on median ergam model
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Figure 10  Node-specific average Pearson residuals from non-parametric ERGM for the ego-nets
of node 108 (upper plot) and 1,685 (lower plot) from the Facebook data.
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5 Discussion

We have shown that it is possible to make use of the Markov independence assumption
in the context of Exponential Random Graph Models to obtain samples consisting of
independent observations which allow to use standard generalized linear models (GLM)
for model fitting. Extending this approach to generalized additive models (GAM) by
adding smooth functional components in a non-parametric fashion enables us to gain
flexibility while maintaining the simple interpretability of statistics like two-stars and
triangles. It circumvents the construction or use of more complex statistics like, e.g.,
geometrically weighted degree or edgewise shared partners, which also stabilise the model
fitting but are very difficult to interpret. In addition, the whole estimation procedure is
quite fast (much faster than the standard MCMC based routines available for ERGMs)
as we are using well established model fitting routines for GLMs and GAMs, and it can
easily be run in parallel as the individual sample fits can be computed independently of
each other. The computation for the Facebook data example was run in parallel on 20
cores (with 2.60 GHz) and took less than four minutes (including all data pre-processing
and storing the results on disk).

To employ the described models the network needs to be big enough (otherwise the
resulting samples are too small), and what can be more problematic, the network has
to be dense enough as otherwise we obtain samples consisting only of observations with
y;; = 0. The later is a general problem in real-world networks, as it is well-known that
with increasing network size n the density tends to become smaller and smaller. The
proposed modelling strategy therefore clearly has some caveats. Also, it is difficult to give
a general advice on how many actors are needed for our method to work. When using the
GLM approach on each subsample of size 5 a smaller number of observations is reasonable
than for the non-parametric GAM approach. In the data example we have presented in
the previous section, the sample size itself is not an issue with 2,019 observations per
subsample for the whole network, and 396 or 522, respectively, for the ego-nets, where
we fit models with two smooth functional components plus an intercept term. Still, we
had some problems with obtaining samples with enough y;; = 1 observations per sample.
If course this issue becomes more severe when the network density (which is 0.01 for the
complete Facebook data, and therefore quite high for a network of this size) goes down.

Another problem which is apparent from the residual analysis in Figures [7] and is
that the residuals are quite low in absolute value. This is a sign or underdispersion in the
underlying binomial models and can be explained by zero-inflation, i.e. we have more zeros
in the data than we would expect under the model. This result is not surprising, again
due to the low density in large networks, where Exponential Random Graph Models tend
to be problematic in general. There are approaches going into the direction of assuming
local dependence structures, whereas the standard ERGM assumes a global rather strict
dependence structure and is therefore probably unrealistic especially in the context of
large networks. [Schweinberger and Handcock! (2015) use hierarchical ERGMs, see also the
corresponding R package hergm (Schweinberger et al., 2015)), where the neighbourhood
structure can be taken into account if it is known, or estimated as a latent construct
using a Bayesian approach. The later is computationally very problematic and rather
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time consuming or even infeasible for large networks. Another possible solution to handle
the zero-inflation using our subsampling approach would be the use of mixture models as
available, e.g., in the R package flexmix (Leisch) [2004)), and employ zero-inflation models
(Griin and Leisch|, |2008, Section 5.1) for binomial data to each sample. To us this appears
to be a promising field for future research.
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