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Correlations among Centrality Indices
and a Class of Uniquely Ranked GraphsI

David Schocha,∗, Thomas W. Valenteb, Ulrik Brandesa

aDepartment of Computer & Information Science, University of Konstanz, Germany
bDepartment of Preventive Medicine, Keck School of Medicine, University of Southern

California, Los Angeles, CA, USA

Abstract

Various centrality indices have been proposed to capture different aspects of
structural importance but relations among them are largely unexplained. The
most common strategy appears to be the pairwise comparison of centrality in-
dices via correlation. While correlation between centralities is often read as
an inherent property of the indices, we argue that it is confounded by network
structure in a systematic way. In fact, correlations may be even more indicative
of network structure than relations among indices. This has substantial impli-
cations for the interpretation of centrality effects as it implies that competing
explanations embodied in different indices cannot be separated from each other
if the observed network has a star-like property.

Keywords: Network centrality, Correlation, Neighborhood inclusion,
Centrality indices, Threshold graphs

1. Introduction

Plenty of centrality indices have been proposed to date and the list is ever-
expanding (Todeschini and Consonni, 2009). In addition to their application in
empirical research, they are a frequent subject of methodological work aiming
to provide a better understanding of what centrality indices measure and the
theoretical foundations of the concept as a whole (Freeman, 1979; Sabidussi,
1966; Nieminen, 1974; Borgatti, 2005; Borgatti and Everett, 2006; Boldi and
Vigna, 2014; Schoch and Brandes, 2016).

A frequently investigated question in this context deals with correlations
among centrality indices (Bolland, 1988; Rothenberg, Potterat, Woodhouse,
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Darrow, Muth, and Klovdahl, 1995; Lee, 2006; Valente, Coronges, Lakon, and
Costenbader, 2008; Batool and Niazi, 2014; Li, Li, Van Mieghem, Stanley, and
Wang, 2015; Lozares, López-Roldán, Bolibar, and Muntanyola, 2015). The un-
derlying assumption being that correlations are a consequence of the formal
definition of indices and thus highlight differences in the conceptualization of
centrality. High correlation “suggests considerable redundancy” (Bolland, 1988)
and thus justifies, e.g., the use of a computationally less expensive index (Li
et al., 2015). Weakly correlated indices on the other hand “indicate distinctive
measures likely to be associated with different outcomes” (Valente et al., 2008).
It is thus not surprising that a correlation analysis is often performed when new
indices are introduced to illustrate their disparity from existing measures (New-
man, 2005; Estrada, Higham, and Hatano, 2009; Chen, Lü, Shang, Zhang, and
Zhou, 2012; Benzi and Klymko, 2013).

Reported results, however, are often inconsistent with regard to the sim-
ilarity of centrality indices. Bolland (1988) finds that closeness, degree and
eigenvector centrality are substantially correlated, yet betweenness was com-
paratively uncorrelated. Rothenberg et al. (1995) use eight different indices on
a network of HIV patients and determine that all measures are highly corre-
lated, including degree and betweenness. Likewise, Lee (2006) observes a high
correlation between degree and betweenness on a set of protein interaction net-
works. Based on a broader sample of networks of varying origin as well as a
set of random graphs, Batool and Niazi (2014) find that, overall, closeness and
eccentricity as well as degree and eigenvector centrality are highly correlated
and that correlations with betweenness vary across networks.

These inconsistencies suggest that the role of the underlying network struc-
ture is far more important and profound than is accounted for. Indeed, structure
appears to be of interest mostly when the stability of centrality indices in the
face of missing data or sampled networks is investigated (Frantz, Cataldo, and
Carley, 2009; Borgatti, Carley, and Krackhardt, 2006; Costenbader and Valente,
2003; Kim and Jeong, 2007). Borgatti et al. (2006) show that indices behave
similar in terms of change patterns and level of robustness when edges are added
or deleted on simple random graphs. Frantz et al. (2009) perform a similar anal-
ysis on more complex network structures and show that correlation varies with
structure. Costenbader and Valente (2003) use a set of 60 empirical networks
and examine the stability of indices on sampled networks and conclude that sta-
bility varies among indices. Again, they do concede that stability varies across
networks.

Although many of the mentioned studies already point out that structural
properties of networks such as density (Valente et al., 2008) or degree hetero-
geneity (Kim and Jeong, 2007) have an impact on the correlation among indices,
the assumption that correlations mainly depend on formal definition prevails.

In contrast to previous work we show that correlations among indices may
in fact be dominated by structural properties. These are not necessarily visible
in common network statistics such as density or degree distribution, but related
to the class of threshold graphs (Mahadev and Peled, 1995) which generalize
the property of star graphs, ranking all vertices unambiguously. The relevance
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of this class is due to the preservation of its defining feature, completeness of
the neighborhood-inclusion preorder, in all common centrality indices (Schoch
and Brandes, 2016).

We start with a re-examination of a broad correlation study of Valente et al.
(2008) (henceforth referred to as the Correlation Study), where varying corre-
lations among a large set of indices were observed. Subsequently, we introduce
the concept of neighborhood-inclusion and argue that the completeness of the
ranking defined by neighborhood-inclusion is indicative for high correlations
among indices, even for dual measures like betweenness and closeness (Brandes,
Borgatti, and Freeman, 2016). We then illustrate this concept on the data of
the Correlation Study and thus provide an alternative explanation for previ-
ously observed correlations. We conclude with implications of these findings for
empirical research.

2. Results of the Correlation Study

Valente et al. (2008) use 60 networks compiled of eight different studies with
varying context (Valente, 1995; Coleman, Katz, and Menzel, 1966; Burt, 1987;
Rogers and Kincaid, 1981; Valente, Watkins, Jato, Van Der Straten, and Tsit-
sol, 1997). All studies were conducted in bounded communities by interviewing
their members, asking about relationships with other members. A more detailed
description of the data can be found in Valente et al. (2008). It is important to
note that the studies greatly differ in size, number, type of questions asked and
number of nominations allowed. This leads to a diverse set of networks with
varying structural properties. Innately the networks are directed. The authors,
however, also consider the undirected versions of the networks to compare sym-
metrized centrality measures. Our later analysis will focus on the undirected
networks and the symmetrized indices, such that all results in this section for
the directed cases are only given for the sake of completeness and replication
purposes. Table 1 shows basic summary statistics of the eight studies and 60 di-
rected networks.

study networks
average

size
average
density

average
outdegree

symmetrized
centralization

in-degree
centralization

out-degree
centralization

1 3 64 0.06 2.61 0.15 0.19 0.12
2 25 68 0.03 1.62 0.11 0.20 0.05
3 11 76 0.03 1.94 0.16 0.29 0.06
4 9 83 0.05 3.56 0.15 0.28 0.02
5 9 82 0.50 39.17 0.30 0.15 0.49
6 1 71 0.32 22.15 0.31 0.30 0.38
7 1 72 0.20 14.19 0.18 0.24 0.28
8 1 60 0.09 5.23 0.10 0.10 0.10

Table 1: Characteristics of the networks compiled from various studies (replication of Table 2
from Valente et al. 2008).

Twelve different centrality indices are used in the correlation analysis. They
include (in/out/symmetrized) degree, (in/out/symmetrized) closeness (Sabidussi,
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1966), (in/out/symmetrized) betweenness (Freeman, 1977), eigenvector central-
ity (Bonacich, 1972) as well as integration and radiality (Valente and Foreman,
1998) and their joint symmetrized version. Correlations are assessed with Pear-
son’s coefficient. Table 2 summarizes the average correlation among the twelve
indices across the 60 networks.

1 2 3 4 5 6 7 8 9 10 11 12

1 indegree
2 outdegree 0.28
3 degree 0.81 0.73
4 betweeness 0.62 0.55 0.75
5 s-betweeness 0.70 0.51 0.83 0.71
6 closeness-in 0.60 0.19 0.48 0.37 0.32
7 closeness-out 0.20 0.82 0.58 0.40 0.37 0.07
8 s-closeness 0.45 0.63 0.62 0.37 0.40 0.50 0.64
9 integration 0.74 0.28 0.61 0.50 0.42 0.93 0.18 0.57

10 radiality 0.23 0.87 0.62 0.45 0.40 0.12 0.98 0.66 0.23
11 s-int/rad 0.50 0.69 0.69 0.43 0.47 0.52 0.68 0.99 0.60 0.71
12 eigenvector 0.74 0.70 0.91 0.67 0.69 0.46 0.54 0.57 0.60 0.59 0.65

Average 0.54 0.57 0.69 0.53 0.53 0.41 0.50 0.58 0.51 0.53 0.63 0.65
Standard Deviation 0.22 0.23 0.13 0.14 0.17 0.25 0.28 0.17 0.23 0.28 0.16 0.12

Table 2: Average correlation between centrality indices across 60 networks. Symmetrized
indices in bold. (replication of Table 3 from Valente et al. 2008).

Note that the symmetrized versions of degree, betweenness, closeness and
eigenvector centrality are, on average, highly correlated. The larger differences
between in and out measures can mostly be attributed to the nomination scheme
of the individual studies, i.e. individuals nominate more people than they are
themselves nominated.

Valente et al. (2008) conclude that the correlation between “degree, between-
ness, closeness, and eigenvector indicates that these measures are distinct, yet
conceptually related.” While the results indeed point in this direction, individ-
ual differences on specific network structures are blurred out by averaging over
all, or subsets of, networks. Also, as we argue below, Pearson’s correlation co-
efficient is not an appropriate choice and might yield misleading results in this
context. We thus re-evaluate the dataset in Section 5 with a rank based method
and illustrate the impact of specific structural properties on correlations.

3. Centrality and Uniquely Ranked Graphs

Recently, it was shown that standard centrality indices can be expressed in
a common framework based on path algebras (Schoch and Brandes, 2016). This
generalization is used to show that common indices preserve what is called the
neighborhood-inclusion preorder. In a simple undirected graph G = (V,E), the
neighborhood N(i) of a node i ∈ V is defined as the set of nodes i is connected
to, that is N(i) = {j : {i, j} ∈ E}. The closed neighborhood can then be
defined as N [i] = N(i) ∪ {i}. If the neighborhood N(i) is contained in the
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closed neighborhood N [j] (cf. Figure 1), then the centrality score of node i will
always be less or equal to the score of j.

(a) N(i) ⊆ N [j] (b) i dominated by j

Figure 1: (a) Example in which the neighborhood of j includes that of i, independent of
the presents of gray vertices and edges. (b) Neighborhood-inclusion relation represented as a
directed graph; an edge (i, j) indicates N(i) ⊆ N [j] (underlying graph in gray for comparison).

More formally,
N(i) ⊆ N [j] =⇒ c(i) ≤ c(j)

holds for a great variety of indices c. Neighborhood-inclusion therefore induces
a preorder (a reflexive and transitive binary relation) on the set of nodes which
is respected by any centrality based node ranking. Figure 2 illustrates this
preservation property on a simple example for degree, closeness, betweenness
and eigenvector centrality.

A B C

D

E

A B C

D

E

scores dc bc cc ec

A 1 0 0.11 0.26

B 2 3 0.17 0.57

C 3 4 0.20 1.00

D 2 0 0.14 0.82

E 2 0 0.14 0.82

ranks dc bc cc ec

1. C C C C

2. B,D,E B B D,E

3. A A,D,E D,E B

4. A A

5.

(a) (b)

(c) (d)

Figure 2: (a) Example graph and (b) its neighborhood-inclusion preorder. (c) Centrality
scores of degree (dc), betweenness (bc), closeness (cc) and eigenvector centrality (ec) of the
graph and (d) their induced rankings.

This ordinal property amplifies the importance of centrality rankings com-
pared to actual centrality scores. Effectively, scores have negligible meaning in
empirical research, such that using rank-based correlation methods are more
suitable for a correlation analysis. This is aggravated by the fact that Pearson’s
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correlation coefficient is only fully applicable if two variables have a joined nor-
mal distribution (Embrechts, McNeil, and Straumann, 2002), which can not uni-
versally be assumed for centrality indices. Correlation analyses with Pearson’s
coefficient can thus lead to misleading results if the dependencies are mono-
tone but nonlinear. For our later analysis, we use Kendall’s τ as a rank based
measure and Person’s coefficient only to illustrate the differences.

A direct consequence of the preservation property is best understood by
considering two extreme examples. Figure 3(a,d) shows two graphs, (d) be-
ing totally ordered by neighborhood-inclusion, that is any pair of nodes can be
ordered by neighborhood-inclusion, and (a) without any comparable pairs. In
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(d) (e) (f)

Figure 3: (a,d) Two example graphs with (b) empty and (e) total neighborhood-inclusion
preorder. (c+f) Parallel coordinates of induced rankings by centrality indices with ranking
from top to bottom.

the former case, all centrality indices induce the same ranking (cf. Figure 3f).
Betweenness is a slight exception, since the preservation is not strict. That is,
N(i) ⊆ N [j] and N(j) 6⊆ N [i] only imply c(i) ≤ c(j) and not c(i) < c(j). How-
ever, vertex i will not be ranked higher than j. In the latter case, centrality
rankings are completely undetermined, such that indices have the degree of free-
dom to rank vertices differently (cf. Figure 3c). In the following subsection, we
give a characterization of a class of uniquely ranked graphs such as Figure 3(d).

3.1. Threshold Graphs

The class of graph for which the neighborhood-inclusion preorder is complete
is known as threshold graphs (Mahadev and Peled, 1995). These graphs and
their applications have been studied extensively in the literature in varying
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context (Chvátal and Hammer, 1977; Hammer, Ibaraki, and Simeone, 1981;
Diaconis, Holmes, and Janson, 2008). The following theorem summarizes a
number of alternative ways to characterize threshold graphs.

Theorem 1. Let G = (V,E) be a simple undirected graph. Then, the following
statements are equivalent.

(i) G is a threshold graph.

(ii) There exist vertex weights ω : V → R+
0 and a threshold t ≥ 0 such that

{u, v} ∈ E ⇐⇒ ω(u) + ω(v) > t .

(iii) G can be constructed from the one-vertex graph by repeatedly adding an
isolated vertex or a dominating vertex which is connected to every other
vertex that has been added before.

(iv) G does not contain the following graphs as induced subgraphs

C4 P4 2K2

(v) G is a split graph and the neighborhood of the independent set is nested.

The proof can be found in Mahadev and Peled (1995).
The degree sequence of a threshold graph is unigraphic, that is the structure

of the graph is uniquely determined by its degree sequence up to node relabel-
ing (Hammer et al., 1981). Theorem 1(v) implies that threshold graphs have a
perfect core-periphery structure such that the node set can be partitioned into
a clique and an independent set. Some basic examples for threshold graphs are
shown in Figure 4.

Figure 4: Examples of threshold graphs.

By definition, no two centrality indices that respect neighborhood-inclusion
contradict each other on a threshold graph and the rankings are perfectly cor-
related, as illustrated in Figure 5.

We can, however, not expect to encounter threshold graphs in real-world
social networks due to their rather artificial structure. Yet, we expect graphs
close to being a threshold graph to have similar structural properties and thus
exhibit high correlations among any pair of centrality indices. On the other
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Figure 5: Threshold graph and pairwise centrality scores.

hand, the more distinct a graph is from a threshold graph the less determined
the neighborhood-inclusion preorder will be, leading to more degrees of freedom
and thus lower correlations. It is thus of importance to have reliable methods
that allow the quantification of the distinctness between arbitrary graphs and
threshold graphs.

4. Distance to Uniquely Ranked Graphs

In this section, we discuss several methods to assess how similar the struc-
ture of arbitrary graphs is to that of a threshold graphs.

Edit distance. The distance between two arbitrary graphs is commonly as-
sessed with the graph edit distance, i.e. counting the minimum number of edge
additions and deletions needed to turn one graph into the other (Gao, Xiao, Tao,
and Li, 2010). To determine how close an arbitrary graph is to being a threshold
graph, we could thus determine the minimum number of edits necessary, to turn
it into a threshold graph. This problem of threshold edit distance, however, was
recently shown to be computationally intractable (Drange, Dregi, Lokshtanov,
and Sullivan, 2015). Therefore, we have to rely on alternative measures or find
bounds for the threshold edit distance.

Rewiring distance. A conceivable alternative to edit distance is to count the
number of edge rewirings, that is, changing one endpoint of an edge to turn a
graph into a threshold graph. This procedure will lead to a threshold graph
with the same number of edges as the original graph. As Figure 6 illustrates,
the closest threshold graph in terms of the threshold rewiring distance and the
threshold edit distance can be distinct from each other.

The computational complexity of the threshold rewiring distance is unknown
but it is most likely also an intractable problem to determine its minimum. Since
an edge rewiring corresponds to two edits, we can at least state that the thresh-
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Figure 6: Illustration of the difference between edit and rewiring distance for a C4 (middle).
The left graph corresponds to the threshold graph with minimal rewiring distance and the
right to the one with minimal edit distance. Both distances are equal to one on their respective
scale.

old edit distance is bounded from above by twice the threshold rewiring distance.

Degree sequence editing. The threshold rewiring distance is closely related
to two existing measures of non-thresholdness of degree sequences, the threshold
gap gap by Hammer et al. (1981) and the majorization gap by Arikati and Peled
(1994). Since both measures coincide (Mahadev and Peled, 1995), we here focus
on the majorization gap. Given the degree sequence

d = [d1, d2, . . . , dn] with d1 ≥ d2 ≥ . . . ≥ dn

of a graph with n nodes, consider the corrected conjugated sequence d′ defined
by

d′k = |{i : i < k ∧ di ≥ k − 1}|+ |{i : i > k ∧ di ≥ k}| 1 ≤ k ≤ n .

The majorization gap is then defined as

1

2

n∑
k=1

max {d′k − dk, 0} .

Informally, the majorization gap of d is the minimum number of transformations,
decreasing an entry by one and increasing another by the same amount, required
to turn d into a threshold sequence. This degree sequence edits are referred to as
reverse unit transformations (Mahadev and Peled, 1995). Since multiple graphs
can have the same degree sequence, a reverse unit transformation sometimes but
not always correspond to rewiring an edge from one neighbor to another. One
such case is shown in Figure 7. The majorization gap thus provides a lower
bound for the threshold rewiring distance.

With the majorization gap, we therefore have a rough estimate for the edit
distance of arbitrary graphs to their closest threshold graph. In the absence
of a better alternative measure, we hereafter employ the majorization gap to
quantify the structural dissimilarity of a graph from a threshold graph keeping
the above points in mind. To make results comparable across networks, we
normalize the majorization gap by the total number of edges in the networks.
Hence, the normalized majorization gap is bounded between 0 (with equality for
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Figure 7: Illustration of the ambiguity of the majorization gap. The graphs on the left and
right both have the same degree sequence [6, 5, 5, 5, 4, 4, 1, 1, 1] and a majorization gap of
1. However, two edge rewirings are necessary for the left graph to obtain the threshold graph
corresponding to the majorization gap (middle) and only one for the right graph.

threshold graphs) and 1, if all entries of the degree sequence have to be changed.

Number of comparable pairs. Besides the majorization gap, we assess the
completeness of the neighborhood-inclusion preorder for each network. This
measure serves as an indicator for the expectable association among indices.
The more pairs of nodes are comparable, the higher are the correlations ex-
pected to be. On the other hand, if only a small fraction of nodes is comparable,
then the correlations should display a higher variability.

Eigengap heuristic. As noted before, threshold graphs have an idealized core-
periphery structure. This suggests that graphs close to being a threshold graph
exhibit characteristics inherent in core-periphery networks. There exist various
approaches to detect and quantify the core-periphery structure of networks, e.g.
by correlation with an idealized structure (Borgatti and Everett, 1999). We
here employ an approach motivated by results from spectral graph theory.

For many existing graph clustering algorithms, an input parameter k is re-
quired that specifies the number of clusters to be found. A way to determine
this number a priori is the so called eigengap heuristic (von Luxburg, 2007).
The adjacency matrix A of a simple undirected graph can be decomposed into a
set of orthogonal eigenvectors x1, x2, . . . , xn each associated with an eigenvalue
λ1 ≥ λ2 ≥ . . . ≥ λn. The number of presumable densely connected subgraphs
can be estimated by investigating gaps in the eigenvalue sequence. The param-
eter k is chosen such that |λi − λi+1| is small for 1 ≤ i < k and |λk − λk+1| is
comparably large. For core-periphery graphs, we can expect that a gap appears
at k = 1 since only one densely connected subgraph, the core, is present. A
simplistic illustration of this assertion is shown in Figure 8. We use

1− λ2
λ1

as eigengap measure to keep results comparable across networks and such that
higher values correspond to larger gaps. The maximum of this measure for
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Figure 8: (a) graph with two cliques connected by one edge and (c) graph with clique as
core and 4 peripheral nodes. (b)+(d) the distributions of the 8 eigenvalues of the respective
adjacency matrix with a gap at 2 for (a) and 1 for (c).

graphs with n nodes is attained for the star graph where λ1 =
√
n− 1 and

λ2 = 0.

Graph diameter. For any perfect core-periphery graph, the diameter is at
most 3 (a path between two peripheral nodes via two core nodes) and exactly
2 if the graph is a threshold graph. Thus, the higher the diameter of a graph,
the larger we expect the discrepancy to a threshold graph to be.

Figure 9 illustrates how the eigengap and the diameter covary with the ma-
jorization gap. We can see that the eigengap as well as the diameter are strongly
correlated with the majorization gap. Although we argued that the majoriza-
tion gap is only a distance estimate, it works reasonably well in assessing the
“core-peripheriness” of a network, especially since it is computationally cheap
also for very large networks.

Density. The sometimes conjectured association between density and central-
ity correlation is mitigated by the fact that threshold graphs exist at every
density level from trees (e.g. a star graph) to cliques. Hence, we exclude the
density from our analysis.
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Figure 9: Network statistics that covary with the majorization gap.

5. Results

In contrast to the Correlation Study, we restrict ourselves to the undirected
versions of the networks and delete all instances of isolated vertices. This is
justified by the fact that we are only concerned with theoretical implications
and do not use centrality as explanatory variables for any observed phenom-
ena (i.e. centrality effects). Also, the concept of uniquely ranked graphs and
the neighborhood-inclusion preorder presented in Section 3 were, so far, only
explored for undirected graphs. Furthermore, we only compare the four pro-
totypical indices degree (dc), closeness (cc), betweenness (bc) and eigenvector
centrality (ec) to illustrate our assertions.

We argued in the last section, that Pearson’s correlation coefficient is not
necessarily the appropriate choice for measuring association among centrality
indices. That is, observed varying correlations might simply be an artifact of
the chosen coefficient. Figure 10, however, illustrates that this is not the case.
The figure shows a comparison of Kendall’s τ and Pearson’s coefficient, display-
ing considerable differences between the two correlation measures in average
correlation. Overall, Kendall’s τ yields lower values, however, what remains
is the wide range of values for each pair of indices. If we assume correlation
to be primarily driven by formal connections, we would expect a much lower
variability.

As a first structural test, we assess the completeness of the neighborhood-
inclusion preorder for each network. Figure 11 illustrates how the fraction of
comparable pairs affects the correlation.
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Figure 11: Rank Correlation and fraction of comparable pairs by neighborhood-inclusion for
the 60 undirected networks.

Most of the graphs only have a very small fraction of comparable pairs, such
that we can not draw any general conclusions about a connection between the
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completeness of the neighborhood-inclusion preorder and observed correlations.
At least in the lower range it is apparent that the correlation can vary signifi-
cantly due to the degree of freedom offered by a sparse neighborhood-inclusion
preorder. Further, the few graphs with a more complete neighborhood-inclusion
preorder display the anticipated outcome of generally higher correlations. More
variety among the graphs can be observed when turning to the normalized ma-
jorization gap depicted in Figure 12.
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Figure 12: Rank Correlation and normalized majorization gap for the 60 undirected networks.

We can see that the correlations decline, more or less, with increasing ma-
jorization gap. This indicates that the distance to threshold graphs is indeed
partly indicative for correlations among centrality indices. Individual differ-
ences, however, can still be observed. Especially the correlation of between-
ness with other measures exhibits a higher variance, suggesting that further
structural properties affect the correlations. Nonetheless, we observe that even
conceptually different indices like betweenness and closeness can be highly cor-
related if the network is close enough to a threshold graph. In contrast, even
indices that are suspected to be similar in a formal way, like degree and eigen-
vector centrality, can be quite uncorrelated if the network structure permits
it.

6. Conclusion

We have shown that correlations among centrality indices are not neces-
sarily indicative of their formal and conceptual similarity. The reason is that
centrality indices induce the same ranking on threshold graphs. This class of
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graphs generalizes the star graph property and represent the purest form of a
core-periphery structure. The closer any graph to a threshold graph, the more
correlated centrality indices are, independent of their conceptual distinctness.
To assess closeness to a threshold graph we used the majorization gap as a
simple and computationally tractable alternative to edit distance.

Our findings have important implications for empirical research. If the struc-
ture of a network is close to that of a threshold graph, which will be the case for
many core-periphery networks, a centrality effect cannot be explained with ref-
erence to the conceptual foundation of a specific centrality index because most
other indices, with their competing explanations, will yield similar results.This
hints at a trade-off between a pronounced centrality effect and the specificity of
its explanation.

It is therefore important to study in more detail such notions of distance from
threshold graphs that scale with the degree to which different centrality concepts
diverge. To do so, however, we first need to understand which structural features
cause the scores of different centrality indices to deviate. Do these features have
natural generalizations in directed and valued networks? A problem closely
related to the distance from uniquely ranked graphs is the sensitivity of indices
with respect to structural changes. Since these may be caused by missing and
erroneous data, it can be seen as a proxy for reliability.

As a consequence of our findings, future work on the comparison of existing,
and development of new centrality indices should focus on the nature and preva-
lence of structural features that lead to distinct evaluations. Ideally, this would
provide a handle on the confidence that can be placed in particular explanations
of centrality effects.
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