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Abstract

The triad census is an important approach to understand local structure in network
science, providing comprehensive assessments of the observed relational configura-
tions between triples of actors in a network. However, researchers are often interested
in combinations of relational and categorical nodal attributes. In this case, it is de-
sirable to account for the label, or color, of the nodes in the triad census. In this
paper, we describe an efficient algorithm for constructing the colored triad census,
based, in part, on existing methods for the classic triad census. We evaluate the per-
formance of the algorithm using empirical and simulated data for both undirected
and directed graphs. The results of the simulation demonstrate that the proposed
algorithm reduces computational time many-fold over the näıve approach. We also
apply the colored triad census to the Zachary karate club network dataset. We si-
multaneously show the efficiency of the algorithm, and a way to conduct a statistical
test on the census by forming a null distribution from 1, 000 realizations of a mixing-
matrix conditioned graph and comparing the observed colored triad counts to the
expected. From this, we demonstrate the method’s utility in our discussion of results
about homophily, heterophily, and bridging, simultaneously gained via the colored
triad census. In sum, the proposed algorithm for the colored triad census brings
novel utility to social network analysis in an efficient package.

Keywords: triad census, labeled graphs, simulation

1. Introduction

The triad census is an important approach towards understanding local network

structure. ? ] first presented the 16 isomorphism classes of structurally unique triads
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possible in a directed network without loops. To conduct a triad census, one simply

counts each occurrence of these structures, without respect to the labeling of the

nodes (here we use node label, color, characteristic, and attribute interchangeably).

This is useful insofar as specific triads, or combinations thereof, may relate to un-

derlying social processes giving rise to an observed network. For example, bridges

(triads with one null dyad and two non-null dyads) may be important in navigating

social networks [? ], and certain triads may be more or less favorable based on struc-

tural balance theory (e.g. the 300 is balanced but the 201 is not, see Figure 1) [? ].

Moreover, a variant of the triad census, motif analysis, investigates the statistics of

various triad configurations (motifs), and has found wide application in biology [? ].

Also important to network structure are nodal characteristics and how they relate

to tie formation or dissolution. This has been the subject of research on homophily

(individuals having similar attributes with those to whom they are connected) [? ].

However, homophily is an observed phenomenon, not a process. The processes giving

rise to homophily are varied, often confound the relationship between networks and

outcomes, and are difficult to tease apart [? ]. Methodological advances, such as

stochastic actor-oriented models can disentangle these effects to some extent [? ].

Other analyses have attempted to disentangle the processes leading to homophily

from structural processes, such as triadic closure [? ]. Additionally, the coloring of

nodes in a network has been an important question for many graph theorists and

indeed represents a major topic in this field [? ].

Although nodal characteristics and the triad census are important, they have

rarely been examined fully in conjunction. Yet, there are a few cases where specific
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colored triads have been studied. For example, ? ] study brokerage based on triad

structure and group membership simultaneously. This same approach has been used

to study brokerage in dynamic networks [? ]. As well, a study by ? ] examined spe-

cific colored triads based on generational membership within families; in this work

the authors showed that inter-generational ties were observed in different quantities

than expected based on the underlying null model. None of the past research eval-

uated the full census of colored triads, rather, researchers have focused instead on

specific colored triads that were a priori expected to be relevant to the processes at

hand. As a result, these foundational works were not exhaustive with respect to all

alternatives. In other words, previous research examining a subset of colored triads

likely had an amount of false negatives due to not examining every colored triad;

this could be addressed by censusing the colored triads.

The examination of node characteristics together with local structure is important

as it provides opportunity to simultaneously study the occurrence of triadic structure,

nodal attributes, and the interactions between them. For instance, certain colored

triads may be forbidden, such as three-cycles between strict heterosexuals in mixed-

orientation sexual contact networks [? ]. Impermissible triads would be categorized

the same as those that were not observed due to chance in a triad census, potentially

missing important social processes or constraints at play in this type of network.

Only by incorporating node coloring into the triad census can this pattern be fully

elucidated.

Based on this methodological gap in the literature, we develop a method to census

the colored triads for any one-mode binary network with arbitrary number of colors.
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Due to the large numbers of isomorphism classes of size 3 as the number of colors

increases, this method requires computational efficiency in addition to mathematical

accuracy. As well, one is often interested in forming a null distribution with which to

compare observed colored triad counts. If the null distribution cannot be analytically

solved, one would likely census the colored triads of many simulated networks, further

increasing the need for the algorithm to be computationally efficient.

Current efficient methods for the triad census exploit the sparseness of networks

[? ], and scale sub-quadratically (as the number of edges increases the time to run

the algorithm is faster than the number of edges squared). However, methods that

exploit network sparseness by inferring the number of null triads do not work in

the colored case because they do not explicitly interrogate every triad, and there

are variations within the null triads due to the coloring. Therefore, we extend the

methodology of ? ], which is based on matrix algebra and interrogates every triad;

his method scales sub-quadratically with the number of nodes.

This paper (1) presents the colored triad census and its computational complexity,

(2) shows that this approach can be used on large networks (tested for up to 10, 000

nodes) with up to 10 colors in relatively efficient time, and (3) uses the method many

times to create null distributions of colored triad censuses to form the basis of con-

ditional uniform graph tests. We illustrate the benefits of an analysis incorporating

the colored triad census using a well-known dataset, Zachary’s Karate Club [? ].
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2. Algorithm

Since the original appearance of the triad census in 1976, a number of papers

have explored how to compute the triad census of a network in an efficient manner.

Although, for sparse networks, sub-quadratic methods (in terms of number of nodes)

exist for calculating the triad census (e.g. ? ]), we use the quadratic algorithm pre-

sented by ? ] here. This is because the more efficient methods avoid interrogating

null triads directly by taking advantage of the sparseness of graphs, the subsequent

large number of null (003) triads, and the known number of total triads. Instead,

they interrogate all triads with at least one edge, and then subtract that count from

the total number of triads in the network to arrive at the number of null triads. This

is insufficient in the colored triad census as there are differently-colored null triads,

and the count of each cannot therefore be algebraically determined. For example, if

there are two colors, four different null colored triads exist (0-3 nodes color A). The

exact breakdown of the null triad into the four colored triads cannot be determined

without interrogating each null triad, thereby losing the efficiency gained when not

considering colors. Moody’s algorithm does not employ this limiting shortcut, and

we therefore use it as a basis for our colored triad census algorithm. Addition-

ally, because many networks are sparse, we can leverage computational techniques

for increasing the efficiency of sparse matrix operations [? ], further reducing the

computational complexity of our method.

? ] showed that the count of each of the 16 triad isomorphism classes could

be derived by using matrix algebra on the adjacency matrix of the graph and its

derivatives. To review, let A be the adjacency matrix of a network, and Aij = 1
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when a tie exists from node i to node j. Let E be the symmetrized matrix A, formed

by making any edge in A reciprocal via Eij = max(Aij, Aji). The complement of E,

Ē, is formed by subtracting the complete network adjacency matrix from E, so that

Eij = 1 if and only if there is neither a tie from i to j nor a tie from j to i. Next, we

have M , the mutual matrix of A, and is made by removing any asymmetric edges

from A, or Mij = min(Aij, Aji). Finally, C is the matrix of only asymmetric edges,

and is calculated by C = A −M . Therefore, Cij = 1 ⇐⇒ Aij = 1 & Aji = 0.

Based on these matrices, Moody demonstrates how to calculate the number of each

of the 16 isomorphism classes for the case of unlabeled graphs (or, equivalently, for

a graph consisting of nodes of the same single color). Generally, this was done by

multiplying (either through dot-product or element-wise multiplication) the three

matrices corresponding to the relevant edges in the triad of interest. There were two

triads (111U and 111D) that were not directly amenable to this process and were

calculated via addition and subtraction of other triad types, respectively.

To extend this work to the case of multiple colors, we introduce the out-coloring

and in-coloring matrices, Kr and Kr′ , respectively, where r is the focal color of

matrix K. Here, the in-coloring matrix is the transpose of the out-coloring matrix.

The out-coloring matrix is calculated by evaluating the color of the nodes row-wise,

such that rows indexing nodes of the focal color are composed in the following way:

Kr
i• =


1 if R(i) = r

0 if R(i) 6= r

(1)

Where R(i) is a function returning the color of node i. As above, the in-coloring
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matrix is the transpose of the out-coloring matrix in Eq. 1.

Our algorithm works by using the in- and out-coloring matrices to evaluate and

“switch on” edges that have nodes of the focal colors at the ends (or tails) of edges

in the adjacency matrix A of the network. We adapt the triad census nomenclature

of ? ] by appending the colors after the name of the triad. The colors are ordered

from the top node proceeding clockwise in Figure 1. We have arbitrarily adapted

the orientation of the triads from the triad census figure in ? ] for computational

reasons. The orientation is important here because triads with the same orientation

may no longer be isomorphic when color is introduced. Figure 1 makes it possible

to count unambiguously and name only unique colored triads. Therefore, T102−123

is the triad consisting of 1 symmetric dyad and 2 null dyads, where the top node is

of color 1, the bottom-right node is of color 2 and the bottom-left node is of color

3. This is distinct from the T102−312 triad because the coloring of the nodes is not

identical from the previous triad.

Following this, the general formula for an arbitrary triad “T” with an arbitrary

coloring triplet is:

T = Tr
(
(K1×H(T, 1, 2)×K2′)(K2×H(T, 2, 3)×K3′)(K3×H(T, 3, 1)×K1′)

)
(2)

In the above, “×” refers to element-wise multiplication, and “Tr” is the trace

function. For an arbitrary triad, “T” has a color triplet r1, r2, r3. H(T, i, j) is a

function returning the matrix specific to the type of edge between nodes i and j

in triad “T”. For example, in a 102 triad, the first edge from the top node going
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clockwise is a symmetric edge from node one to node two (Figure 1). H(T102, 1, 2)

in this case would be the matrix E for the symmetric matrix, and the sandwiching

color matrices would turn the proper edges on and off if nodes one and two were of

the specified colors. If the edge is an asymmetric one, and the direction of the edge

in Figure 1 is counter-clockwise, then C ′ is used instead of C to force the edge to go

in the proper direction.

At this point, there are redundant triads due to certain colored triads being

isomorphic. For instance, the T003−122 is isomorphic with T003−221 and T003−212, and

would be triple-counted. These are removed by checking for isomorphisms based

on matrix row and column permutations of the triad. If two colored matrices are

identical after such row and/or column permutations, then they are isomorphic, and

one is removed. We arbitrarily decide to discard the triad whose coloring triplet

name comes second alphanumerically. It should be noted that removing in this way

is computationally expensive, particularly as the number of colors and nodes grows

large. We therefore shorten this process by performing it once for 1 to 10 colors and

storing the unique isomorphism classes. This leaves only unique isomorphism classes

of colored triads, which can then be accessed in linear time.

The number of unique isomophism classes for a given number of colors can be

shown for each of the 16 ismorphism classes in the triad census. The 16 classes

separate into four types of colored triads, depending on how many structurally-

distinct positions there are in the triad (e.g. the two ends of the edge in a 102 triad

are not structurally-distinct from one another, but are distinct from the node with

no edges). The calculation for the number of each isomorphism class for arbitrary
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number of colors (k) is shown in Table 1. Each combinatoric term in each row

(together with their respective leading permutation coefficients) counts the number

of colored triads when there are three, two, or one unique color(s), respectively. For

example, in a network with three colors,the ‘300’ and ‘003’ classes have only one

accessible permutation when there are three colors present in the triad (i.e.
(
3
3

)
), six

ways when there are two colors (i.e. 2
(
3
2

)
), and one way when there is one color in

the triad (i.e.
(
3
1

)
).

Isomorphism classes Number of colored triads

300 and 003
(
k
3

)
+ 2
(
k
2

)
+
(
k
1

)
030C 2

(
k
3

)
+ 2
(
k
2

)
+
(
k
1

)
102 021D 021U 201 120D and 120U 3

(
k
3

)
+ 4
(
k
2

)
+
(
k
1

)
012 021C 111D 111U 030T 120C and 210 6

(
k
3

)
+ 6
(
k
2

)
+
(
k
1

)
Table 1: Expression for the number of isomorphism classes within a triad class. k is the number of
colors

If these numbers are summed over the 16 isomorphism classes, the total number

of colored isomorphism classes of triads for k colors is returned. Similarly, the same

can be done for undirected triads, solely summing over the 4 triads observed in the

undirected case. Table 2 reports the total number of colored triads for undirected

and directed networks over a range of k. Clearly, the number of isomorphism classes

grows quite quickly as k increases.

The algorithm implemented as an R package is publicly available and is linked

to this paper via github: https://github.com/jlienert/ColoredTriadCensus.
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Number of
colors

Number of directed
colored triads

Number of undirected
colored triads

1 16 4
2 104 20
3 328 56
4 752 120
5 1440 220
6 2456 364
7 3864 560
8 5728 816
9 8112 1140
10 11080 1540

Table 2: The number of colored triad isomorphism classes for directed and undirected networks for
k ranging from 1 to 10.

3. Algorithmic Performance

If a näıve implementation of matrix multiplication is used, this algorithm runs

with computational complexity O(N3∗3k). It scales with the number of nodes cubed

(N3) because of the matrix multiplication involved in the algorithm. However, many

software packages use algorithms that reduce the complexity of matrix multiplication

to O(N2.38) [? ]. Furthermore, by taking advantage of methods for matrix multipli-

cation using sparse matrices (as appropriate due to the sparse nature of most social

networks), this complexity is reduced to something closer to O(N2) [? ]. The exact

benefit gained by using sparse matrix multiplication varies based on how sparse the

matrix is. This ranges from the nearly-optimal O(N2) when very few edges exist,

to worse than the optimized algorithm when many edges exist. The scaling with 3k

comes from the number of distinct colored triads the algorithm needs to evaluate,

and the number of isomorphism classes scales in such a manner.
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To test the efficiency of the algorithm, we apply it to networks ranging in size

from n = 10 to n = 10, 000 with the number of colors ranging from k = 3 to k = 10,

all holding the average degree constant at 6 by creating Erdös-Rényi graphs with

an edge probability of 6
N−1 . This reflects the average number of ties participants

enumerate in social networks surveys [? ]. The runtime of the algorithm with these

parameters can be seen in Figure 2. In general, increasing K results in constant

increases in log(runtime), which is what we expect based on the theoretical com-

putational complexity. As expected, we also observe a super-quadratic increase in

log(runtime) as N increases. Although it is super-linear, it is still below the curve

that would exist if we used matrix multiplication not optimized for sparse matrices

(dotted line in Figure 2). This difference shows the expected time saved by using

sparse matrix methods. Finally, we observe changes in the rank-order and decreases

in runtime going from 10 to 100 nodes. This is also due to the computational time

involved in initializing the sparse matrices and storing and operating on sparse ma-

trices, and as such is not unexpected. Additionally, because the average degree was

held constant, the smaller networks are much more dense, and therefore are actually

less efficient than if they used standard matrix multiplication methods. To be per-

fectly optimized, therefore, the algorithm would use standard matrix multiplication

for small networks, and switch to sparse methods for larger networks. However, the

gains would be minimal, generally under 10 seconds, and would require additional

logical steps to check for network size, further minimizing the gain. We therefore use

sparse matrix methods for all network sizes.
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4. Empirical Use and Example

To show the empirical value of this algorithm, we use the Zachary karate club

social network [? ]. This is a well-known historical network that describes the social

relationships between 34 members of a university karate club. Ties exist between

members if they overlapped in at least one of eight contexts representing undirected

relations. These relations varied in terms of likely strength of the association. Likely

at the weak end of the spectrum is being enrolled in the same class at the university,

while likely at the strong end is being a student-teacher at the studio. Additionally,

three ties are specific to activities with a part-time instructor. Member “factions”

were identified as a node attribute, taking one of five mutually exclusive values:

strongly associated with the president, weakly associated with the president, neutral,

weakly associated with the part-time instructor, or strongly associated with the part-

time instructor. These are labeled ”Zs”, ”Zw”, ”N”, ”Hw”, and ”Hs”, respectively.

These labels can be placed on an ordinal scale from -2 (Zs) to 2 (Hs) to quantify

members’ direction and strength of alignment. This undirected network with five

colors represents a case that is rich in the number of colored triads (220) for detailed

conclusions to be drawn using the proposed algorithm (which is general to both

undirected and directed networks).

We initially ran the colored triad census on the social network using the faction

as the nodal attribute. This provided the basis for our empirical observed colored

triad census. To determine whether these triads were observed more or less often

than expected by chance, we constructed a null model. As the choice of null model

can have important ramifications for the null distribution of triads, we chose a model
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where edge formation is a function of the probability of ties between nodes of specific

attributes [? ]. The null model is a mixing-matrix conditioned uniform random

graph distribution based on probabilities of edges between nodes of particular color

combinations [? ]. This matrix comprises empirical probabilities of ties between

groups, with the diagonal representing within-group tie probabilities. Observations

of significantly over- or under-represented colored triads are the result of network

effects beyond homophily and heterophily. Networks are then generated from this

matrix via a Bernoulli random graph process á la ? ]. This null model therefore

conditions on graph size, the distribution of node factions, and the probability of

ties within and between factions. By generating networks from the null model,

we can observe whether colored triad counts deviate from that expected based on

the marginal distribution of faction mixing. Because we condition on the above

parameters, if we observe statistical deviations in our colored triad census, it indicates

that the structure of the network is dependent on parameters other than those on

which we conditioned.

Moreover, for any triad, the expected number and variance can be calculated

assuming each tie follows a Binomial distribution (which is a reasonable assumption

for most binary social network data). The observed number can then be compared

to these numerical results and a p-value extracted from an exact Binomial test. This

equates to the following probability, expectation, and variance for an example colored

triad:
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P (T ) =P (Aij = 1|R(i) = r1, R(j) = r2)× P (Aij = 1|R(i) = r2, R(j) = r3)

×P (Aij = 1|R(i) = r3, R(j) = r1)

(3)

E(T ) = P (T )×
L(T )∏
r=1

(∑
Kr
•1

S(T, r)

)
(4)

V (T ) = E(T )× (1− P (T )) (5)

The probability of T , P (T ) in Equation 3 is based on the mixing-matrix of the

three colors (r) involved in the triad T . As is standard for the mixing-matrix ap-

proach, this continues to assume that all edges in the graph are independent. For

the expected value of a specific triad, we multiply the probability of a single one

of those triads by the total number of colored triplets that exist in the graph. In

Equation 4, the expectation of the triad, L(T ) returns the number of unique colors in

T and
∑

Kr
•1 is the number of nodes of color r in the graph. Also, we take the nodes

one, two, or three at a time depending on how many times that color repeats in T ,

represented by S(T, r). This expectation therefore follows a binomial distribution,

and it’s variance follows accordingly in Equation 5.

However, to show that this method also works for null distributions that are not

analytically solvable, we construct a null distribution based on simulated draws from

the null model. As the number of trials increases, the simulated null distribution

of the colored triad census should asymptotically approach the analytical solution

shown above. For each of 1, 000 trials, we draw random networks from the null
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distribution, and run the triad census on all these networks. Comparing our observed

count to the null distribution then allows us to get an approximate p-value for a

conditional uniform graph test, and test the over- or under-representation of each

colored triad. We now turn to these results.

4.1. Results

Figure 3 is a heatmap of the approximate p-values associated with each binomial

exact test against the null for each triad, clustered by the triad and the colored

triplet as returned by the proposed algorithm. We use a clustering algorithm to

group color triplets with similar profiles across the types of triads. This assists

with identifying trends across different colored triads, leading to conclusions that

would likely be missed if all the colored triads were individually examined. We find

particular importance in three branch cutpoints in the clustering algorithm on the

color triplets. The first branch in the clustering algorithm (A in Figure 3) separates

four color triplets, comprising 16 colored triads, with a pattern of over-observed 003

and 102 triads, and under-observed 201 and 300 triads. These results show that these

color triplets are those that are less clustered than expected by chance. The color

triplets all contain nodes of two factions with the first two nodes being Hs, that is,

those strongly aligned with the part-time instructor. This indicates that those who

are so aligned are likely to form ties to one another, but not to members of other

factions. The only exception in this group is that two Hs nodes are more likely to

form a tie from one of the Hs members to a Hw member, but even in this case the

complete triad (003) is still observed less than expected by chance. This particular

result is, perhaps, unsurprising, since Hs and Hw members are close in alignment,
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more so than with those aligning with the president. Therefore, given the tendency

towards homophily they are likely to overlap, though less strongly than members of

the same faction; hence, the under-observed T003−HsHsHw.
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003 012 102 021D

021U 021C 111D 111U

030T 030C 201 120D

120U 120C 210 300

Figure 1: The 16 isomorphism classes of triads and their orientation used here with respect to the
color numbering. When colors are added to these triads, they are labeled starting from the top
node and proceeding clockwise.
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The second branching point in the clustering (B in Figure 3) separates the group

of color triplets that are over-observed for the 003 triad, under-observed for the 102

and 201 triads, and observed about as much as expected for the 300 triads. All the

triplets in question have nodes of different factions in the first and second position.

Because the edge in the 102 triad is between the first and second node in the triplet

(Figure 1), this means that these are all triplets where the first edge is less likely

than expected by chance, and the lack of formation of the first edge subsequently

hampers the formation of the edge between the second and third nodes in the triplet

(201 triad). The first two nodes of these triplets are often (e.g., 16 out of 21) two

factions at least a distance of two away (e.g. N and Hs), indicating members of

a faction are not likely to overlap with members who are too disparate from their

faction. Put another way, this pattern of triads shows a lack of faction heterophily.

The third branch point (unlabeled) is primarily singling out the group of color

triplets that were not observed in the network, and we cannot draw conclusions about

their prevalence. The fourth branch point (C in Figure 3), however, distinguishes a

group of five triplets that are under-observed for the 102 triad and over-observed for

the 201 triad. This means that the edge between the first two nodes is less likely

than expected by chance, but once that edge does occur, the second edge occurs

more often than expected by chance. All these triplets begin with a Zs member,

and the 201 triad in this case is effectively a bridging tie between it and another.

Interestingly, the bridging node is anything other than an Hs (whom are primarily

consigned to this role in branch A, as discussed above). The third node was another

Zs member in four of five triplets. This indicates that Zs members of the karate
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club did not often overlap members of other factions, but when they did, provided

it was not with an Hs, that second person also often overlapped with another Zs.

Although the above examples show homophily and bridging, analyzing the full

colored triad census allows us to draw further conclusions by looking at other colored

triads. In particular, the homophily has mostly been a story of the Hs nodes, and the

bridging primarily about the Zs nodes. The 300 triad of both of these factions, when

comprising three nodes of the same faction, are observed more often than expected

by chance in both cases, which has different implications on the previously-noted

results. For the Hs nodes, homophily is strengthened, as not only do Hs nodes not

often overlap with members of other factions, they also very strongly overlap with

one another. This may partially be an artifact of the types of overlap, as stated

before, three of the overlap activities involve direct participation in the part-time

instructor’s studio, but there are no corresponding groups for the president. This

means that those who are Hs or Hw may have more opportunity to overlap with

one another due solely to the structure of the data. On the other hand, the triplet

of all Zs members also has an over-observed 300 triad. Although there are other

triads that seem to indicate bridging between Zs members (C in Figure 3), given

that Zs members are also densely connected to one-another, the practical effect of

these potential bridging ties is reduced. Observing this joint effect of homophily and

bridging ties was possible only through the complete colored triad census. Neither

a standard triad census nor a brokerage analysis would have revealed the intricacies

of these results.

In sum, it is clear from these results that the colored triad census allows one
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to examine multiple trends simultaneously that are often done in isolated analyses,

including homophily, heterophily, and brokerage. Importantly, it also allows for

generalizations based on the clustering of various triads or color triplets, as well as

specific results based on individual triads. In this manner, the colored triad census

can yield results on multiple structural levels simultaneously, all while examining

local structure, nodal attributes, and their interaction—that is, net of all alternatives

involving mixtures of node coloring and triadic configurations.

5. Limitations

There are some limitations to this method. First, it is only computationally ef-

ficient relative to existing methods (including brute force counting). Networks of

10, 000 nodes or more will take over a day to run using the proposed algorithm for

the colored triad census. However, this is an easily parallelizable process (by par-

titioning the separate algebraic steps, for example), and so the real time necessary

to run the analysis can be greatly reduced by taking advantage of this feature. The

time needed for the parallelized colored triad census is approximately inversely pro-

portional to the number of computational cores used in the calculation (plus some

overhead). Second, the interpretation and visualization of these results is compli-

cated, particularly as the number of colors increases. Examining all of the triads

simultaneously reduces the likelihood of missing interesting results because a specific

colored triad was excluded. However, the sheer number of colored triads means that

making complete sense of results can be difficult. Even if the results are carefully

examined for all colored triads, it is conceivable that one might miss an important
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result out of the 11, 080 colored triads in a directed, 10-color network, no matter how

meticulous the examiner’s eye. However, use of standard clustering algorithms and

heatmaps (as in Figure 3) may help to ease interpretation of the results at both a

coarse- (general groups of triads) or fine-grained (individual colored triads) perspec-

tive. That said, we recognize that the interpretation is not straightforward and that

this is a first effort at understanding these results, but we believe that having an

algorithm to efficiently calculate the colored triad census will spur additional work

towards interpreting and using the results. As a result better approaches therein will

emerge with time and use.

6. Conclusions

In this paper, we have extended the matrix algebra methods of ? ] to calculate

the colored triad census for any network, directed or undirected, with an arbitrary

number of colors in a relatively computationally efficient manner. We have shown a

number of mathematical results regarding the colored triad census, including a gen-

eralized equation for an arbitrary colored triad, the number of isomorphism classes

for arbitrary numbers of colors, and the expectation and variances for colored triads.

We analyzed an empirical social network using our algorithm, and calculated ap-

proximate p-values for each colored triad, based on an analytic exact binomial test

for less complex null distributions, or approximately through simulation for more

complex null distributions. We have also shown the type of conclusions that can be

drawn from these results, observing results that would not be feasible with many

other currently available methods.
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One additional benefit of this method is that it can be directly used as a counting

tool for sufficient statistics in network inference models, such as exponential random

graphs (ERGM). The colored triad census essentially allows one to simultaneously

evaluate the effect of local structure and node attribute on network structure in an

ERGM, building off previous work where researchers explicated the ERGMs capacity

for including the triad census [? ]. We believe that the colored triad census is a useful

technique with an efficient implementation that can be widely-applicable in social

networks research, showing the continued importance of the triad census even in this

era of stochastic models for complex networks.
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Appendix A. Variable and Functional Definitions

Variable or function notation Description of variable or function

A Adjacency matrix
E Symmetrized adjacency matrix
Ē Complement of symmetrized adjacency matrix
M Adjacency matrix including only mutual ties
C Adjacency matrix including only asymmetric ties
Kr Coloring matrix for color r
R(i) Function returning the color of node i
H(T, i, j) Function returning the matrix of the edge in triad T

between nodes i and j
T An arbitrary colored triad, with a MAN configuration,

and colored triplet r1, r2, r3
L(T ) A function returning the number of unique colors for

a given colored triad
S(T, r) Function returning the number of times color r

appears in colored triad T
P (T ) The probability of observing triad T
E(T ) The expectation of triad T under a binomial model
V (T ) The variance of triad T under a binomial model

Table A.3: List of variables, constants, and functions defined in this manuscript.
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